
PROBLEM SET 2                          CBE30355                             DUE 9/12/24 
 
 
1).  Compute the viscosity of air from 200ºK to 500ºK and 1 atm pressure.  The 
Chapman-Enskog equation described in chapter 1 of BS&L (eq. 1.4-14) and the data in 
tables E.1 and E.2 are useful here (note the correlation at the bottom of table E.2)!  
Compare your result graphically with the data from (the data table is pretty far down 
the page): 
 
https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html 
 
2).  The natural log of the viscosity of many liquids is approximately quadratic in the 
inverse of the temperature in ºK (e.g., the equation in chapter 1 of BS&L, with an extra 
term). 
 
a. Using this, and data from the web page: 
 
https://www.engineeringtoolbox.com/dynamic-viscosity-motor-oils-d_1759.html 
 
determine constants for such a model for the different grades of motor oil (plot the 
correlations and the data up using a semilog scale).  Convert the SI units for viscosity 
into poise (cgs system).  Be sure to label your graph! 
 
b. What are the temperature coefficients for the different grades at 50°C?  This is the 
fractional change in viscosity per degree centigrade, and can be calculated from your 
fitting parameters. 
 
 
3).  Here’s a weird application of hydrostatics: Consider a ball of gas (air) floating in 
space far from any other source of gravity (tidal orbital dynamics would really mess 
this up!).  At the center of the ball, we take the pressure to be 1 atm and the temperature 
to be a balmy 20°C.  As we move outward from the center, the pressure decreases by 
hydrostatics and the temperature drops by adiabatic expansion (e.g., it obeys both the 
ideal gas law and PVγ adiabatic expansion).  This is the result for a “well mixed” 
atmosphere, and applies to the earth’s atmosphere (at least below the stratosphere, 
anyway) as well.  Our goal is to determine the mass of the ball of gas. 
 
a. Set up the problem as a pair of equations for total mass inside a particular radius and 
density as a function of position using hydrostatics, the adiabatic gas law, and mass 
conservation.  Don't forget that gravity is a function of position, and that the 
gravitational attraction inside a spherical shell is identically zero!   
 
b. Scale the mass and radius by some unknown values, and then use the equations to 
determine the characteristic mass and radius (e.g., the magnitude of the scaling 
parameters so that the resulting dimensionless equations will be of O(1). 
 
c. Solve the dimensionless problem numerically to determine the final value of the mass 
of gas, and compare it to the mass of the earth.  It’s pretty easy to set the dimensionless 



problem up as a pair of coupled first order non-linear ODE’s.  We will review how to do 
this in class.  Note that the integrand for the change in density is mathematically well-
behaved at the origin, however you need to kick it off at a value just above zero (e.g., 
machine precision) or otherwise fix things to avoid division by zero numerical errors. 
 
 
4).  Pool drains can be dangerous things - there was a tragic case a number of years ago 
in this area where a child was stuck in a drain on the bottom, plugging it, and drowning 
as a result.  Here we look at a somewhat simpler problem.  Suppose a ball of radius R is 
plugging a drain of diameter D at the bottom of a pool of depth h as depicted above.  
Obviously, R > D/2 or the ball goes down the drain!  Estimate the conditions under 
which the net force on the ball is zero for very small ratios of D/R (you can do the 
precise calculation for arbitrary D/R, but the math gets a little messy!).  Assume that the 
pressure distribution in the drain is just atmospheric pressure, and that in the water is 
governed by the hydrostatic pressure distribution.  If R is 0.5 ft and D is 3 inches, what 
is the corresponding depth?  You may neglect the weight of the ball (e.g., its density is 
very small compared to water). 
 

 
 



What you should learn from these problems: 
 
Problem 1: This problem is asked to get you to do several things.   
 

a. To open the book and get practice looking up and using correlations. 
b. To recognize that you can calculate the viscosity of air (or any low density gas) 

from simple collision integral arguments. 
c. To get practice cutting and pasting data from charts and graphically comparing 

data to models/correlations. 
 

Problem 2: Again, several things should be learned: 
 

a. To recognize (and memorize) that for simple fluids such as oils the log of the 
viscosity can be well correlated with a polynomial in the inverse of the absolute 
temperature. 

b. To refresh your memory on how you do such a linear regression curve fit. 
c. To get practice using such a correlation to calculate quantities such as the 

temperature coefficient. 
d. To recognize that, for a viscous liquid, the viscosity changes by about 4% to 7% 

per degree C – this is a pretty large variation, and is why you can’t clean viscous 
liquids out of a vessel with cold water! 

e. To get practice with the mixing rule for simple fluids (doesn’t work for more 
complicated mixtures). 

 
Problem 3: Lots of very important things: 
 

a. To refresh your memory on how to use first year calculus to change/eliminate 
variables. 

b. To combine several equations describing different physical phenomena (mass 
conservation, hydrostatics, gravitation, adiabatic gas law) together to get a 
mathematical description of a pretty off-the-wall problem.  

c. Your first practice scaling equations to “figure out the answer before you start.”  
This will be a recurring theme in the class, and something you will find useful all 
your careers. 

d. Refresh your memory on how to solve systems of first order ODE’s numerically. 
 
Problem 4: More hydrostatics: 
 

a. Connect the mathematics of hydrostatics and buoyancy to a simple problem. 
b. Practice making the “flat Earth limit” approximation that is often used to 

(drastically) simplify calculations. 
c. Get a more physical understanding of how pressure distributions are connected 

to forces. 


