
PROBLEM SET 3                          CBE 30355                             DUE 9/19/24 
 
 
 

1).  A classic "Honorable Mention" on the Darwin Awards website is the saga of "Lawn Chair 
Larry" who decided to go flying by attaching 42 helium filled 113 ft3 weather balloons to his 
lawn chair. Instead of leveling off at around 30ft of altitude, he wound up at 16,000ft and 
actually was cited for violating LAX airspace.   
 
a. I'd like you to analyze this problem in hydrostatics and determine if it is possible to control 
elevation with any precision.  Note that in addition to the weight of Larry and his chair (and 
the balloons, and the helium – you can get a good estimate of the weight of the balloons by 
assuming that they have a thickness of 0.051mm) Larry was also carrying about a dozen 
gallon milk jugs full of water.  Assuming that he had just one more balloon than necessary to 
take off, you can get a good estimate of the weight of his entire system, and how much Larry 
and his chair weighed.   
 
b. Now assuming that the volume of the balloons didn’t change with altitude, determine the 
altitude he would go to with the “extra balloon”.  Use the “well-mixed atmosphere” 
assumption (adiabatic expansion) coupled with hydrostatics to get the variation of density 
and lift with altitude.  At least gravity is constant this time!  
 
c. The key error Larry made was ignoring the effect of the elasticity of the balloons.   Based on 
his final altitude of 16,000ft, what were the diameters of the balloons at that altitude? 
 
One (of many) url's for the Lawn Chair Larry story is: 
 
http://www.legacy.com/news/celebrity-deaths/article/larry-walters-the-flying-man 
 
PS: A movie "Danny Deckchair" came out a while back, which is (very) loosely based on 
Larry's adventure.  I’ve got the DVD, and it’s pretty amusing.  If you guys want to borrow it 
(and actually have something that can play a DVD), let me know. 
 
2). The fish tank in my old office had about 50 gallons of water in it.  In theory, the water was 
fresh – but ND tap water actually has quite a bit of salt in it.  The water slowly evaporated at 
a rate of 1 gallon/week, and all the water evaporating was fresh (the salt stays in the tank).  
We want to see how the salt concentration changed with time under two different scenarios: 
 
a. If I just topped off the water every week with more tap water, how long would it be before 
the concentration increases by 50% (e.g., 1.5x the original value)?  (this is really easy, and 
pretty much what happened – fortunately goldfish don’t mind salty water). 
 
b. You are -supposed- to do weekly partial water changes (I tended to forget, alas).  The idea 
is that you remove some water from the tank, and then replace it with more fresh tap water 
(after removing the chlorine, of course!).  How much water should I have 
removed/exchanged each week so that the steady-state concentration is no more than twice 
the tap water concentration?  What is the time for it to reach about 90% of this steady-state 
value (estimate only)?  Note that the amount extracted each week is pretty small in 
comparison to the total volume of the tank, so you can approximate the process as 
continuous rather than discrete - this makes it much easier! 
 



3).  A classic problem in lubrication flow occurs when a fluid is squeezed between two 
parallel-plates as is depicted below: 
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In this case the fluid of volume V is inserted between the plates, and the upper plate falls 
with a velocity U in the -z direction.  The lower plate is fixed, so the gap width h is governed 
by the simple equation: 
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a. As the plates move together, the fluid is squeezed out radially.  If the initial separation is 
h0, use conservation of mass to determine the radius R of the fluid between the plates as a 
function of time. 
 
b. The radial velocity will be a function of radial position (it is zero in the center, for 
example).  Using the continuity equation in cylindrical coordinates determine the average 
radial velocity (averaged over h) as a function of r and time. 
 
c. In the limit of small h/R the velocity is dominated by the radial flow.  This is the quasi-
parallel approximation that always occurs in lubrication problems, such as we shall examine 
in detail later this term.  For this geometry (and for a Newtonian fluid) the radial velocity is a 
parabola in z and proportional to a function of r and t (what you got in part b, actually).  
From the no-slip condition, it is also zero at both z=0 and z=h.  Using this information, 
determine the radial velocity profile as a function of r, z, and t.  Later on we'll use the 
momentum equations to determine pressure inside the fluid and the force required for this 
motion! 
 
4). Index Notation:  Using the concept of symmetry, isotropy and index notation, evaluate the 
following integrals over a spherical (e.g., isotropic) surface of radius a: 
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Hint: The integral 
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xi x j xk xlr = a" dA  is a symmetric, isotropic fourth order tensor… 



What you should learn from these problems: 
 
Problem 1: This problem is asked to get you to do several things.   
 

a. To get a bit more practice with hydrostatics, this time for a more terrestrial problem. 
b. To think about controllability of a system and how things can go wrong. 
c. Because it was a cool story and fun to analyze... 

 
Problem 2: Again, several things should be learned: 
 

a. To set up a time-dependent two-component mass balance. 
b. To solve a first order linear ODE (e.g., to memorize the general solution, or to 

memorize where the solution is written down. 
c. To think about the concept of residence time. 

 
Problem 3: This problem is a set up for later stuff in the class and has lots of conceptual 
aspects: 
 

a. To think about how conservation of mass (or volume, for an incompressible liquid) 
connects velocities in two directions. 

b. To think about how average velocity, flow rate, and velocity profiles are connected 
together in a cylindrical geometry. 

 
Problem 4: Index Notation: 
 

a. To get you to fish out the notes on index notation and study them… 
b. To demonstrate that it is far easier to solve these sorts of problems using index 

notation, at least after you are proficient in it! 
c. Practice using the concepts of symmetry and isotropy. 
d. Simplifying calculations by multiplication with the Kronecker delta function (e.g., 

turning nasty stuff into simple algebraic equations). 
 


