
PROBLEM SET 5                         CBE 30355                             DUE 10/3/24 
 
 

Read through Chapter 3 of BS&L. 
 
 
In order to preserve the parallel between mass, momentum & energy transport BS&L 
defined the viscous stress tensor τij to have a sign opposite of that defined in class and 
used in most other textbooks.  If you keep this in mind, and recall that the sign of the 
stress tensor is completely arbitrary (as long as you are consistent!), it should not cause 
you any confusion. 
 
 
1).  Consider a viscous fluid flowing in a laminar manner through a slit formed by two 
parallel walls a distance 2B apart as is depicted below.   
 
a. Given that we have a uniform pressure gradient in the negative z direction (i.e., 
dp/dz equals a negative constant) and the fluid is massless with viscosity µ, calculate 
the flow rate per unit extension in the third direction (e.g., per unit width) using the 
Navier-Stokes equations. 
 
b. What is the ratio of the centerline velocity to the average velocity? 
 
c. What is the wall shear stress (force/area exerted by the fluid on the lower wall)? 
 
d. Now suppose we reorient the system so that gravity is in the positive z direction, the 
fluid has density ρ, and there is no pressure gradient (e.g., open to the atmosphere at 
both ends).  What is the flow rate in this case? 
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2). Consider the velocity distribution acquired by the slow flow of a very viscous fluid 
down an incline, as is depicted below.  In contrast to the problem considered in the 
lecture notes, here we have a breeze trying to blow the fluid back up the incline, in 
addition to the gravity trying to draw the fluid down.  We model the effect of the breeze 
with a constant shear stress τ at the upper surface of the fluid (note: τ will be negative 
for the coordinate system as drawn, and is equivalent to the Marangoni stress in the 
tears of wine demonstration!).   For some film depth δ, angle θ, density ρ and viscosity 
µ, how large does this shear stress have to be for the net flow rate (the integral of the 
velocity over the film depth) to be zero? Solve the problem assuming unidirectional 
flow. 
 

 
 



 
 
3.  In class we derived a way to estimate the viscosity of a fluid using a Couette 
viscometer by neglecting the curvature effects (e.g., if the gap width is ΔR and the inner 
radius is R1, we required ΔR/R1 << 1).   
 
a. Using cylindrical coordinates, derive the exact relationship between torque and 
rotation rate where the inner radius is R0 and the outer radius is R1 such that ΔR = R1-R0.  
Note that if you get desperate, this problem is worked out completely in BS&L... 
 
b. The approximate formula results from ignoring curvature (e.g., ΔR/R0 << 1) and uses 
some characteristic radius R.  It is interesting to see how well this approximate formula 
works.  Plot up the ratio of the approximate formula to the exact value for four choices 
for the radius R in the approximation: 1) where we take R to be the inner radius R0, 2) 
where we take R to be the outer radius R1, 3) where we use a mixed relation where the 
velocity of the outer cylinder is based on R1 and the lever arm and area for calculating 
the torque is based on R0, and 4) where we take R to be the average of the inner and 
outer radii.  Do this for values of [0 < ΔR/R0 < 0.5]. 
 
c. A Couette device in my old lab had a bob (inner cylinder) radius of 2.375 cm and a 
gap width of 1.261 mm. How large is the error in the calculated viscosity if we use the 
four different approximate formulae for this instrument? 
 

 
 
 



4.  In the last homework you determined the complete mobility tensor for a falling body 
of revolution in a viscous fluid from two simple experiments: the measured velocity 
where the director was perpendicular to gravity, and where it was parallel to gravity.  
In class the time measured for a washer to fall a set distance through Karo syrup was 
11.2s if flat side on and 7.5s if edge on (well, it would have been if I had used enough 
corn syrup to get the correct depth!).  Using this information and the magic of index 
notation, we can calculate all sorts of stuff. 
 
a. If the director pi of the axis of revolution is given by: 
 

pi = δi1 cos(θ) + δi2 sin(θ) 
 
where θ is the angle relative to vertical (e.g., gravity), derive the formula for the 
velocities in the 1 and 2 direction as a function of angle.  Note that an angle of zero 
corresponds to dropping it flat side on. 
 
b. Suppose we drop the washer at an angle and observe a fall time of 9.3s.  Based on 
this, what would be the angle θ? 
 
c. The ratio of the two velocities determines the trajectory.  It was about 11cm from 
where I let it go to the bottom.  Using the information above, calculate the expected 
lateral displacement. 
 
d. If the 1 sigma random error in each of the time measurements was 0.1s (pretty 
optimistic, I’m afraid) and the standard deviation in the height was 1cm, what is the 
95% confidence interval of the predicted lateral displacement for part c?  Assume that 
all the measurement errors are independent.  You can do this any way you like, but a 
MC simulation (e.g., throwing the computer at it) is probably the easiest… 

 



What you should learn from these problems: 
 
Problem 1: There are several things you should get from this problem.   
 

a. Practice using the Navier-Stokes equations to solve unidirectional flows. 
b. Recognize the connection between the velocity profile, the centerline velocity, 

and the flow rate in channel flow, a very important geometry. 
c. Connecting the velocity profile to the shear stress. 
d. Recognizing the equivalence between gravity driven and pressure gradient 

driven flows (both are uniform sources of momentum/volume). 
 

Problem 2: Some things to get from this problem: 
 

a. Application of the shear stress boundary condition in addition to the no-slip 
condition. 

b. Identifying the relationship between velocity profiles and flow rates. 
c. More practice with parabolas… 

 
Problem 3: This problem deals with flow in cylindrical coordinates: 
 

a. Practice using the NS equations in cylindrical coordinates, this time using the θ 
component.  It’s not too bad if you cross out all the terms except the one that 
matters! 

b. Showing that the “flat earth limit” provides a useful and accurate 
approximation if the separation of length scales is sufficiently large. 

 
Problem 4: Index Notation: 
 

a. This is an extension of the homework problem from last week, reinforcing your 
skills with manipulating linear problems using index notation. 

b. Showing how you can use simple measurements to get a large amount of 
information about a system (e.g., calculating angles of inclination and expected 
lateral displacements from measurements of three fall times). 

c. Refreshing your skills with doing relatively complex error propagation 
calculations.  Note that if you write a little program that takes in the two fall 
times and spits out the lateral displacement, you can use a MC simulation 
approach to get the confidence interval… 

 


