
PROBLEM SET 7                        CBE 30355                             DUE 10/31/24 
 

 
1. Dimensional analysis in cooking a turkey:   
 
a. If you've ever looked at the cooking timetables for large things like turkeys or roasts, 
you may have noticed that they are pretty complex:  so much per pound if the weight is 
in one range, and different ratio in another range, etc.  In general, the cooking time per 
pound goes down the larger the bird.  If we assume that 1) all turkeys are geometrically 
similar, 2) the physical properties such as thermal diffusivity, density, etc., are all 
constant, and 3) the cooking time depends only on the mass, the density, and the 
thermal diffusivity (for idealized turkeys, anyway), use dimensional analysis to show 
how cooking time should vary with the mass of the bird.   
 
b. We have below values for cooking time values obtained from the website 
http://www.butterball.com/how-tos/roast-a-turkey.  The convection oven times are 
given by weights: 
 

Weight               Cook Time (Unstuffed) 
6-10 lbs. 1½ -2 hrs. 
10-18 lbs. 2-2½ hrs. 
18-22 lbs. 2½-3 hrs. 
22-24 lbs. 3-3½ hrs. 

 
Since the weights are in a range, you can get a total of 5 “exact” weights and times. 
Using regression analysis, fit the data to a power law and determine if the exponent 
matches that predicted from part a to within the 90% confidence level.  Since it is a 
limited data set, don’t forget to use t-statistics!  Graphically present your results 
showing the data, the best fit power law, and the “theoretical prediction” based on 
assuming the exponent obtained in part a and the constant determined numerically. 
 
2. Consider the damped pendulum depicted below.  The pendulum consists of a ball of 
mass m and radius a suspended by a fine wire of length L below a pivot.  The ball is 
moving through a fluid of viscosity µ (the fluid is assumed massless for convenience) 
which retards its motion.  It is assumed that the ball moves sufficiently slowly that 
Stokes Law applies.  Under these conditions, the equation describing the motion of the 
sphere is given by: 
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a. By choosing an appropriate reference time scale, render the equation and initial 
condition dimensionless so that the dependent and independent variables are of O(1).  
Show that the dimensionless solution depends on only two dimensionless groups, one 
of which is just the initial angular displacement.  What is the physical meaning of the 
other dimensionless group? 
 
b. You are assigned the problem of adjusting the fluid viscosity so as to bring the sphere 
to rest as rapidly as possible.  Recognizing that if µ = 0 the pendulum will oscillate 
forever, and if µ is very large the sphere will take a long time to get to the equilibrium (θ 
= 0) position, estimate the correct value of the viscosity for critical damping.  Estimate 
from dimensional analysis (e.g., assume all unknowns are “O(1)”) how long it will take 
the sphere to approach to within, say, 25% of the equilibrium position. 
 
c.  Given that θo is very small, we may make the approximation sin(θ) = θ.  Solve the 
resulting constant coefficient differential equation, and compare the exact solution to 
that estimated by dimensional analysis above. 
 
3.  Mixing two fluids of different density in a very large tank can be quite challenging: 
the denser fluid tends to stay on the bottom, and it is hard to get it to mix in.  You are in 
charge of developing a scale model to simulate a mixer for the Hanford cleanup 
problem.  The full-scale system has a tank that is 10m high, and the two fluids to be 
mixed have a density of 1.4 g/cm3 and 1.05 g/cm3, and a viscosity of 4 cp and 2 cp, 
respectively.  You have constructed a 1:8 scale model to test mixing strategies. 
 
a. If you were to preserve strict dynamic similarity, what should be the densities and 
viscosities of the fluids in the model system, and what should be the scaling factor for 
the velocities between the model and full-scale systems? 
 
b. You discover that there simply isn’t any reasonable way to satisfy the conditions in 
(a), thus you go to the concept of approximate dynamic similarity.  What fluids and 
scaling factors should you use in this case? 
 
c. For the conditions determined in (b), how would the mixing times scale between the 
two systems? 
 
 
4. Stokes Flow and Index Notation.  The Stokes Flow equations are just: 
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a. By taking the divergence of the equations of motion and applying the equation of 
continuity, prove that ∇2p = 0 for an incompressible fluid undergoing flow at zero 
Reynolds number.  Use index notation only, and note that the ∇ and ∇2 operators 
commute.   
 
b. Complex problems in Stokes Flow can be solved by breaking the solution for the 
velocity into the sum of a particular solution and a homogeneous solution, e.g., 
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but neither 
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sum).  Normally this wouldn’t do any good, but you can get a general solution for 
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you know the pressure!  Using the result from part a, prove that this particular solution 
is just: 
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In the graduate transport class we make extensive use of this to solve complicated 
creeping flow problems, as harmonic functions (e.g., those for which ∇2φ = 0) are well 
known, so getting both p and 

€ 

ui
h  are relatively simple! 



What you should learn from these problems: 
 
Problem 1: There are a couple of things you should get from this problem.   
 

a. Practice using the Buckingham Π theorem and straight-up dimensional analysis. 
b. A bit of practice using graphical comparison, linear regression, error calculation,  

etc. 
 

Problem 2: This is a scaling problem, and you should: 
 

a. Learn how to render a differential equation and boundary condition 
dimensionless. 

b. Use scalings to “estimate” quantities without actually having to solve a 
differential equation.  Such estimates are often useful for “back of the envelope” 
calculations that let you quickly recognize what is going on in an experiment or 
problem you are studying – hopefully in time to determine if things are 
occurring which are contrary to expectations, which lets you examine it more 
closely while “things are going on”.  This can be a very important time saver in the 
long run as experiments are expensive! 

c. Practice solving a second order ODE. 
 
Problem 3: There are several things you should get from this problem.   
 

a. Practice using the relationships for strict dynamic similarity. 
b. Recognition that strict similarity is (usually) not practical. 
c. Coming up with a “best choice” scale model for approximate dynamic 

similarity. 
d. Figuring out how to scale things (like mixing time) based on the other scaling 

relationships. 
 
Problem 4: The Stokes Flow Equations: 
 

a. Practice manipulating PDE’s in index notation (pretty much straight math / 
multivariable calculus). 

b. This is a set-up for solving for flow past a sphere using spherical harmonics.  
We’ll play with this a bit, but I don’t really regard it as “core”.  It is the fastest 
way to get the “6π” factor for the drag on a sphere, though, as well as the starting 
point for all really complicated Stokes flow problems. 

 


