%This script calculates and plots up Uc and Ly at 1cm above the wire for a %range of concentrations. We base it on the volume fraction of %glycerin, then calculate the true mass fraction of glycerin in the %solution, and then figure out how these variables change. We use a base %power of 8 Watts, a typical value, and the default temperature of 22 deg C. %OK, we start with volume fraction: vf=[0:.05:.67]'; %modify this to get your composition! bf=0.997; %a guess as to the true wt% of the glycerin (USP grade) conc=vf*bf*density(bf)./(vf*density(bf)+(1-vf)*density(0)); q=3.44; %watts input - (change to the value for your experiment!) leng=11.4; %length of wire in cm - (change to the value for your experiment!) %OK, we need the kinematic viscosity and thermal diffusivity: nu=viscosity(conc)./density(conc); alpha=conductivity(conc)./density(conc)./htcapacity(conc); %And we get Uc: uc=(((q/leng)*expansion(conc)*980.0./density(conc)./htcapacity(conc)).^2.0./nu).^0.2; %and Ly: ly=(nu.^3.0.*density(conc).*htcapacity(conc)/(q/leng)./expansion(conc)/980).^.2; tc = uc.*nu./ly.^2.0./expansion(conc)/980; figure(1) plot(vf,uc,vf,ly,vf,tc) xlabel('volume fraction glycerin') ylabel('Uc (cm/s), Ly (cm) & Tc (C)') legend('Uc','Ly','Tc') title(['Velocity magnitude, width, and temperature at ',num2str(q),'W power']) grid on zoom on