
CHEG 544  Transport Phenomena I
Second Hour Exam

Closed Books and Notes

Problem 1). (10 points) Creeping Flow.  A pair of identical spheres of radius a are
settling under the influence of gravity in an infinite fluid as depicted below.  At time t=0
they are separated by a vector yi = b pi which is not in general aligned with the gravity
vector gi.  In this problem we explore their dynamics under creeping flow conditions.

a). Using the concepts of linearity and reversibility, sketch out how the separation
vector yi evolves in time (both magnitude b and direction pi).

b). Again, from reversibility can there be a drift of the center of mass of the pair (e.g.,
the average of the two particle positions) in a direction which is not parallel to gravity?

c). How does the modification of the Stokes sedimentation velocity of each particle scale
with the separation distance for separations much greater than the particle radius (e.g.,
a/b << 1)?

d). If the net gravitational force on each sphere is Fk, what is the velocity of the pair to
first order in a/b?  What is the ratio of their settling velocity to that at infinite
separation if they are aligned side-by-side?  If the separation vector yi is parallel to
gravity?
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Hint: Recall that the velocity field produced by a Stokeslet (point force singularity of
strength Fk, the far-field of that produced by a sphere) is:
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Problem 2). (20 points) Lubrication:  In class and for homework we have examined the
detatchment of a variety of shapes from the surface of a plane.  The nature of the
lubrication singularity (e.g., the force when the separation distance at the center goes to
zero) depends on the geometric dependence of the gap width on radius.  For the case of
a sphere, h varies as r2, and the force is infinite (e.g., zero mobility at contact).  For a
cone h varies as r and the force is finite.  In this problem we consider the general shape,
where h* = (r/R) α in which α is a positive constant.  For what values of α will the
mobility at contact be non-zero?  Note: the flat disk limit with zero separation at r = 0
corresponds to α = ∞ rather than α = 0.

You may find the r momentum equation useful to get the pressure gradient:
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Remember that in lubrication flow (at least for this problem) only a couple of terms
survive!

Note: If you solve the more complicated problem of finite separations at r = 0 (don't try
this here!), it turns out that a particle can come into contact with a plane even if the
mobility at contact is identically zero.  This happens because for some values of α the
lubrication singularity is integrable in time, even if infinite (zero mobility) at contact.
For an extra point, can you tell me what the range of α is for which this curious
behavior occurs?  (Hint: the other bound is a problem we've already looked at...)



Problem 3). (20 points) Consider the two-dimensional problem depicted below.  We are
examining the flow pattern in produced by a pair of belts dragged toward a corner in a
viscous fluid.  The belts each move with a velocity -U, so the radial velocity boundary
condition at θ = ±α is -U.  This problem is closely related to the outer problem of the
"sandwich" lubrication problem you solved for homework, and in this limit we take the
net flow rate out the corner to be zero.

a). Determine the velocity profile using a streamfunction formulation.

b). How does the pressure distribution diverge as r approaches zero?

The velocities are given by:
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Recall that the general expression for a separable streamfunction in the cylindrical
geometry is given by:

ψλ = r λ fλ(θ)
where, in general, we have:

fλ(θ) = Aλ sin(λθ) + Bλ cos(λθ) + Cλ sin((λ-2)θ) + Dλ cos((λ-2)θ)
We also have the repeated root special cases:

f0(θ) = A0 + B0 θ + C0 sin(2θ) + D0 cos(2θ)
f1(θ) = A1 sin(θ) + B1 cos(θ) + C1 θ sin(θ) + D1 θ cos(θ)

f2(θ) = A2 + B2 θ + C2 sin(2θ) + D2 cos(2θ)

Hint:  Think about how the radial velocity and streamfunction have to depend on r, and
determine the symmetry conditions in θ!


