
CBE 60544  Transport Phenomena I
Final Exam

Closed Books and Notes

Problem 1). (10 points)  Index Notation:  In the Midwest Mechanics lecture a number of
years ago Keith Moffatt gave a fascinating lecture on magneto-electro-hydrodynamic
migration of particles.  He showed that if particles were sufficiently small that inertial
forces were negligible, then the migration velocity of non-conducting particles was
Bilinear in the current density J (a physical vector) and the magnetic field B (a pseudo
vector).  Bilinearity means that it is linear in the product of these two vectors.  Using this
observation, prove that the migration velocity of a non-conducting sphere is always
orthogonal to both the magnetic field and the current, and that the rotational velocity
of such a sphere is identically zero.

Problem 2). (10 points) Creeping Flow:  A sphere of radius a is rotating with angular
velocity Ωi in an infinite fluid at rest.

a. Derive the fluid pressure and velocity distributions at zero Re.

b. It is proposed to examine the effect of fluid inertia (e.g., small but finite Re) as a
perturbation expansion.  Determine if this problem admits a regular perturbation
expansion, and if not at what order do we need to resort to a singular perturbation
approach?  Note that I'm not asking you to actually get the perturbation velocities, just
to figure out what approach we need to use!

Problem 3). (10 points)  Spinning disk electrodes:  Several times this semester we have
talked about the "spinning disk electrode", which is simply a rapidly rotating disk
immersed in a fluid at rest.  For high rotation rates, the flow only occurs in a narrow
layer near the rotating disk, with the pressure and velocity (theta and radial, anyway)
being zero outside of this layer.  The key balances are convection of theta momentum
balancing diffusion of theta momentum away from the disk, and convection and
diffusion of r-momentum balancing centrifugal force.  You also must satisfy continuity,
of course.

With this in mind, scale the momentum equations to determine the characteristic
boundary layer thickness near a disk of radius R rotating with angular velocity Ω in a
fluid of viscosity µ and density ρ.  Note that the mass transfer boundary layer thickness
is just going to be (D/ν)0.5 times this value, which makes it really thin!  The Navier-
Stokes equations in cylindrical coordinates are given below.
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Problem 4). (20 points)  You are evaluating design proposals for a heating element for a
microfluidic channel as depicted below.  The fluid channel is of width W and depth H,
and the heating section is of length L, with the usual conditions L>>W>>H.  The lower
wall is held at a constant temperature T1, and the fluid enters with a temperature T0 at
flow rate Q.  The upper wall is insulated (no heat flux).  Such a channel might be
incorporated into a chip-based PCR replication system, for example.

a. What is the asymptotic temperature distribution far down the channel (very easy!)?

b. Derive the equation governing the temperature distribution in the channel, render it
dimensionless, and develop the corresponding Sturm-Liouville eigenvalue problem for
the decaying part.

c. It is desired to bring the fluid up to the required temperature with as small a
residence time (tR = V/Q where V is the volume of the heating element LWH) as
possible.  Using scaling analysis, show how the tR required to achieve equilibrium varies
with the design parameters of the problem.  Pressure drop is also a concern.  For a
given flow rate Q, how does the pressure drop Δp vary with the required residence
time tR and channel width W (Note: you can use the relation between tR and H to
eliminate dependence of Δp on H)?

d. While the equation you got in part b can be easily solved numerically, you are
trapped on a desert isle without access to your computer - thus you have to get an
approximate answer using pencil and paper.  Making any approximations you feel are
necessary, give me a quantitative back-of-the-envelope answer to the question of how
long the channel has to be for the flow-average temperature to have reached 95% of its
asymptotic value (if you didn't bring a calculator, e3 ∼ 20).
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