
CHEG 544  Transport Phenomena I 
Second Hour Exam 

 
Closed Books and Notes 

 
Problem 1). (10 points) Creeping Flow.  A pair of identical spheres of radius a and 
density !s are settling under the influence of gravity in an infinite fluid of viscosity µ 
and density !f as depicted below.  At time t=0 they are separated by a vector yi = b pi 
which is not in general aligned with the gravity vector gi.  In this problem we explore 
their dynamics under creeping flow conditions.  The motion of each sphere is, to 
leading order, just its Stokes flow sedimentation velocity plus the disturbance velocity 
produced by the other sphere.  Using this, determine the maximum sideways drift 
velocity (e.g., perpendicular to gravity) of the pair of spheres to first order in a/b. 
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Hint: Recall that the velocity field produced by a Stokeslet (point force singularity of 
strength Fk, the far-field of that produced by a sphere) is: 
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Problem 2). (10 points)  Index Notation / Creeping Flow.  Prove that the far-field 
disturbance velocity induced by any force-free and torque free particle (e.g., 
characterized by the stresslet Sjk which is a physical, symmetric, and traceless second 
order tensor) is purely radial.  The single undetermined constant you should have the 
problem reduce to could be determined by examining the far-field velocity of some 
particular stresslet which you know - such as the disturbance velocity of a sphere 
immersed in a pure straining motion (don't do this, however!).  You may find the 
following decaying spherical harmonics useful: 
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Hint: Which of the relevant harmonics will contribute to the velocity and pressure for a 
stresslet in the far-field limit? 



Problem 3). (20 points) Consider the two-dimensional problem depicted below.  We are 
examining the flow pattern in produced by a belt in the vicinity of a roller submerged in 
a viscous fluid.  The belt moves with a velocity U, so the radial velocity boundary 
condition at " = -# is -U and that at " = + # is +U.  Determine the velocity profile using 
a streamfunction formulation.  Are there any conditions under which Moffatt Eddies 
can occur in this geometry for these boundary conditions?  Why or why not? 
 
The velocities are given by: 
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Recall that the general expression for a separable streamfunction in the cylindrical 
geometry is given by: 

$% = r % f%(") 

where, in general, we have: 
f%(") = A% sin(%") + B% cos(%") + C% sin((%-2)") + D% cos((%-2)") 

We also have the repeated root special cases: 
f0(") = A0 + B0 " + C0 sin(2") + D0 cos(2") 

f1(") = A1 sin(") + B1 cos(") + C1 " sin(") + D1 " cos(") 
f2(") = A2 + B2 " + C2 sin(2") + D2 cos(2") 

 
Hint:  Think about how the radial velocity and streamfunction have to depend on r, and 
determine the symmetry conditions in "! 
 

 
 



Problem 4). (20 points) Lubrication:  The motion of a sphere normal to a plane solved in 
class is a useful way of probing the surface morphology of particles, in particular 
measuring the effective hydrodynamic surface roughness.  This only works, however, if 
the equations of motion apply: if the fluid in the gap between the particle and the plane 
does not cavitate.  Cavitation, in general, will occur when the absolute pressure in the 
center of the gap falls to zero (this assumes the vapor pressure of the liquid is 
negligible).  Here we examine the cavitation limitation: 
 
a. Using scaling analysis, for a particle of radius a and density !s in a fluid of viscosity µ 
and density !s at absolute pressure Patm, determine how the minimum surface 
roughness h0 = &sa measurable by this technique depends on the parameters of the 
problem. 
 
b. Solve for the “order one numerical constant” in part a by solving the relevant 
lubrication problem. 
 
c. A friend argues that the answers in a and b should really be modified to include the 
effects of surface tension '.  Surface tension will suppress cavitation because the 
pressure inside the cavitation bubble will be 2'/h greater than the pressure outside it: 
thus, you won’t get cavitation in a gap of width h until the pressure falls 2'/h below 
zero absolute.  How does this modify the calculated minimum measurable surface 
roughness?  
 
You may find the r momentum equation useful to get the pressure gradient: 
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Remember that in lubrication flow (at least for this problem) only a couple of terms 
survive!  
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