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7/8/09 11:18 PM oscchan.m

%This script plots up the dispersivity for oscillatory flow in a channel
%dx is taken as the amplitude of the stroke length (total travel is twice
$this value!).

clear

betaall=10.0.~[0:.1:2];

for kk=1:length(betaall);

beta=betaall (kk);

dy=.001;

y=[0:dy:1];
f=1-beta*i~.5*cosh(i*.5*beta*y)/sinh(i~.5*beta);
f=real(f);

ig={0.5-1.5*y."*2).*£f;

n=length(y);
result(kk)=1.5*(sum(ig)-.5*ig(1l)-.5*ig(n) )*dy;
end

figure(l)

loglog(betaall,result)

lowbetalim=(1.5%105)".25;
lowbeta=10.0."[0:.01:10gl0{lowbetalim)];
highbeta=10.0."[logl0(lowbetalim):.01:2];

hold on

plot(lowbeta, lowbeta.~4/105, 'r' ,highbeta,l.5*ones{size(highbeta)),'g")
hold off

title('Dimensionless Taylor-Aris Dispersivity in Oscillatory Channel Flow')

xlabel('beta')
ylabel(' (K/D - 1)/(dx/b)}*2")
legend( 'exact solution', 'low beta limit','high beta limit')
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CBE 20258 Project 11
Due in class 4/17/14
Taylor Dispersion in Microchannels

A classic problem in mass transfer is the phenomenon of Taylor dispersion: the
spread of a solute as it travels down a conduit such as a tube or channel. This is the
same phenomenon that leads to peak spreading in chromatography: an initially focused
slug of solute (e.g., what you inject onto a column) spreads out in the flow direction
because not all solute molecules of the same type move with the same velocity all the
time, but rather have a velocity which fluctuates about an average. In a conduit, this
fluctuation is due to a non-uniform velocity profile. Typically, the fluid velocity is zero
at the walls, and is a maximum in the middle, thus solute molecules move with
different speeds depending on where they happen to be in the conduit cross-section at
any instant. Eventually the solute molecules just move with the average velocity as
they diffuse back and forth across the conduit, but while this diffusion process takes
place the slug spreads out in the flow direction. This phenomenon is called Taylor
dispersion, and is a big problem in designing microfluidic analysis systems (e.g., lab-on-
a-chip systems). The geometry we will look at in this project is depicted below:

flow direction

- W "

As you will learn next year, the concentration distribution of a solute flowing through a
channel is governed by the convective diffusion equation:

dc de (c’r‘zc c?zc]
—+u,
ot dz
where we have ignored diffusion in the direction of fluid motion (the z-direction), as

this is usually negligible relative to the much larger convection term. The diffusion
coefficient characterizes the random motion of the solute across the channel, and is



given by D. The quantity u, is the velocity in the flow direction (z direction) which, for
the conduit depicted above is approximately given by:

6l
u, "?-J’(" -y)

0

where the wavy upper wall is described by:
h=h,+Ah COS(ZJII-{C—)
W

This expression for the velocity is only correct if either Ah = 0 or if W >> h,,

The boundary condition associated with the convective diffusion equation for this
problem is that the normal derivative of the concentration is zero at the wall (this is
called the no-flux condition):

f’c-ﬁLm =0

where dD is the boundary and 7 is the unit normal. At the bottom wall this condition
just reduces to:

dc

M,

=0

while the condition at the wavy top wall is more complex.

This set of equations is difficult to solve for the transient injection of a slug of
solute for anything but the simplest geometry. An appealing alternative numerical
approach is to solve the equation by performing a Brownian Dynamics simulation: we
simulate the evolution of the concentration distribution by tracking the motion of a
large number of tracer particles. The position of the particles is obtained by integrating
the Langevin Equations: the particles follow along with the fluid velocity in the z
direction, and at each time step we add in a random motion in the x and y directions
proportional to (2 D At)! imes a normally distributed random number with zero mean
and standard deviation of one. The distribution of these particles (for large numbers of
them, and small time steps) is identical to the solution of the convective diffusion
equation. Such Brownian Dynamics simulations are easy to code up, but take a lot of
computer power - which fortunately we now have!

Your goal is to use Brownian Dynamics to calculate the Taylor dispersion
coefficient K for this geometry. This is quite easy: if you have simulated the z-position
of all the particles, you can calculate the variance in the z-direction o,2. The dispersion
coefficient is just:

lim do’f
t—c0 dr

=2K




e.g., after some initial transient has passed.

OK, how do we do such a simulation? First, you set up an initial distribution. You take
the particles to be initially in the plane z=0, but distributed uniformly in the x & y
directions. For a non-uniform geometry such as we are looking at here it is convenient
to distribute them over a rectangular box that contains the conduit (or the unit cell of
the conduit in this case) and just keep the ones that are inside using the “find”
command. The “rand” command which gives a uniformly distributed random number
between 0 and 1 is useful here! The integration process is simple: at each time step you
give the particles a random step in the x direction and the y direction (a different
random number for each - use the “randn” command!) and update the z position by
integrating the position-dependent z-velocity using the trapezoidal rule (or, just as
easily, Simpson’s rule for higher accuracy: the midpoint is just the average of new and
old x and y locations). You keep track of the variance in the z-direction, and let the
simulation run sufficiently long that the growth becomes linear. You then calculate the
slope of this growth, and half that value gives you K!

Boundary Reflections:

The only hard part of the simulation is getting the boundary conditions right. The no-
flux condition for the differential equation corresponds to a reflection condition in the
simulation: if the random step places you outside the boundary, simply reflect the
particle back inside. For the bottom wall this is easy: identify all particles such thaty <
0 and place them at y=1y|. For the top wall it is a bit harder. The wall location is aty =
h(x), with derivative h’(x). Because of the slope of the wall, the reflection actually shifts
the particle in both the x and y directions. We have the following picture:

(Xi+1,yi+1)

new (Xi+1,yi+1)

(xi,yi)

From the geometry depicted above we get the sequence of problems for figuring out the
new x and y positions:

1. calculate Ax (the random displacement in x) and x,,, for all particles
2. calculate Ay (the random displacement in y) and y,,, for all particles



g

find the indices of particles for which y,,; < 0 and reflect them to ly,,, | (thisis the
bottom wall reflection)

find the indices of particles for which a = y;,, - h{x,,;) >0

calculate the local slope of the wall 8 = atan(h’(x;,,))

correct the y position y;,, = h(x,,;) - a cos(20)

correct the x position x;,; = X;,, + a sin(20)

NN

To get higher accuracy in updating the z position, you also need to modify the
integration rule for the particles interacting with either wall. Since they are bouncing
off the wall, they spend part of this time step with velocity u, = 0. You can easily correct
for this by determining the fraction of the time step dt it spends going from (x,y,) to the
wall (call this f), and then the rest of the time step it is bouncing off to the new position.
For the upper wall, a little work with similar triangles and geometry produces:

_ h(-";)“)’:
Ay —(h(x,.)-h(x,. +Ax))

f

This works for the lower wall too, only there h(x) is just zero. The velocity at either wall
is zero, so integration of these two segments via the trapezoidal rule is done by:

Az = %dt(fuz(x,. ,y,)+(1—f)":(x.+| J’m))

For this problem, reflection from the sides is not an issue as the domain is periodic in

the x-direction. Particles which leave the central cell [0 < x < W] are simply moved to
the appropriate value of x in the replicated cell (e.g., if x>W move them to x-W, and if
x<0 move them to W+x). Again, the “find” command is useful here!

Non-Dimensionalization:

In solving a problem on a computer, it is very useful to render the problem
dimensionless analytically first. This way you can see how varying parameters such as
hy and U affect the dispersivity without having to re-run your computer code! For this
problem we define the following dimensionless variables and parameters:

This non-dimensionalization results in the dimensionless problem:

- ava 6}’.2

[ ] - -

dc . 0C dc + dc
at 74



where the dimensionless Taylor dispersivity is just:

KD _ lim 1do?
(Uh) ¢ —w2d

and it is a function only of the two dimensionless parameters:

s=-é£ and W’ v
7 Iy

The dimensionless displacement in the x* and y* directions thus scales as (2At*)"/?, and
the z* position is updated with the appropriate position dependent dimensionless
velocity u,*. You need to pick a time step At"* so that particles only move a relatively
small distance across the channel in each jump - but making it too small means a really
large amount of computing time!

The Problem:

1. Write a simulation code that can track the motion of tracer particles for arbitrary W*
and . Plot the initial x-y particle positions up together with the boundaries to be sure
that you have a uniform distribution across the cross-section for the wavy wall case.
During the simulation it is fun to plot up the x-z distribution using the “drawnow”
command - you can get a nice movie out of it and see the dynamics. These graphics
take a long time, though, so you will want to comment them out later!

2. For the case & = 0, the dispersion is not a function of W*. For this case, plot up o, as a
function of time. Using the last third of your values of 0,? as a function of time,
determine K* (e.g., do a linear fit to these points to get the slope and intercept) and
graphically compare the asymptotic linear result for the variance to the simulation
values for all the times. About how long do you need to wait for the variance to
approach a linear growth rate? (Hint: for a uniform inijtial distribution it is pretty fast -
everything is over long before you reach t* = 1) This time scale is the time necessary to
reach the Taylor limit.

3. Examine random error for the case & = 0 by repeating the calculation a number of
times, and determining the standard deviation of the mean value. Take this script and
turn it into a function of At* and the stopping point, returning the average K* and its
standard deviation. Examine algorithm error by plotting up the calculated value of K*
for different At* (keeping the stopping point constant, and reasonably long) and
different stopping points (keeping At* constant, and reasonably short). Based on these
calculations, determine the best value of K* for the £ = 0 case, as well as its uncertainty.
Does it match the theoretically predicted value of K* = 1/210?

4. Now explore the effect of wavy walls. By plotting up ¢, as a function of t* for e = 0.2
and W*=5, show that the variance is much larger than the £ = 0 case and that it takes
much longer to approach the Taylor limit (it will scale as W*? as the tracers have to
diffuse much farther in the x-direction). What is the value of K* for this case? Print out
the x-y and x-z distributions at the end of your simulation of the wavy wall case.
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%This script calculates the Taylor dispersivity due to flow through a wavy
%channel. The lower wall is at y=0 and the upper wall is at

$th=1l+e*cos (2*pi*x/w) where e is the amplitude of the waviness and w is the
3width of the unit cell.

e
w

=
H

5

$We begin by introducing all of our particles:
n=20000;
nstart=round{n*(1+2*e}); %A bit more than n particles, as some are discarded.

x=w*rand(nstart,1); %¥The x locations
y={(1+e) *rand(nstart,1l); %The y locations

$Now we need to determine the values which are inside our domain:
i=find(y<{l+e*cos(2*pi*x/w))};

x=x{i);
y=y{i);

¥These are all the valid particles. We really only want n of them:

X=x{1:n);
y=y{l:n);

%We can plot this up:

figure(1)

Xp=w*[0:.01:1];

plot (w*[0,1],[0,0,],'k’,xp, 1+e*cos{2*pi*xp/w), ' k'.x,y, 'ob’)
xlabel ('x’)

ylabel(’y'}

axis(‘equal’)

title{’'Initial distribution’)

drawnow

$Now for the simulation:

tlim=0.3*w"2;
dt=0.001;

t=[dt:dt:tlim] *; %We have a column vector of times
varz=zeros(size(t});
zbar=zeros{size(t));

z=zeros (size(x)); %We start the particles at zero...
for j=1:lenath(t)
%We have the random steps:
dx=randn(n, 1) *{2*dt)".5;
dy=randn(n,1l) *{(2+*dt)"*.5;

xt=x+dx;
ye=y+dy;

¥Now we check to see if particles have bounced out:

ilow=find(yt<0); %the particles below the bottom wall
ihigh=find(yt>(l+e*cos{2*pi*xt/w))); %the particles above the top wall

yt{ilow) =abs (yt (ilow) ); $%Reflect those back!
a=syt (ihigh) - (1+e*cos (2*pi*xt (ihigh) /w});

theta=atan{-e*2+*pi/w*sin(2*pi*xt (ihigh) /w));
yt(ihigh)=({l+e*cos (2*pi*xt{ihigh) /w))-a.*cos{2*theta);



4/23/14 7:28 PM _/stuff/cheg classes/che.../projllscript.m 2 of 3

xt {ihigh)=xt {ihigh}+a.*sin{2*theta);

%Now for getting dz. We use simpson’s rule:
h=1l+e*cos{2*pi*x/w);
ht=1l+e*gos (2*pi*xt/w);

¥We calculate the midpoint of the jump:
xm= (x+xt) /2;

ym={y+yt) /2;

hm=l+e*cos{2*pi*xm/w);

tand we get dz via Simpson’s rule:
dz=1/6+*{6*y.*{h-y})+24*ym.* {hm-ym) +6*yt.* (ht-yt) } *dc;

tNow we deal with the change in z for particles bouncing off the walls:

f=-y(ilow) ./dy(ilow);

dz (ilow)=0.5*dt*(f.*6.0.*y(ilow) .*(h{ilow)-y(ilow})+(1-f}*6.0.*yt (ilow).*(ht(ilow)-&
vt {ilow}));

f=(h{ihigh) -y {ihigh}) ./ ({(h{ihigh)-y{ihigh))+a}; %The value of a was calculatedke
before!

dz{ihigh)=0.5*dt*{(f.*6.0.*y{ihigh).* (h{ihigh) -y (ihigh}}+(1-f)*6.0.*yt (ihigh}.* (hte
{ihigh) -yt (ihigh))) ;

¥Move x values back into the unit cell:
ileft=find(xt<0);
xt{ileft)=w+xt(ileft};
iright=find{xt>w);

xt {iright)=xt (iright) -w;

$We update z and get the statistics:
z=z+dz;

X=xt;

Y=Yt;

inow we populate the columns of zbar and varz:
zbar (j)=mean(z);
varz(jl)=var(z);

$We do a little plotting to see what is going on: comment this out
¥later to speed things up!

figure(l)

Xp=w*[0:.01:1];

plot{w*[0,1],{0,0,],'k’',xp, l+e*cos{2*pi*xp/w), 'k’ ,x,y, 'cb")
axis(’'equal’)

xlabel {"x’}

ylabel {*y’}

ticle(['x and y positions for t = ’,num2stri{t(j))]1)

figure (2)

plotix,z,‘o'}

xlabel('x’)

ylabel('z')

title(({’x and z pogitions for t = ’',num2str{t{f))1)
drawnow

P P P Of O o O o o At A? O o

end

%and we get the value of the Taylor dispersivity from the slope of the
¥variance. We fit the last 1/3 of the values:
ifit=[round(length({t)*2/3):length(t)];

tfic=t(ifit);

varzfit=varz (ifit);

xx=[ones (size (tfit)) ,tfit)\varzfit;

k=xx(2)/2; %The Taylor dispersivity
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disp{‘The ratioc of the Taylor dispersivity to that of a channel with no side-walls is:’')
out=k*210 %The ratio to the channel theoretical result

figure{(2) %We can comment this out if we wish.

plot{t,varz,t, [ones(size(t)),t) *xx,t,t/105)

legend ('simulation’, *linear fit‘,’e=0 theory’,’Location’, 'NorthWest’)
xlabel (*t*)

ylabel ('variance in z')

title(['Variance for e = ',num2str(e),’' and W = *',num2str{w)])

grid on

drawnow

figure (3)

xp=w*[0:.01:1];
plot({w*[0,1]},[0,0,],k’',%xp,l+e*cos(2*pi*xp/w}, 'k’ ,x,y, 'ob")
axis(’equal’)

xlabel {'x')

viabel{'y’)

title{['x and y positions for t = ', ,num2str{ti{j}l]]}

figure(4)

plotix,z,'0’}

xlabel{'x")

ylabel('z’)

title(['x and z positions for t
drawnow

tonum2strit (i)



