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hitp:/Awwiwv.nd.edu/~dil/cheg258/notes/examples/example36.himl

clear

echo on

$This example demonstrates the solution of the
$5turm Liouville eigenvalue problem via conversion
%0f the differential equation into a set of
talgebraic equations. The example uses the attached
$routine slsolve.m which requires that you define
$the functions p, g, and w as well as boundary
tconditions in standard Sturm Liouville form. You
$can extract the necessary information by typing
$help slsolve:

pause

help slsolve

pause

$Let's apply this to the simple equation:
%

% y'' + lambda y = 0

%

%with boundary conditions:

%

8 y(0)=0, y'(1)=0

%

pause

%The scluticon to this equation is just:

%

% y = sin ((n-.5)*pi*x), n=1, 2, 3, ...
%

%with the eigenvalues:

%

% lambda = (n-.5)"2 * pi~2

pause

$For this problem the functions p, g, and w are:
$ p=1

T g=10

$ w=1

$which are particularly simple. These have been
%stored in the function files pfun.m, gfun.m, and
gwfun.m

%

$The boundary conditions are described by the array:

%

$ bc = [1,0,0,1]

pause

$Let's work the example:

be = [1,0,0,1];

n=50;

[ lambda, eigenvec]=slsolve('pfun’', 'gfun', 'wiun’', bc,n);
$and that's all there is to it!

pause

$Let's examine these results. First we list the first
$five eigenvalues:

lambda(1l:5).".5/pi

pause

$Note that the eigenvalues match what we expected pretty
swell, except that the error is increasing as we go to
$higher eigenvalues. This is clearer if we plot the
%calculated eigenvalues against the exact values:
pause

i=[1l:1length(lambda}];
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figure(1l)

plot(i,i-.5,1i,lambda.*.5/pi, ‘0")

xlabel('n"')

ylabel{'sqgrt(lambda)/pi")

legend( 'exact value (n-0.5})', 'numerical value')
title{'Comparison of Calculated and Exact Eigenvalues')
$Note that the values tend to fall off very badly for

%the largest eigenvalues!

pause

¥Next we look at the eigenfunctions themselves. We shall
sonly examine the first five:

x=[0:1/n:1];

figure(2)

plot(x,eigenvec{:,1:5))

xlabel('x")

ylabel('y')

legend(num2str([1:5]"))

title('First Five Eigenfunctions'})

$again we see that the solution starts to get a bit ragged
%for the higher eigenvectors. HNote that the leading eigen-
%vector has no nodes {zero crossings) in the interior of
%the domain, while the second has one, the third has two, and
$s0 forth. This is typical of eigenvalue problems. All the
%eigenvalues have a maximum value of 2*.5 because of the
$normalization: the average value of sin~2 over a period is
%$just 1/2.

pause

%In conclusion, you may find this simple routine useful

%in dealing with Sturm-Liouville eigenvalue problems. These
%differential equations are very common in transport problems
$such as the transient heating of a ball, cylinder, or slab,
$or the approach to an asymptotic velocity distribution in
$startup flow in a pipe. It even arises in determining the
$frequency of a violin string!

echo off

function [lambda,eigenvec]=slsolve(p,q,w,bc,n)
$This function solves the Sturm-Licuville eigenvalue
$problem given by:

%

$ [p(x) ¥'1' -d(x) y + lambda w(x) y =0
:subject to the boundary conditions:

%

% bc(l) y(0) + bo(2) y'(0) =0

% bc(3) y(l) + bofd) y' (1) =0

:over the domain 0< x <1.

:The function is called by the command:

%

%[lambda,eigenvec ]=slsolve( 'pfun’, 'gfun', 'wfun' ,bc,n);

%

%The function call requires that you provide the function
$names for the functions p, g, and w, as well as the boundary
$coefficients in the array bc. The parameter n is the
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%degree of discretization over the domain, e.g. h=1/n.

%The matrices A and W which are generated to solve the
gproblem will thus be of size (n+l,n+l). 'The function

$returns the eigenvalues in the array lambda (sorted by

%size in ascending order) and the matrix eigenvec which
%contains the corresponding eigenfunctions. The eigenfunctions
%are all normalized so that the integral of the square times
%the weight function over the domain [0,1} is unity.

%

%A last note on error: The code uses second order derivative
%approximations, so the error in the eigenvalues and eigen-
$vectors will be of ©(1/n"2). In general, the first few
$eigenvalues will be reliable, but the accuracy will deteriorate
%$as you look at the higher eigenvalues, with the last few
tbheing meaningless.

h=1/n; %set discretization
x=[0:h:1]; %this is the array of x values

$Now we set up the arrays used in making the matrix A:
pp=zeros(l,n+l};
pm=zeros(l,n+l);
ww=zeros(l,n+l);
gg=zeros(l,n+l);
for i=2:n,
pp{i)=teval (p,x(i}+h/2);
pm{i)=feval(p,x(i}-h/2);
ww({i)=feval(w,x{1)):
qg{i)=feval(q,x{i});
end

$The matrix W is easy:
welght=-diag{ww};

$The matrix A is a bit more complex. First we do
$the main diagonal:

a=diag(-pp-pm-qq*h~2);

$and then the super and sub diagonals:
a=a+diag(pp(l:n),1};

a=a+diag(pm(2:n+l),-1);

$hand now for the boundary conditions. First at x=0:
a(l,l)=bc(l)-bc(2)*1.5/h;

a(l,2)y=be(2)%2/h;

a(l,3)==bc(2)/2/h;

%and at x=1:
a(n+l,n+l)=bc(3)+bc(4)*1.5/h;
a(n+l,n)=-bc(4)*2/h;
a(n+l,n-1)=bc(4)/2/h;

$Finally, we divide by h~2:
a=a/h~2;

$Now we are ready to calculate the eigenvalues:
[v,d]=eig(a,weight};

$The number of eigenvalues and vectors will be less
%$than the size of A and W, thus:
evals=diag(d};
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i=find(finite(evals});
evals=evals(i);
evecs=v(:,i);

$Now we sort the eigenvalues and eigenvectors according
%to the size of the eigenvalues:
[temp,i]=sort(abs(real{evals)));

lambda=evals(i};

evecs=evecs(:,i);

tand finally, we normalize the eigenvectors so that the
$integral over the domain of the square of the eigenvector
$times the weight function equals unity. We use trapezoidal
$rule integration:

tw=diag(feval (w,x))/n;

tw(l,l)=tw(l,1)/2;

tw{n+l,n+l)=tw(n+l,n+1)/2;

enorm=abs (diag(evecs' *tw*evecs) ). .5;

for j=1l:length{lambda},
eigenvec(:,j)=evecs(:,j)/enorm(j)/sign(evecs(2,3));

end

function y=pfun(x)
%This is the p function in the Sturm-Licouville problem:
y=ones(size(x)};

function y=gfun(x)
$This is the ¢ function in the Sturm-Liouville problem:
y=zeros(size(x));

function y=wfun(x)
%This is the w function in the Sturm-Liouville problem:
y=ones (size(x));
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clear

reset(0)

echo on

%Example 3la

%

§Numerical stability problems often occur in the

%solution of partial differential equations. Here

%we illustrate this with the example of the quenching

$0of a finite slab using a very simple numerical method.

%

$Consider a slab of width 2b initially at a temperature T1,
%and then quench the temperature at the surface to a value
$T0. The thermal diffusivity alpha is assumed to be a
$constant. We render x dimensionless with respect to the
thalf-width b, and time dimensionless with respect to the
$diffusion time b~2/alpha. Thus we have the eguation:

%

% dr/dt = d2T/dx2; T(t=0)=1, T(x=1)=0, dT/dx(x=0)=0

%

%The last is the symmetry condition at the centerline.
pause

%0K, now we solve this as a system of first order ODE's.
$We discretize =x:

n=10;
dx=1/n;
x=[0:dx:1];

%and we also discretize T:
T=ones{n+1,1);
pause
$Now we solve this as a function of time. We shall use
%the Euler method for simplicity:
%
tWe construct the tri-diagonal matrix governing the
%discretized equation:
a==-2*eye(n+l);
a=a+diag(ones(l,n}),-1);
a=atdiag{ones(1l,n}),+1);
a=a/dx/dx;
$and we modify the first and last rows to account for the
tboundary conditions:
a(l,:)=zeros(l,n+l};
a(nt+l,:)=zeros(l,n+l});
pause
$We can now integrate forward in time:
t=0;
dt=0.005;
T=ones(n+l,1);
T(n+l)=0;
figure(l)
plot (x,T)
drawnow
for k=1:1/dt
T=T+dt*a*T;
T{n+1)=0; $This is the zero Temperature BC at x=1
T(1)=(4*T({2)~T(3))/3; %This is the zero derivative BC at x=0
plot(x,T)
axis([0 1 0 1])
xlabel('x")
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ylabel('T'}

t=t+dt;

drawnow

echo off

end

echo on

pause

%The integration procedure behaved very well. Now let's do
%$it again with a -very- slightly larger time step:
dt=0.0052;

pause

t=0;
T=cnes(n+l,1);
T(n+1)=0;

figure(l)

plot(x,T)
drawnow

for k=t:1/dt

T=T+dt*a*T;

T{n+1)=0;

T(1)=(4*T(2)-T{3})/3;

plot(x,T)

axis([0 1 0 1])

xlabel('x"')

ylabel{'T')

t=t+dt;

drawnow

echo off
end
eche on
pause

$The dramatic difference between these two results illustrates
$the problem of numerical instability! We require dt < 0.5 dx~2
%$for the method to be stable. Any explicit integration method
%would have the same stability limitations. We can get around
$this limitation by using implicit integration techniques.
pause

$We finish this example by using the implicit Backward Euler Rule
%to integrate this problem forward. First let's double dt:
dt=dt*2
$This would be *really* unstable for an explicit method! Next
twe construct the matrices:
al=eye(n+l)-dt¥*a;
ar=eye(n+l);
pause
$We also have to incorporate the B.C.'s into the matrices:
al(l,:)=zeros(1l,n+1);

al{l,1)=-3;
al(l,2)=4;
al(l,3)=-1;

ar(l, :)=zeros(1l,n+l};
%and for the other B.C.
ar(n+l, :)=zeros(1l,n+l);
$and we get the solution:
pause

£=0;

T=cnes(n+l,1);

T{n+1)=0;

figure(l)

plot(x,T)

6/4/09 4:26 PM



hup:/fiwww.nd.cdu/~dll/cheg238/notes/examples/example3 1a.himl

drawnow

for k=l:1/dt
T=al\{ar*T};
plot(x,T)
axis([0 1 0 1])
xlabel{'x"')
ylabel{'T')
t=t+dt;

drawnow

echo off

end

echo on

pause

%Note that this is now stable even for much larger values of dt!

echo off

ol 3 6/4/09 4:26 PM
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