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DIFFUSION FROM AN INITIAL POINT DISTRIBUTION IN
AN UNBOUNDED OSCILLATING SIMPLE SHEAR FLOW

D. T. LEIGHTON, Jr
Department of Chemucal Engincering, University of Notre Dame, Notre Dame, IN 46556, US.A.

(Received for publication 28 February 1989)

Abstract—A sell-similar closed form solution for diffusion from an imual point distnbution of an
infinitely dilute solute in an unbounded oscillating stmple shear flow is presented. The soluiion is
shown 1o agree with the well-known solution for diffusion in an unbounded steady simpie shear
flow in the correct limit, and also to reproduce the high frequency limiting dispersivity for osciflatory
flow in closed conduits at large Schmidt numbers. The result is further generalized for arbitrary
time dependent simple shear flows and source distributions.

I. INTRODUCTION

The diffusion of a dilute solute in oscillating flows has application in a wide variety of
physical processes ranging from oxygen transport in respiratory processes (3] to enhanced
mass transport in oscillatory liquid membranes [4]. To date, the study of diffusion in
oscillatory flows has been confined to generalizations of Taylor dispersion processes [5],
beginning with Aris {6] who derived the effective dispersivity of a dilute solute in viscous
puisatile flow (the limit Sc¢ = v/D » 1, where v is the kinematic viscosity and D is the
molecular diffusivity) through a circular conduit. Watson [2] obtained a generat expression
for sinusoidal periodic flow through a conduit of arbitrary cross-section for systems with
arbitrary Schmidt numbers and oscillation frequencies. Horn and Kipp [7} examined the
analogous problem for oscillatory planar Couette flow. Dill and Brenner [8) have employed
generalized Taylor dispersion theory [9] to examine mass transport in oscillatory flow
through spatially periodic porous media.

In all of these studies only the long-time limit of the dispersion coefficient was obtained,
i.e. the dispersivity which would be observed for very long tubes. For this limit it is possible
to average the concentration distribution across the conduit (or across a cell in a spatially
periodic structure) and obtain a series of equations for the moments of the distribution.
The actual concentration distributions are never determined, and the moments are derived
only for bounded flows. In the next section we derive a seif-similar solution for the con-
centration distribution arising from an initial point distribution in an unbounded oscillating
simple shear flow. The result is generalized for arbitrary time dependent simple shear flows
and is shown to agree with the well-known result for a steady unbounded shear flow (see
Foister and van de Ven {1]). A formal solution for diffusion from an arbitrary time
dependent source distribution is also obtained. In the third section the moments of the
concentration distribution in the direction of fiow are calculated and the time dependent
effective dispersivity is determined. In the final section the solution is applied to bounded
flows through conduits of uniform cross-section, where it is shown to agree with the more
general resuits of Aris (6] and Watson [2] in the appropriate limit.
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Fig. I. The flow geometry. The flow is a periodic simple shear flow centered 2t the origin. The concentration
distribution is initially a defta function centered at (x,, y,).

2. DERIVATION

Consider an initial point distribution /6(x* — x4)(y* — y,) at time 1* = 1, in the oscil-
lating infinite simple shear flow depicted in Fig. 1. We shall take the velocity to be given by
u, = yy* sin (wr* + ¢,), where j is the shear rate, w is the angular frequency, and ¢, is the
initial phase shift. We restrict ourselves to diffusion in two dimensions. Since there is no
motion in the z-direction, however, diffusion in this direction will be unaffected by the flow
and the full three dimensional result may be recovered by simply multiplying the two-
dimensional solution with the solution for one-dimensional diffusion from a point in the z-
direction in the absence of convection. The concentration distribution in the dilute limit is
governed by the convection—diffusion equation :

ac* . ac* [d2c* @t
a?+)vy‘ 51n(wt‘+¢°)-a?=D(F+5F 2.n

with initial and boundary conditions:
c*(x,y,80) = L6(y* —yo)0(y* —po); M ye o = 0.
To solve equation (2.1) we first render the equation dimensionless. We define the dimen-
sionless variables:

x*—Xxq y*=Yo . c*D

X=Dimy7 V= Doy 1= afr*—1,); e=—,

which resuit in the dimensionless equation :

dc . de 3 3
7 Tyt Bhsin(+9) = -+ ppe

(2.2)
and:
c(x, ,0) =6(x)6(y); ¢loy-w =0,

where the dimensionless problem is a function only of the shear rate/angular frequency
ratio a = y/w, the ampiitude of the periodic velocity at the point where ‘the solute is
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introduced f# = yo/(Dw) " and the initial phase at 1* = to0f ¢ = Pg+wiy. Note that a js
equal to the amplitude of the fluid strain during the oscillatory motion.

Since there is no motion in the y-direction, diffusion in that direction wiil be unaffecred
by convection. We may therefore factor out the contnibution from the purely molecular

diffusion in the y-direction by defining:

oo ) =flx . Ngly, 0 (2.3)
where g(y, f) satisfies the one-dimensional diffusion equation:

dg g

& e g(».0) = 3()) (2.4)

which has the weli-known solution:

e v, (2.5)

a0 1) =

dar

Substituting equations {2.3) and (2.5) into the differential equation (2.2), we obtain:

3 v oy &
a_{ Y N (2.6)

tdy  ax* " gy
with the initial condition f(x, y,0) = 3{x). To solve this equation, we shall seek a seif-
similar solution such that /is not a function of x, y and 1 independently, but rather is a
function of n and ¢ alone, where the similarity variabie # is a simple function of x, yand ¢.
To this end we define the dimensionless variable # in the x-direction by analogy to the
solution for diffusion in a steady infinite shear flow:

+(av+f) sin(!+¢)g+

n= -t—ﬂ_L sin (' + @) A’ —ayh(r), (2.7

where the function k(f} remains to be determined.
In defining  in this manner we are, in effect, shifting the x-coordinate by some amount

that takes into account the displacement of a fuid element by the shear flow. For any given
y and 1 there will be some value of x at which the concentration will be a maximum, and
we wish to shift the x~coordinate so that n = 0 at this point. For y = 0 (the point in the y-
direction at which the concentration was initially introduced) the local maximum in the x-
direction will simply be displaced back and forth with the velocity of the shear flow at that
point. This displacement is accounted for by the second term in equation (2.7). For non-
zero values of y, however, the situation is more complex. In diffusing to a particular value
of y the sotute will have executed a random walk across streamlines with different velocities,
thus in addition to the uniform displacement corresponding to the initial position, the shear
flow will induce a displacement proportional to y and the strain amplitude «, as well as an
unknown function of time A(f), characteristic of the random walk. Substituting the definition

of n into equation {2.6) we obtain the new equation:

- 2 2

with the initial condition /(. 0) = J(n).
In order for the seif-similar solution to exist. we require:
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, o h
I+ ?—sm (r+) =0 (2.9)

so that the y-dependent term in equation (2.8) will vanish. We also require f1(¢) to satisfy
the initial condition 4#(0) = 0, since the displacement of # from x should vanish at ¢ = 0.
The first order ODE has the simple solution :

cos 1— 1|
!

(1) = ;J; rsin(f+¢)dr = (5—':'—' —C05 t)cos ¢+(sin I+ )sin ¢ (2.10)

and yields the transformed PDE for f(n, 1) :

af , 8%
E=(l+i:.!2h°)é~';3, (2.11)

where A(f) is as defined above.
We may further simplify the differentiat equation for /(», 1) if we define the new dimen-
sionless time variable &:

¢ = J (1 +a?h?ydr (2.12)
o
which may be explicitly evaluated to give:

£ = :+a’{%t+ %sin (t-+¢)cos(t+¢)— %[sin (t+¢)—sin ¢]’}. (2.13)

Equation (2.11) thus becomes

af @
% o S(#,0) = (), (2.14)
which has the very simple solution:
I
4né
and hence the overail concentration distribution in dimensional variables is given by:

I 1
(D/) 47 /2

where £, i, y and 1 are as defined above. Plots of the concentration distribution for selected
values of @, f, ¢ and ¢ are given in Fig. 2. Note that contours of constant concentration
are simply ellipses whose inclinations relative to the y-axis are periodic in time.

It is interesting to note that while the concentration distribution given by equation (2.16)
was derived for purely sinusoidal time variations in the amplitude of a shear flow, the result
can be easily generalized for any time dependent simple shear u, = yy*s(t* —t,), where 5(f)
is at least piecewise continuous. In this case, we define:

e 4 (2.15)

f(’,t‘f) =

e“)‘:!‘" e-'l”‘f, (2' ] 6)

c*(x* yhet) =

n= x—ﬁL s(¢') dr' —ayh(s), 2.17

where A(t) is the integral ;
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Fig. 2. Concentration profiles. The conceatration contours given by c(x, y, e, 0.1) = 0.5 are plotied for
J = 0 2nd the dimensionless times ¢ = ax/2, where n = 1, 2, 3, 4 and 5. The comtours are given for: a:a = 0
(noshear); b:a=L¢=0;cia=2¢=0;dta=2 g=22

I i
h(1) = ;J; rs(r)dr (2.18)

and ¢, y and x are defined by analogy with the result for purely simsoidal variations. The
concentration distribution given by (2.16) in terms of these new variables is unchanged,
This result may also be obtained by a generalization of the appreach followed by Foister
and van de Ven {1] to time dependent flows. For the particular case of a steady infinite
shear flow we have s(t} = 1, thus A(f) = ¢/2, n = x—Bt—{a/2)m, and & = 1+ («/12)s3,
yielding the well-known sell-similar solution for steady flow:

exo { ~(y*=po)? | =[x*— %'ﬁ{!‘-to)(y*ﬂ'o)]z}
4D(1*—1y) 4D(1* — 1)1+ {73 (t* ~ 10)3)

L T *) = d
I = D=1 ST+ B —n)

(2.19)

Equation (2.16) may aiso be generalized for an arbitrary time dependent distributed
source [(xq,74q, {a):

! = ® I{x s Yo ! ) l = -
C(I*,}’*; f.) £ J‘ J’ J' ( (oD'lv;) o 4 \/:_I ¢ ,:j“ € I dx" d-vﬂ dIO! (2'20)
- J=a T 4

where the dimensionless variables in equation (2.20) are defined as before.

-0
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3. MOMENTS OF THE DISTRIBUTION

In order to more easily visuaiize the effect of oscillatory shear flow on mass transport it
is useful to caiculate the moments of the concentration distribution in the direction of flow,
These moments may be determined quite eastly from the concentration distribution given
by equation (2.16). The dimensionless mean position of the concentration profile (first
moment) is defined by:

_f'EJ: J‘- xc{x,y, (}dx dy, (3.1)

which may be evaluated to yield:

i © x U . , s | : ]
xEJ‘_m J ) (n+ﬂ L sin (¢ + ) dt +a,vh(:))4ﬂ \/ae-w«e-r“' drdy  (3.2)

= ﬂJ' sin (¢ +¢) dt
0
and from which it is seen that the mean position of the concentration profile simply moves

back and forth with the periodic motion of the shear flow evaluated at y,. Of more interest
is the variance (second moment) of the distribution, defined by :

ol= J i JZ (e—2)%c(x, 1) dx dy @3.3)

and which is evaluated to yield:

1

ol= f . F [+ ayh()]? —— e~7H e=r14 4y gy (3.9)
—m ez dan./Et
= Iw (QE+ath?y?) ! e 1% dp = 26 + 2o h?
-= dnt
or, substituting in the definition of £:
B a2 [
ol =2 1+ a*h*+ TJ; (1) dt’] (3.5)
and in terms of dimensional quantities:
. B ol "ty
62 =2D(t*—1,) _1 +ah?+ (t*—to)J; W) dt’:l. (3.6)

For periodic flow the variance in equation (3.5) has the explicit form ;

2
o = 2{1+a’[}+cos’ (1+¢)]+ %-{2 cos (t+¢) sin ¢~ §sin (1+ @) cos 1+ )]}, (3.7)

where the last term in equation (3.7) becomes negligible at large times. A plot of the variance
as a function of time is given in Fig. 3.

From equations (3.5) and (3.7) it may be seen that the growth of the variance of the
concentration profile in the x-direction is the sum of contributions from three terms. The
first term in (3.5) simply represents molecular diffusion in the x-direction in the absence of

-
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Fig. 3. Yanance of the concentration profile. The dimensionless vanance in the x-direction due to convection

(the contribution due to molecular diffusion in the x-direclion has been subtracted off) reduced by the

amplitude of the oscillatory strain is plotied vs time. The solid curve is for ¢ = 0 and the dashed curve for
¢ = n/2. The upper and lower lincs are the limiting asymptotes at large time of 3¢/2 and ¢/2, respectively.

the imposed flow field. The second term arises from the transient deformation in the x-
direction by the shear flow of a concentration profile which extends in the y-direction. The
amplitude of the periodic strain imposed on the shear flow is constant, thus as the sohute
diffuses further from its origin in the y-direction it will be spread out in the v-direction over
a greater distance, resulting in an increase in the second moment. For the periodic flow
considered here, the strain the fluid undergoes is periodic and thus the contribution of the
second term to the variance is also periodic—although its amplitude grows linearly in time

(i.e. the square of the diffusion length in the y-direction muitiplied by the square of the
strain amplitude), it does not lead to a permanent increase in the second moment in the

same manner as does molecular diffusion in the x-direction.
The third term in equation (3.5) is the increase in dispersion arising from the cooperative
effects of diffusion in the y-direction and convection in the x-direction. A physical under-
standing of this term may be gained with the aid of Fig. 4. Consider a solute molecule
migrating from point A to point B in a shear flow. The molecule may reach point B either
by pure moiecular diffusion in the x-direction, or by diffusing in the y-direction to a faster
moving streamline, being convected in the x-direction, and then diffusing back to B. While
other random waik paths are just as likely, the combination of convection and diffusion
will lead to an increase in the dispersion of the solute in the direction of flow. Note that
while the degree of dispersion has a periodic part for short times, at long times it approaches
the linear increase in variance with the time expected for a diffusion process. For large
values of a, it is this convective—diffusion tenn which dominates the dispersion of the solute

in the x-direction.
4. APPLICATION TO BOUNDED FLOWS

While the enhancement in mass transfer given above for an oscillating shear flow has
been derived for an unbounded flow, it is in bounded systems where the effect is practicaily
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Fig. 4. Influence of shear on migration. A solute molecule may migrate from point A to peint B by cither

(1) molecular diffusion 1n the x-direction or (2) diffusion in the y-direction followed by convection in the x-

direction and diffusion in the y-direction. The additional migration path made possible by convection
increases the rate of dispersion in the direction of flow.

realizable. In order for equation (2.16) to apply to a bounded system, we require that the
flow must locally appear to the solute molecules to be an oscillating infinite shear fiow on
the timescale of the period of flow osciliation. Consider the oscillatory axial flow through
the conduit depicted in Fig. 5. The cross-section may be arbitrary, however we require it
to be unchanging along the length L of the conduit. If the cross-section of the conduit is
characterized by some length scale a, we may achieve an oscillatory shear flow provided
that wa®fv « 1, where v is the kinematic viscosity of the fluid. This condition is equivalent
to requiring that the fluid is sufficiently viscous that the shear layer produced by the walls
propagates a distance much greater than the radius of the conduit during the period of
oscillation. The flow wiil appear to approximate an infinite shear flow to a solute molecule
on an individual streamline if we impose the additional condition that wa*/D » 1, i.e. that
during one oscillation the molecule diffuses a length much smaller than the radius of the
conduit (the length of gradients in the local shear rate). Note that these conditions require
that the Schmidt number Sc = v/D of the system be very large.

Under these conditions, the effective dispersion cocfficient X in the axial direction along
any streamline at long times may be determined from equatioa (3.7) :

aI
K=D(i+—2—), 4.1)
where the periodic contribution to the dispersion has been neglected. Note that this con-
tribution to the variance arose solely from an unbounded molecular diffusion in the y-
direction being deformed by the periodic shear flow. This effect will be absent in a bounded

flow since diffusion in the y-direction is ultimately limited by the presence of the walls of

/closs-seclional area A

#
I 4

4
oscillatory |
2a velocity |
profile i
LS
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L

Fig. 5. Conduit with uniform cross-section. Flvid undergoes oscillatory flow in a conduit of length £ having
a uniform cross-section with diameter 2a and area A.
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the conduit. and thus this contribution to the dispersion in the x-direction will similarly be
bounded and will not grow in amplitude with time as is characteristic of a diffusion procgcss.

For a long conduit at steady-state (r*D/a* » 1) there will be no lime-average con-
centration gradients across streamlines. As a consequence, the average dispersivity experi-
enced by the solute in steady transport down the conduit is simply the area average of the
effective dispersivity along each streamline. If the conduit area is given by A, then the

average dispersivity K is given by:

, t g
K=D l+;.{5;3d44 . (4.2)

We may also relate the average dispersivity to the total rate of viscous work done in the
conduit. If the conduit is of length L then the time average rate of viscous work s given

by:

W= ;zLJ’ 171 dA. (4.3}
A
wher * it is the fluid viscosity. Combining equations (4.2) and (4.3) we obtain:
R D( 1+ id )
= alAw) (4.4)

which provides a convenient way of experimentally estimating the dispersivity of a solute
at high oscillation frequencies (but infinite v/D) in conduits with complex cross-sections.
For the particular case of a circular tube of radius 2 we may use Poiseuiile’s Law to relate
the viscous dissipation to the amplitude of the tidal displacement:

. AxY
K= D[l +(-a—) ] (4.5)

which is in agreement with the result given by Aris [6] and Watson [2] in the correct limits.
The high frequency limit of the enhancement in dispersivity caiculated here is the maximum
enhancement which can be achieved for a given tidal displacement at large Schmidt numbers.
It must be emphasized that the results above for bounded flows are valid only for viscous
flow in long conduits of uniform cross-section at high frequencies. Low frequencies, end
effects, or varying cross-sections will greatly complicate the analysis.
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NOMENCLATURE

conduit radius

cross-sectional area of condust
concentration

dimensionless concentralion

molecular difTusivity

concentration distnbution in x-direction
concentration distribution 1n y-direction
time varying strain amplitude

total amount of solute

effective dispersivity along 1 strecamline
average effective dispersivity
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L length of condust

5 time varying shear amplitude
! dimensionless ime

* lime

to initial bme

u, fluid velocity

W raie of viscous work

x dimensionless x-coordinaie
Ly average .x-position

x* x-coordinate

Xa ial x-position

y dimensioniess y-coordinate

y*  y-coordinate

Yo imitial y-positien

z dimensionless z-coordinate
Greek symbols

a amplitude of oscillatory strain

i} dimensionless velocily at y* = y,
¥ amplitude of shear rale

] Dhrac delta function

Ax  amplitude of tidal displacement
L transformed x-coordinate

f fluid viscosity

v fluid kinematic viscosity

¢ transformed time

n constant

¢!  dimensionless variance in x-direction
! dimensional variance in x-direction
¢ phascati=10

¢, phaseat(* =0

w angular frequency
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