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from Sencet Lab

Flow due to a Heated Wire: The Theoretical Flow Field

In the vicinity of a line source of energy (in this case the source is a wire carrying electrical
current) the temperature is elevated. If the fluid surrounding the source expands upon heating (as is
the case for most fluids) the fluid near the wire will have a density less than that of the fluid far
from the wire and hence will rise, driving a natural convection circulation pattern. The velocity field
produced is approximately as depicted below:

Note that we take the x direction to be vertical and the y direction to be horizontal (the z-direction is
along the wire and does not figure into a 2-D problem). This is because the flow field may be
described as a boundary layer (much the same as flow past a flat plate studied in fluids last year),
and x is usually taken to be the distance along the boundary. While there isn't a boundary here,
there is a separation of length scales: the length scale in the horizontal (y) direction is much shorter
than the length scale in the vertical (x) direction (as we shall demonstrate), which is really what is
required for a boundary layer type flow.

This Thermal Plume boundary layer problem is described in a number of transport texts.
One reference is L. G. Leal, Laminar Flow and Convective Transport Processes, 1992, p. 691.
This is the text currently used in the spring semester graduate fluid mechanics course. A complete
review of the theory and experiment associated with this problem is provided by Gebhart, B., et al.,
Buoyancy-Induced Flow and Transport, 1988. Both texts have been placed on reserve in the
Engineering library.

To derive the equations governing the flow field we need to make a number of assumptions
or approximations, which ultimately limit the validity of our solution. We begin with the
Boussinesq approximation: we assume that the density fluctuations resulting from the temperature
variations are sufficiently small that the only place where they matter is in the buoyancy term of the
equations of motion. This is usually a very good approximation for natural convection flows. We
also take all other material properties (viscosity, thermal diffusivity, etc.) to be constant (not as good
an approximation!). We assume the flow to be strictly 2-D with no variation in the z-direction.
This would be correct for steady-state flows with an infinitely long wire: obviously we'll get into
trouble if we are too far above a wire of finite length, such that it starts to look like a point source!
Finally, we shall ignore all effects of the boundaries - both the side walls (they will induce a finite
amplitude recirculation flow) and the top and bottom. Again, this won't be too bad provided that the
flow profile is very narrow, and if we are far away from the boundaries!

We will use conservation of mass, momentum, and energy to describe the flow field
mathematically. Thus:
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where o is the coefficient of thermal diffusivity and y is the viscosity (assumed constant). The
density profile is given by:

p =po(1-8(7 -1.))

where p is the coefficient of thermal expansion ([AV/V)/AT) and p, and T, are the density and
temperature far from the source, respectively.

Far from the wire the temperature and density are constants, and the velocity in the x-
direction due to the wire is zero. In this region the pressure distribution is simply that due to
hydrostatic pressure variation pe = pp - po g X. If we subtract this off (e.g., let p =P + po ), then
the momentum equations become:

=2

1 8P u  3%u
ugi +va =—v% +'V(a? +—y£) +ﬁg(T ""To)

1 9P atv ol
u3§+va-— -a‘j’—’l‘v-g;!‘l'é-;z)

where v is the kinematic viscosity u/p, and we have divided through by the density.

We also have the boundary conditions:
4, se =0
Bl,oen =0
7| - T,

y—btw

“ A
f [pCPu(T -1,) -k 9Ly =0/
where Q/L is the energy dissipated per unit length of the wire. This last condition is a statement of
conservation of energy. The energy produced by the electrical dissipation has to go somewhere: at
steady state the total integrated energy flux (both convection and conduction) through any plane of
constant x must equal the energy released by the wire.

To proceed further we need to render the equations dimensionless. Unlike forced
convection problems such as flow past a flat plate, we don't have a reference velocity, temperature, or



even a length scale imposed by the boundary conditions. In this case what we shall do is take these
quantities to be unknown constants, plug them into the equations, and then choose them so that all
the important terms are scaled to be O(1). Thus we take:

Lx:; *=Ly—;u*={}:; Yy Prs

¥

N

[

x* =

c:qhu

We begin our scaling with the continuity equation. Substituting in and dividing through to render
the equation dimensionless yields:

ou* V.L, | av* _
ot [ ]W =0

It is always the case that, when scaling two dimensional flow problems, both terms of the continuity
equation must be of the same magnitude. Thus we choose the quantity in brackets to be unity, and
we get:

= LJ’
V.=U.|g

e.g., the characteristic velocity in the y-direction is related to that in the x-direction by the ratio of the
two length scales. Since we are looking for a boundary-layer type solution, we expect this ratio to
be much less than unity.

We now turn to the x-momentum equation. If we substitute back in for V., we obtain:

2
17— au* op* [ vL |f o%u* |L
U axF +v p Uz ax* Uc Li ay*z + ‘EE

The physical mechanisms which must be preserved are the buoyancy source term (that's what drives
the entire flow), diffusion of momentum in the y-direction, and the momentum convection term.
We will demonstrate in a bit that the pressure gradient term is negligible for natural convection

flows. Thus we shall take:
L

which yields two relations between U, T, Ly, and Ly. The physical interpretation of the boundary
layer length scale (the second relation) is very simple. The time necessary for fluid to be convected
in the x direction a distance L, with velocity U, is just t ~ L,/U.. During this time momentum
diffuses in the y-direction a distance:

L= =(5)

which is the appropriate length scale in the y-direction, at least for the momentum boundary layer.
Note that diffusion in the x-direction is of order [Lyszxz] relative to the other terms in the equation.
Terms of this order can be neglected in the boundary layer limit, e.g., when [L,2/1.42] << 1.

Bzu* ﬂ 4 Tc Lx
PP i ™



Next up in our scaling is the y-momentum equation, which we shall use to obtain the correct
scaling for pressure variations due to flow. Again substituting in and using the scalings for Ly and
V. derived above we obtain after some manipulation:

wr 0 owavi [P L]apx 9%k | ILy) g%y
ax* ay* ~ |rU.|5yF T g% 7T ax*?

From this equation, we find the appropriate scaling for the pressure variation in the boundary layer
is P = p Uo /Ly, We can use this in the x-momentum equation together with the definition of Ly
to demonstrate that the pressure gradient term is negligible, e.g.,

[p':jg]=[p”53][#;%] - L] 'JTI [ ]<<1

Now we look at the energy equation, where we have made the V. substitution and divided
through:

2
# 3T* | w37 _[aL ]}l a1* | |L,] #T*
B [ N I

We have already scaled L with U; and L, in the momentum equation, however. The scaled energy
equation thus becomes:

x OT* x OT* _ 1 62T*
HaE TV % TR ay*t —I ax*

where diffusion in the x-direction is again of order [Ly2le2] relative to the other terms in the
equation and thus is neglected. It is interesting to note that the Prandtl number Pr = v/a divides the
diffusive term in the energy equation. We can't get rid of this ratio by scaling, since it is a material
property of the fluid. It always appears in either the momentum or energy equations depending on
whether we balance the convective or diffusion terms in the momentum or energy equations. For
problems where Pr >> 1, such as is the case in this experiment, the thermal boundary layer will be
much thinner than the momentum boundary layer. In our scaling the momentum boundary layer
(e.g., the velocity profile we are trying to measure!) will be O(1) in thickness, while the thermal

boundary layer will be O(1/Pr 12) in thickness. You can actually see the thermal boundary layer as
a very thin shimmering sheet due to refractive index variations if you look closely (laser off,
please!) at the profile. Note that you can't just throw out the diffusive term for large Pr, as you
would not then be able to satisfy the boundary conditions - instead it just leads to a thin thermal
boundary layer within the thicker momentum boundary layer! Some references actually rescale y*
in the energy equation to account for this difference in widths, however we shall not do so here.

The final bit of scaling comes from the integral boundary condition. Again inserting the
above scalings and dividing through yields:
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Again, we take the quantity in brackets (on the right hand side) to be unity, and ignore the x-
diffusion term which is of order [Ly2/L2]. Putting all this together we get three equations for U,
T, and Ly. in terms of Ly:

ﬁchLI =l . VL).' =1 .
UC ’ UCL)’ ’

Q/L
—_—— =1
pC,UT.L,

After some manipulation, these can be solved to yield:

A 175 2 L ‘ 115
Joved 1" [(emsey L] ] e
S o I I I B ey
and the ratio:
(Ly)z_ v3p6P - 245
L) "|{e/n)ps

It is interesting to note that if the scaling of the equations is done correctly, all the
dimensionless -variables- (e.g., the *'ed quantities) should be of O(1). In fact, when the equations
are solved numerically, and L, is chosen to be the distance above the wire, the dimensionless vertical
velocity at the centerline of the flow has a value of about 0.9 for Pr >> 1, comfortingly O(1). The
width of the profile should also be of O(1), with the numerical solution yielding a value of around
1.2 for where the velocity falls to 50% of its maximum. This O(1) property of scaling means that
you can make a pretty good guess of the magnitude of the velocity and profile width without ever
actually solving the equations! It also suggests that if the dimensionless values you get by solving
the equations -aren't- of order unity, then you should probably go back and re-scale things!

While the characteristic scaling values derived above look complex, they arose in a natural
way from the balancing of physical mechanisms in the equations of motion. The dimensionless

equations, neglecting all terms which are of O([Ly2/L2]), become:

du* | v _
dx* ay*
w 0T Y A | 9°T*
U axE tv ay* - Pr ay*z
u* du ] = 9" u* *




f uw* T* dy* =1

[=:}

In the above derivation we have made a number of approximations to simplify the equations.
In no particular order, these are:

1) The Boussinesq approximation, fT, << 1; ;lt % T. <<1 (no viscosity variation)

2) Two-Dimensional flow, [Ly2/L,2] << 1 (L; is the length of the wire)
3) Steady-state flow

4) The boundary layer approximation, [Ly2/L,2] << 1.

5) An infinite medium (no wall effects)

It is interesting to note that all parameters except the Prandtl number have been scaled out of
these equations, and yet we have not had to specify Ly, the characteristic length scale in the x-
direction. This occurs often in boundary-layer problems (problems where there is a large
separation in the length scales in flow and cross-streamline directions), and results in a similarity
solution.

A key result of the above scaling analysis is the dependence of the characteristic length scale
in the y-direction and the characteristic velocity on L. We find that U, varies as L1/5, and L,
varies as L,2/3, This suggests that the velocity will increase as x!/5 power as we move up above the

wire, and that the width of the velocity profile will increase as x2/5, We will make use of these
scalings in developing our similarity solution to the transport equations.

The flow pattern produced by a line source is two dimensional, thus we may define a stream
function y:

dyp* dy*
* = Sk o=
“ dy* ’ Y ax*

In terms of the streamfunction the equations become:

*

ARNESAEAES TN &

YT YT, = e T s f W) T* dy* = 1

— 0

where subscripts denote partial derivatives with respect to the argument. The similarity transform is
given by:

%
pr =Rl fa T =0 ) s =

PRy
with u* = u,y* = x*lfol(n)

and v* = —y = —x*‘“s(%f(n E %nf'(n))



We may also find the velocity derivative of interest:

R MU R LI

and the resulting ODE's:

fr=-g+ [%(f')’ S VA RN X T

where primes denote derivatives with respect to the similarity variable . We also have the
transformed boundary conditions:

f(0) = £"(0) = 0

f'=0as n—w

fw flgdn =1
du*

The boundary conditions at ) = 0 are symmetry conditions: both v* and v must vanish
at the centerline. These equations may be solved numerically as a function of the Prandtl number.
The procedure for solving the equations numerically is to set them up as a system of four first order
differential equations for f, f', f ", and g. We have initial conditions for f and f", but we must
determine initial conditions for f' (the dimensionless velocity) and g (the dimensionless
temperature) at the centerline. We do this by using the shooting method, guessing values of f '(0)
and g(0) and iterating until both the boundary condition f '(¢) = 0 and the integral boundary
condition are satisfied. The integral boundary condition may be tracked by simply adding its
integral as a fifth first order differential equation in the integration process.

Plots of the solution for Pr =68 are given in the following diagram. Note that the
dimensionless velocities have been scaled by the dependence on x* predicted by the similarity
solution. The program which generated this diagram is available at the URL:

http://www.nd.edu/~dtl/cheg459/pivexperiment

You should be prepared to discuss these theoretical results and, in particular, be able to
estimate where the approximations which led to the solution will break down.



The following fluid properties may be useful:
50% by volume glycerin / water:

v =7.46x10-2 cm?/s
Cp =3.09 J/g°C
p = 1.145 g/em3
a=1.11x10"3 cm2/s

B =5.3x10-4 1/9C
np = 1.407

Properties of glycerin-water solutions as a function of concentration may be obtained from the Dow
Chemical website:

http://www.dow.com/glycerine/resources/physicalprop.htm

Plot of Dimensionless Velocity and Temperature for a Heated Wire, Pr = 68
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