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Nearly all theoretical analyses of Maxwell’s demon focus on its energetic and entropic costs of
operation. Here, we focus on its rate of operation. In our model, a demon’s rate limitation stems from its
finite response time and gate area. We determine the rate limits of mass and energy transfer, as well as
entropic reduction for four such demons: those that select particles according to (1) direction, (2) energy,
(3) number, and (4) entropy. Last, we determine the optimal gate size for a demon with small, finite
response time, and compare our predictions with molecular dynamics simulations with both ideal and
nonideal gasses. Also, we study the conditions under which the demons are able to move both energy and
particles in the chosen direction when attempting to only move one.
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Maxwell’s demon is a device that can measure the
microstate of a closed system, thereby reducing its entropy,
seemingly in violation with the second law [1]. A century
of physics literature modeling the measurement protocols
and internal workings of the demon [2–5] culminated to the
conclusion that logically irreversible operations taking
place within the demon [6] such as information erasure
[7] account for the lost entropy.
Contemporary incarnations of the demon are capable of

feedback control [8,9] and universal computation [10–12].
Some demons measure and modify a tape of bits [13–16] or
qubits [17] representing the state of a system, while others
omit measurement altogether, instead, sorting through the
microstates mechanically [18–21]. Nonideal demons have
also been explored [13,14]; as have the effects of thermal
equilibriation of the demon with the system, and [21]
studies the efficiency of an imperfect ratchet with finite
mass. Today, we can build demons in the laboratory
[22–33] and even make practical use of them for harvesting
energy [30,34–38] or sorting atoms [39].
Experimentalists often discuss the temporal limitations

of their demons, but nevertheless still operate under the
simplifying assumption that the time τ it takes to sense,
process, and respond to information is negligible compared
to all other times [22,28,30–33]. While feedback control
demons that operate periodically have been studied
[33,40,41], much of their focus is on the τ→0 or τ→∞
limits, not on how the demon changes as τ changes, and
neither treat the limitations of the demons as their main
object of study.
The optimality of resetting or erasing a single bit in

finite time is well understood [42–44]. In many-
body context, cells constitute information engines that
perform measurements and computations to process
energy in a highly stochastic environment [45–49].
Here too, the timescale at which the cell operates relative

to the timescale of its environment impacts its efficiency
of information processing [48].
In this Letter, we study how the transport rate attainable

by a Maxwell demon operating between two chambers of
gas is restricted by the finite area A of the gate that the
demon controls and the rate 1=τ at which the demon
operates. In practice, A and τ would be constrained by
experimental practicalities such as inertia and friction.
Ultimately however, theoretical bounds on speed, length,
and mass set the true limits on how quickly a demon can
transport energy or particles. For example, the gate cannot
close faster than the speed of light and must necessarily be
larger than the thermal wavelength of an atom.
To this end, we study four spatiotemporally limited

demons that make decisions based on direction, number,
energy, or entropy measurements. For all four, we obtain
heat, mass, and entropy transport as a function of τ, A. We
compare our results to molecular dynamics simulations
and study the conditions under which a demon is able to
move both energy and particles from left to right when only
aiming to move one or the other.
Problem setup.—Consider a partition separating two volu-

mes of ideal gas, labeled as left (l) and right (r), with volumes
Vl, Vr, energies El, Er, and numbers of particles Nl, Nr
In the partition between the volumes is a gate of area A,

which the demon has control over. Except for the pos-
sibility of particles passing through the gate when it is open,
the partitions are isolated from one another.
We also assume that each partition is large enough that it

is a self-averaging canonical distribution. In this case, the
speed distribution for a particle is

pðvÞ ¼ Ωdvd−1e−βsmv2=2=Zs; Zs ¼ ½2π=ðmβsÞ�d=2;

where Ωd ¼ 2; 2π; 4π is the solid angle in d ¼ 1, 2, 3
dimensions andm is the particle mass. The index s ∈ fl; rg
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represents a generic side. The temperature 1=βs and energy
per particle Ēs ¼ Es=Ns are related by βsEs ¼ Nsd=2≡
βsNsĒs, by the equipartition theorem.
We assume that the demon decides on the state of the

gate every τ seconds, which models all delays, e.g., due to
measurement, processing, or physical response. We assume
that after every τ, the state of the gate is updated instanta-
neously. Since we are interested in determining how the
physical limitations of the demon restrict its ability to
operate separately from information theoretical restrictions,
we are not concerned with how the demon acquires
information, nor how it computes its decisions.
Let Â be the event that a particle arrives at the gate within

a duration of τ (i.e., passing through it if it is open, or
bouncing off it if it is closed). For a randomly chosen
particle with given speed v, the probability of Â is
pðÂjvÞ ¼ cdvτA=V, where cd ¼ 1=2; 1=π; 1=4 in d ¼ 1,
2, 3 dimensions (we define A≡ 1 for d ¼ 1). Thus, the
probability that a random particle on side s impinges upon
the gate during the time window is

pðÂÞ ¼
Z

∞

0

pðÂjvÞpðvÞdv ¼ κs=Ns ð1Þ

κs ¼
ρsτAffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβsm

p ¼ ρsτA

ffiffiffiffiffiffiffiffiffi
Ēs

dπm

r
≡ νsτ: ð2Þ

We will be interested in the thermodynamic limit, Ns, Vs,
Es→∞ keeping Ēs≡Es=Ns and ρs≡Ns=Vs constant [50].
Knowing the probability that a random particle with a

specific velocity arrives at the gate allows us to compute the
probability that exactly n particles carrying total energy E
arrives at the gate during within a duration τ,

pðE; nÞ ¼ κns ðβsEÞnD
ΓðnDÞn!

e−βsE−κs

E
; ð3Þ

which can be marginalized over number or energy to find
the probability of number and the probability of energy,

pðnjn > 0Þ ¼ κn

n!
e−κ; pðn ¼ 0Þ ¼ e−κδðEÞ ð4Þ

pðEÞ ¼ 1

E
e−βE−κ

X∞
n¼1

κnðβEÞnD
n!ΓðnDÞ ; ð5Þ

where D ¼ ðdþ 1Þ=2. See [50] for more details of the
derivation. The incomplete energy moments can be found
in terms of incomplete gamma functions, Γð·; ·Þ,

hEsi≥E0
¼

Z
∞

E0

EspðEÞ ¼ e−κ

βs
X∞
n¼1

κn

n!
ΓðnDþ s; βE0Þ

ΓðnDÞ :

For complete energy moments, the incomplete gamma
function is replaced with a gamma function. For s ¼ 1,
we get the average hEi ¼ κD=β. The number distribution
moments can be found similarly, hnsi ¼ e−κðκ∂κÞseκ.
Entropy reduction by a demon.—Differentiating the

Sackur-Tetrode equation with respect to time, we can find
the entropy rates of the subsystems in terms of _N, _E.
Adding the entropy rates for the two subsystems, and using
mass and energy conservation, _Nl ¼ − _Nr, _El ¼ − _Er, we
find that the change in entropy of the whole system is

_Stot
kB

¼ ðβr − βlÞPτ þ
�
d
2
log

�
βl
βr

�
− log

ρr
ρl

�
Iτ; ð6Þ

where Iτ and Pτ are the number and energy currents. Note
that the same answer is obtained when differentiating the
purely classical Clausius entropy [50].
Demon models.—We model four demons who make

decisions based on direction, energy, number, and entropy.
Our convention will be that each demon will attempt to
move its target quantity, e.g., mass, heat, from the left
partition to the right partition. For all four demons, we
calculate heat Pτ, number Iτ, and entropy Jτ currents as a
function of the gate area and response time, and compare
these with Monte Carlo simulations (Fig. 1). We assume
that even though the demon is operating, the two volumes
each remain in equilibrium.
(1) A direction demon opens the gate only if there are no

particles moving from right to left. Since the probability
that no particles approach from the right is e−κr , the average
energy approaching the gate from the left isDκl=βl, and the
average number approaching the gate from the left is κl, the
average heat and mass currents are

PðdÞ
τ ¼ Dνle−κr=βl; IðdÞτ ¼ νle−κr : ð7Þ

Thus, the performance of the demon falls exponentially
with τ. For an infinitely precise demon that can process
all incoming particles (τ → 0), the rate of heat transfer

is PðsÞ
0 ¼ ð2ĒlρlDAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ēl=ðd3πmÞ

p
. Naturally, this only

depends on the left subsystem, since the demon can shut
out the right subsystem completely.
Interestingly, there is an optimal value for the area of the

gate. Optimizing A for fixed τ and other system parameters
shows that A� ¼ ðτρrÞ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dπm=Ēr

p
maximizes both mass

and heat transport, for d > 1.
(2) An energy demon opens the gate whenever the

right moving particles have greater energy than left moving
ones. The energy demon’s heat and mass transport rate
converges to that of the direction demon as κ → 0, since the
probability that multiple particles approach the gate from
the right and left simultaneously vanishes. Therefore, we
can write the energy demon’s heat and mass currents as the
direction demon’s, plus correction terms [50].
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PðeÞ
τ ¼ PðdÞ

τ þ νlνrΓð2Dþ 1Þ
ΓðDÞ2 ð−1ÞD

�
f1
βl

þ f2
βr

�
τe−κl−κr

IðeÞτ ¼ IðdÞτ þ Γð3DÞτ2e−νl−κr
2Γð2DÞΓðDþ 1Þ

�
ν2l νrf3 −

νlν
2
r

2
f4

�
; ð8Þ

where f1 ¼ Bð−βl=βr; D;−2DÞ and f2 ¼ Bð−βl=βr; Dþ
1;−2DÞ are Euler beta functions, and f3 ¼ F2;1ðD; 3D;

Dþ 1;−βr=βlÞ and f4 ¼ F2;1ð2D; 3D; 2Dþ 1;−βl=βrÞ
are hypergeometric functions.

It is not difficult to numerically solve for PðeÞ
τ ; IðeÞτ for

higher dimensions. An exact analytical solution for heat
and mass transport for d ¼ 1 is given in [50].
(3) A number demon opens the gate if right-moving

particles are more than left-moving ones. An exact solution
for d ¼ 1 is again [50], for d > 1, we again obtain the
leading order correction,

PðnÞ
τ ¼ PðdÞ

τ þ ν2l νr
2βl

τ2ðdþ 2Þ
�
1 −

1

2

dþ 3

dþ 2

βl
βr

�
e−κl−κr

IðnÞτ ¼ IðdÞτ þ ν2l νr
2

τ2e−κl−κr : ð9Þ

(4) An entropy demon opens the gate if doing so reduces
the total entropy, i.e., if

Er − El >

�
log

ρr
ρl

−
d
2
log

�
βl
βr

��
nl − nr
βl − βr

≡ χðnl − nrÞ:

If βl ¼ βr, the entropy demon opens the gate whenever
nl > nr, acting as a number demon, and if χ ¼ 0, it acts as
an energy demon. The average heat and mass flow is

J ¼
X∞

nl;nr¼0

Z
∞

0

dEldErp
ðlÞ
nl ðElÞpðrÞ

nr ðErÞjðfEsg; fnsgÞ

jðfEsg; fnsgÞ ¼ Θ½Er − El − χðnl − nrÞ�ΔðfEsg; fnsgÞ;

with a step function enforcing the inequality above. Here,
Δ ¼ El − Er for J ¼ Pτ and Δ ¼ nl − nr for J ¼ Iτ.
The entropy demon behaves different than the number

and energy demons; it does not act as a direction demon
as τ → 0.
Simulations.—We distribute particles uniformly in

space, assign them Boltzmann-distributed velocities, and
obtain the time they approach the gate and the energy they
carry. For d > 1, the probability of atoms arriving the gate
decreases with decreasing gate area. Thus, for economical
reasons, we run most simulations only for d ¼ 1. In all
plots, the units of temperature are such that kB ¼ 1.
See [50] for simulation details.
In Fig. 1, we compare the energy, mass, and entropy

currents generated by the demons to our formulas. In panels
(a),(b), the right chamber has a temperature four times
greater than the left, and the number densities are the same.
In panel (c), the temperatures of the right chamber are half
of that of the left, but the number density of the right
chamber is four times that of the left.
Figure 1 illustrates an interesting phenomenon. For

demons with fast response time (i.e., small τ), regardless
of whether they are aiming to transport heat or mass, they
end up transporting both quantities in the same direction.
However, at sufficiently large τ (and, as we will see, large
enough values of ρr or Tr), heat and mass transport can be
in opposite directions. For example, the number demon is
willing to let a few very energetic molecules move from
right to left as long as a larger number of less energetic
molecules move from left to right. We define τc to be the
response time for which demons start pumping particles or
energy from right to left instead of left to right.

FIG. 1. Demon heat and mass transfer rates. Two different one-dimensional systems, with heat and mass currents plotted as functions
of the demon’s temporal resolution τ. Theory (solid lines) agrees with simulations (dots). (a) The subsystems have a temperature
difference, but with the same number density, βl ¼ 1, βr ¼ 0.25, ρl ¼ ρr ¼ 100. Note that the heat transfer rate can be negative for the
number demon. (b) The change in system entropy per unit time for the same system as in the left panel. (c) The right subsystem has a
lower temperature and a much higher number density than the left subsystem, ρl ¼ 100, ρr ¼ 400, βl ¼ 1, βr ¼ 2. Here, it can be seen
that the energy demon has a negative number current for large τ.
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Figure 2 illustrates the behavior of τc. Theoretical values of
τc are plotted, varying either number density (for the energy
demon, left) or temperature (for the number demon, right).
For low enough number density or temperature, there

may not be a τc (it diverges at some critical number density
or temperature). For τ < τc, either demon strategy is
appropriate for ensuring that there is no “backwash” of
particles or energy from right to left, while above τc, a
specific strategy must be favored to ensure this. This
illustrates another difference between our demons and
ideal demons. An ideal, infinitely quick demon does not
have to prioritize particle number or energy no matter what
the number densities or temperatures of the subsystems are,
but a restricted demon has to consider tradeoffs.
To check the generality of our prediction, we also ran

molecular dynamics simulations of demons operating in
two dimensions with ideal and hard sphere gasses, the
results of which can be seen in Fig. 3. Because of
computational constraints, the data are more noisy than
the one-dimensional case, but clearly the prediction and
theory match well for ideal gas demons. Although our
equations are only valid for ideal gasses, the currents for
demons working with hard sphere gasses have qualitatively
similar decaying behavior as the predictions. For example,
PðeÞ and PðnÞ are overestimated, and NðeÞ is underestimated
by the predictions, but all curves are qualitatively similar.
We have also observed that the hard sphere demon’s rates
approach the corresponding ideal demon’s rates as we
reduce the volume of each individual particle. A video
showing an energy demon in operation can be seen in the

Supplemental Material, which also has more simulation
details [50].
Discussion.—Most literature on the Maxwell’s demon

focuses on its thermodynamic cost of operation. Here we
point out that even if a demon has no restrictions on
memory, or knowledge of the state of the systems, it will
still be limited in its rate of operation due to its physical
characteristics. Here, we determined rate bounds for four
kinds of demons. We have derived the optimal area of the
gate for the simple demon, and by extension, for all demons
with small τ, and how the demons’ response time and gate
size determine heat, mass, and entropy currents.
For a square gate with A ¼ 1 μm2 that moves at the speed

of light to sort air molecules at 300 K and standard pressure,
we get κ ∼ 9.5. For a simple demon, the energy and number
transfer for a demon with τ > 0 is e−κr times less than a
demon operating with τ ¼ 0, meaning that its currents would
be ∼7.5 × 10−5 times less than an infinitely fast demon.
Of course, not all realizations of Maxwell’s demons

operate via gates. For example, many nanomolecular
pumps and refrigerators are implemented by single electron
transistors. However, these devices still have spatial and
temporal restrictions that play similar roles, such as finite
sampling and feedback rates, the probability rate of electron
tunneling and cotunneling events, and quantum confine-
ment effects [31,51,52]. As such devices become wide-
spread, it will be crucial to know how their spatial and
temporal limitations influence transport rates.

FIG. 2. Critical response time. The critical τ for energy and
number demons, along with estimates of the critical values below
which no τc exists. Above τc, the demon will transfer heat or mass
from right to left instead of from left to right. In both plots, the left
subsystem has Tl ¼ 1, ρl ¼ 100, only the parameters of the
right subsystem are varied. Left: the energy demon’s τc for
different right subsystem temperatures, varying right subsystem
number density. Right: the number demon’s τc, for different right
subsystem number densities, varying the right subsystem’s
temperature.

FIG. 3. Two-dimensional demon. A two-dimensional Maxwell
demon, operating on an ideal gas and a hard sphere gas. The
energy (left) and number (right) rate of demons working with an
ideal gas match well with prediction for all three demon types,
and the hard sphere gas is qualitatively similar. The system has
ρl ¼ 1.5, ρr ¼ 3, and Tl ¼ 0.0015, Tr ¼ 0.001. The dimensions
of each subsystem are 30 × 30, and the particle radius is 0.025.
The packing fraction of the left and right subsystems are
ϕl ¼ 0.0029, ϕr ¼ 0.0059.
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