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When two macromolecules come very near in a fluid, the surrounding molecules, having finite volume, are less
likely to get in between. This leads to a pressure difference manifesting as an entropic attraction, called depletion
force. Here we calculate the density profile of liquid molecules surrounding a disordered rigid macromolecules
modeled as a random arrangement of hard spheres on a linear backbone. We analytically determine the position
dependence of the depletion force between two such disordered molecules by calculating the free energy of
the system. We then use molecular dynamics simulations to obtain the depletion force between stiff disordered
polymers as well as flexible ones and compare the two against each other. We also show how the disorder
averaging can be handled starting from the inhomogenous reference interaction site model equations.

DOI: 10.1103/PhysRevE.101.022607

I. INTRODUCTION

Objects immersed or dissolved in a liquid will experience
an emergent attractive force, as the liquid molecules, having
finite volume, cannot squeeze between them [1]. Put another
way, it is entropically favorable for the objects to be close,
since each have surrounding volumes unavailable to the liquid
molecules; and when objects approach to the extent that these
volumes overlap, the molecules have more volume to explore
[2,3]. Thus objects are more likely to be near each other, as if
they attract. This entropic force is called “depletion.”

Since the seminal papers of Asakura and Oosawa, deple-
tion forces has had far reaching implications from molecular
physics [4–8] and biochemistry [9–11] to high-energy physics
[12–16]. It has even been suggested that gravity [17–20] and
the Coulomb force [21] might be entropic forces. So far,
depletion forces between plates immersed in rods [22,23] or
spherocylinders [24], forces between colloids [25], semiflex-
ible chains [26], spherocylinders [27], and ellipsoids [28,29]
immersed in colloids, and forces between colloids immersed
in polymer [30] have been established. Forces mediated by
mixtures of two types of particles have also been studied [31].

Depletion interactions are particularly relevant in poly-
mer physics [32–36]. The Ornstein-Zernike (OZ) equation
[37–39], reference interaction site model (RISM) [40–42],
and polymer RISM (PRISM) [43–45] yields correlation func-
tions between flexible polymers, rods, and colloids. Gen-
erally, additional assumptions are needed to close OZ and
RISM-type equations, since they each contain multiple func-
tions whose forms are not specified by the defining equation
[46–49]. Closure equations specify properties of the functions
involved in PRISM, and include the Percus-Yevick approxi-
mation [50] and the hypernetted-chain equation [51]. These
models and closure relations are then typically solved numer-
ically, though some analytical methods also exist [52–56].

Depletion forces are also important in biophysics, where
they play a crucial role in the organization of cells, particularly
in chromosomal organization and compaction [57–62], the

behavior of DNA inside cells [63], crowding-induced chro-
matin compaction [64], and polymer chain looping [65].

While depletion forces always originate from disordered
arrangements of a solvent, the objects experiencing the force
themselves have always been chosen by authors to be orderly
geometric shapes, such as planes, cylinders, squares, and
spheres. In polymer physics, while RISM allows for the in-
corporation of intramolecular structure, the structure function
can only represent specific objects rather than an ensemble of
disordered objects.

Here, we study the depletion force between two disordered
objects. Specifically, we consider rigid and flexible disordered
polymers (a random arrangement of hard spheres) immersed
in a solvent (also hard spheres). These objects can be seen as
a model of disordered block copolymer, where one monomer
is very small and the other is large [66–68]. We first find the
probability that a sphere incident toward a straight polymer
will approach by r before any collision. This is the disorder
averaged polymer-liquid correlation function in the low den-
sity limit. We then use this to evaluate the average depletion
force between two straight polymer chains. Molecular dynam-
ics simulations are used to verify our theoretical results. We
then numerically calculate the depletion force for the more
general case of flexible polymer chains. Finally, we show
how RISM can be extended to treat the straight disordered
polymers.

II. LIQUID PROFILE NEAR A DISORDERED CHAIN

We model a rigid disordered polymer as a line of length
L with N nonoverlapping, but otherwise randomly placed
spheres of radius R1, and the surrounding liquid molecules
as spheres of radius R2. Consider a liquid molecule colliding
with one of the monomers as shown in Fig. 1(a), with a dotted
empty circle on the right, and a filled gray circle, respectively.
We define our coordinate system such that the polymer lies
on the x axes horizontally, and that the monomer and liquid
molecule collide at a point where the vertical coordinate of the
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(a) (b)

FIG. 1. (a) If an incident sphere manages to approach r above
the backbone, then it will not be in the excluded regions. A distance
γ (r) to the right and γ̃θ (r) to the left of each sphere is excluded in this
case. (b) A depiction of flexible polymers and how depletion forces
arise. The proximity of polymers increases the chances that the large
monomers overlap, which is entropically favorable since it allows the
hard sphere fluid to occupy more space.

liquid molecule is y = r. At the point of contact, the difference
in the x coordinates between the monomer and the liquid
molecule is

γ (r, κ ) =
{
κ
√

1 − (r/κ )2 r � κ

0 r > κ
, (1)

where κ = 1 + R2/R1. The “stopping function,” γ (r, κ ), is
useful because it tells us that a liquid molecule r away from
the backbone cannot have a horizontal distance less than
γ (r, κ ) to a monomer. This region is excluded since the two
disks would have to overlap.

Here and throughout γ (r) and r are defined in units of
R1. For the rest of the paper we pick R1 = R2 for cosmetic
and pedagogical reasons, however the R1 �= R2 case is a
straightforward generalization. Also note that much of our
analysis can be further generalized to nonspherical shapes by
replacing γ with another appropriate stopping function.

We also define a second related quantity γ̃θ (r, κ ). We
consider a liquid molecule incident at angle θ that passes by
the monomer tangentially, as shown in Fig. 1(a) with a dotted
empty circle on the left. When r is away from the backbone,
its horizontal distance to the monomer is defined as γ̃θ . Note
that γ̃θ � γ due to the “shadow” of the disk on the line. We
will evaluate γ̃θ in a moment.

To estimate the liquid density profile around the chain,
we calculate the probability that a molecule incident toward
the chain at an angle θ can approach to a distance r with-
out contact. Given a configuration of spheres at coordinates
{x0, ..., xN−1}, and a incidence angle θ , we will count up the
fraction of the interval [0, L] in which the incident sphere
could start to make it to a distance at least r above the
central axis (cf. Fig. 1). We will then integrate over all valid
configurations of spheres.

The measure of configurations of spheres on a line is
equivalent to the configurations of hard lines on a line, known

as a Tonks gas [69,70]. We write it as

�N =
∫

dx≡ L

N

N−1∏
k=1

∫ L−2R1(N−k)

xk−1+2R1

dxk = LN

N!
(1 − φ)N−1, (2)

where φ ≡ 2NR1/L is the (linear) volume fraction of the disks
on the line, i.e., the amount of the line that is covered by disks.

As the incident sphere approaches the chain, it will at some
point be at a distance r to the backbone. The x coordinate of
the incoming sphere when it is r above the backbone will be
labeled xp. We will approach the computation by conditioning
on the interval that xp falls into.

Each sphere in the chain excludes a distance R1γ (r) to its
right and R1γ̃θ (r, κ ) to its left, where

γ̃θ (r, κ ) =
⎧⎨
⎩

0 r � κ

γ (r, κ ) κ > r � r0

(r0 − r) tan θ + γ (r0, κ ) r0 > r � 0
, (3)

where r0 = r0(θ ) ≡ κ sin θ . The case for κ tan θ > r emerges
because of the “shadow” the excluded volume that a sphere
casts on the line.

Let xp ∈ [xk, xk+1] (note that these x’s are have dimension-
ality of length). Then probability that it is able to approach to a
distance r above the line is proportional to the length [xk, xk+1]
that is not excluded by γ or γ̃

Pr(r|xp ∈ [xk, xk+1]) = �[xk − xk+1 − 2R1ξ (r)]

xk+1 − xk
, (4)

where ξ (r) ≡ [γ (r) + γ̃ (r)]/2, and the clamp function �(x)
is �(x) = x for x > 0 and 0 otherwise. The clamp function is
necessary, because the excluded areas of γ and γ̃ may overlap.
Since the particle’s intersection position, xp will be in [x0, x1]
or in [x1, x2], etc., and the particle is initialized uniformly at
random,

Pr(r|�x) =
N−1∑
k=0

Pr(r|xp ∈ [xk, xk+1])Pr(xp ∈ [xk, xk+1])

= 1

L

N∑
k=1

�[xk − xk−1 − 2R1ξ (r)]. (5)

Therefore, to obtain pφ (r, N ) = Pr(r), we just need to inte-
grate over all the arrangements of xk ,

pφ (r, N ) = 1

�N

∫
dx

1

L

N∑
k=1

�[xk − xk−1 − 2R1ξ (r)], (6)

where the integration measure is the same as Eq. (2), and 1/�N

comes from the normalization of the measure, since we are
averaging over all valid configurations of spheres.

If r > 2, then pφ (r, N ) = 1. If r is large enough that ξ (r) �
1, then every � function is nonzero, and the sum in Eq. (6)
telescopes and can be evaluated easily,

1

L

N∑
k=1

�[xk − xk−1 − 2R1ξ (r)] = 1 − φ ξ (r),

which is independent of any of the positions of the spheres on
the line. This term then pulls out of the integral, which cancels

022607-2



DEPLETION FORCE BETWEEN DISORDERED LINEAR … PHYSICAL REVIEW E 101, 022607 (2020)

(a) (b)

FIG. 2. Comparison of analytical result Eq. (8) (red dashes) with
simulations (dots) where spheres incident toward a chain at θ = 0 (a)
and various angles (b) for L = 1. The vertical dashed line represents
the point where the piece-wise function Eq. (8) transitions at γ = 1,
for r = √

3.

with the factor of 1/�N , leaving us with

pφ (r, N, θ ) = 1 − φ ξ (r) for ξ (r) � 1. (7)

If ξ (r) > 1, then integrating Eq. (6) is more involved, since
the clamp functions can be zero (see Appendix A),

pφ (r, N, θ, κ )

=

⎧⎪⎪⎨
⎪⎪⎩

1 − φ ξ (r) ξ (r) � 1

(1 − φ)
(

1 − φ
ξ (r)−1
N (1−φ)

)N
1 < ξ (r) �

(
N
φ

− N
)

+ 1

0 N
(

1
φ

− 1
)

+ 1 < ξ (r)

.

(8)

In the thermodynamic limit N, L → ∞, N/L = φ/(2R),

pφ (r, θ, κ ) =
{

1 − φ ξ (r) ξ (r) � 1

(1 − φ) exp
[

φ(1−ξ (r))
1−φ

]
ξ (r) > 1

. (9)

Note that ξ (r) is actually a function of κ , θ , and r, and
therefore dimensionless.

To confirm this result, we carry out 2D simulations where
we launch 50,000 disks from random positions toward a line
of randomly arranged disks, and recording the r value at
which they hit. We do this at both θ = 0 [Fig. 2(a)] and at
various nonzero θ ’s [Fig. 2(b)] and find excellent agreement
between analytic formulas and simulations.

The approach probability Eq. (9) can be viewed in several
additional ways. One way of looking at Eq. (9) is that its
limiting case is the probability that there is a gap of size
x = ξ (r)/2 in a Tonks gas. Indeed, the probability that there
is a gap of size x at a generic point in a Tonks gas in the
thermodynamic limit is [70–72]

P(x) = (1 − φ) exp[φ(1 − 2x)/(1 − φ)].

(a) (b)

FIG. 3. (a) Comparison of theory (lines) and simulation (dots)
for a rodlike polymer. (b) Comparison of disordered (lines) and
ordered (dashes) polymers. In both (a) and (b), interactions between
fluid molecules are neglected.

Another view, which we use to find the entropic force,
is that pφ (r) ≡ pφ (r, θ = 0) is the expected free volume r
away from the chain; see Fig. 3(a). Indeed, our simulations
confirm that even for moderately flexible polymers, pφ (r)
is a good approximation of the pair correlation between the
polymer and the liquid (Fig. 4). Figures 3(a) and 4(a), 4(b)
were generated by molecular dynamics simulations of flexible
or inflexible polymers immersed in a fluid. See Appendix D
for more details on how the simulations were performed.

Note that the fluid density profile predicted by Eq. (9),
pφ (r), is different than that of an ordered chain, where the

(a) (b)

FIG. 4. Comparison of theory (black dotted lines) that neglects
bending and fluid-fluid interactions, with simulations (dots) that does
not neglect bending (a), and include fluid-fluid interactions (b). We
set (φ = 0.5) and vary persistence length L and solvent density φL =
πσ 2ρ/4, where σ is the solvent diameter.
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monomers are evenly spaced. For an ordered chain, the ap-
proach probability is p(u)

φ (r) = �[1 − φ γ (r)], which is sig-

nificantly different for r <
√

3. Interestingly, we see that the
approach probability for an ordered chain is always less than
or equal to that of a disordered chain with the same average
density [Fig. 3(b)].

Of course, the interpretation of Eq. (9) as free volume or
pair correlation function only holds exactly when the liquid
density φL = Nv/V is small. When the liquid density is large,
packing effects and sphere-sphere exclusion can come into
play, and the density profile of the liquid will deviate from
pφ (r) [Fig. 4(b)].

III. DEPLETION FORCE BETWEEN RIGID
DISORDERED CHAINS

Now that we know the free volume near a disordered poly-
mer, we can calculate the depletion force between two rigid
polymer chains. While we present the derivation for polymers
in 2D, the idea is the same for 3D (see Appendix C). Consider
two parallel disordered lines of length L in two dimensions
with sphere densities φ and ϕ a distance X = (2 + x)R away
from one another. Suppose that the lines are in a hard sphere
fluid, also with radius R, and with number density ρ = Ns/V ,
total system volume (area) V , and temperature T . If the
lines are closer than x = 2, then the excluded volumes of the
spheres on separate lines can overlap, resulting in an entropic
force. The entropic force will depend the arrangement of
spheres on each line, which are random variables, but we can
calculate the average entropic force between the lines (which
becomes exact as the line length L → ∞) using Eq. (9). From
here on, by pφ (x), we mean pφ (x, 0, 0), i.e., θ = 0, κ = 2.

If the lines themselves cannot interact (x > 0), then the
arrangements of spheres on each line is independent. The
expression pφ (x), Eq. (9), tells us the probability that a
point a distance x from a line can be occupied by a sphere.
Letting rR denote the distance of a point from the left line,
r′R = (2 + x − r)R is the distance of that point from the
right line. For points at distances 0 < r < x, a sphere can
only be excluded by spheres on the left line, the probability
that a sphere can occupy the volume is pφ (r). For points at
distances x < r < 2, a sphere can be excluded by spheres on
either line, so the probability that a sphere can occupy the
volume is pφ (r)pϕ (x + 2 − r). Finally, for points at distances
2 < r < 2 + x, a sphere can only be excluded by the right
line, so the probability that a sphere can occupy the volume
is pϕ (x + 2 − r).

IV. DEPLETION FORCE

Each of these expressions involving p’s is the expected
free volume per length at points between the lines. From
this, we can calculate the free energy of the system, and
then the entropic force. The partition function is Z (x) =
VE (x)N/(N!
2N ), where 
 = h/

√
2πmkBT is the kinetic part

(the h in 
 is Planck’s constant), and VE (x) is the free volume
of the system. The expected free volume of the system is

VE (x) = V − vout − Lx + Lλ(x). (10)

The term vout corresponds to the reduced expected volume to
the left of the left chain and right of the right chain, which can
also be expressed in terms of p, but does not depend on x, so
it will not matter to the entropic force calculation. In the third
and fourth term, we subtract the volume between the lines and
add back the expected volume between the lines. From the
considerations in the last section, we know that

λ(x) ≡
∫ x+2

0
pφ (r)pϕ (r′)dr

=
∫ x

0
pφ (r)dr +

∫ 2

x
pφ (r)pϕ (r′)dr +

∫ 2+x

2
pϕ (r′)dr,

where r′ ≡ x + 2 − r. The free energy F = −kBT log Z is

F (x) = F0 − NkBT log

{
1 − vout

V
− L

V
[x − λ(x)]

}
,

where F0 is independent of x. In the thermodynamic limit
V → ∞, we use log(1 + ε) 
 ε to get

F (x) 
 F ′
0 − ρkBT [x − λ(x)]L.

From this, we find that the force per unit length P (x) =
−L−1∂F/∂x, and disorder averaged potential of the force
u(x) are

P (x) = ρkBT

[
1 − pϕ (x) +

∫ 2

x
pφ (r)∂r pϕ (r′)dr

]
, (11)

u(x) = −ρkBT [x − λ(x)]L, (12)

which is our second main result. Note that the expression
is the same if φ and ϕ are exchanged (and integrating by
parts), and so P can be written in a symmetric form if that is
preferred. Furthermore, P is always negative, so the entropic
force is attractive, and P is zero for x > 2.

The correlation function for two chains can be easily found
from Eq. (12),

gll (x) = exp (−ρkBT [x − 2 − λ(x) + λ(2)]L). (13)

To verify our result, Eq. (11), we ran molecular dynamics
simulations [73] for φ = ϕ measuring the force on disordered
lines, and binning this by line separation. The lines were
arranged to be rigid, and constrained to move only in the
horizontal direction in order to measure the attractive force
accurately (Fig. 5).

As molecular dynamics requires forces, we simulate the
hard spheres as “very stiff elastic spheres,” which turns out
to be very good approximation. See Appendix D for more
simulation details.

V. DEPLETION FORCE BETWEEN FLEXIBLE
DISORDERED CHAINS

We evaluate the entropic force between flexible chains
using molecular dynamics simulations [Figs. 5(a) and 5(b)].
Since we construct flexible chains of macromolecules instead
of rigid linear configurations of macromolecules, the horizon-
tal distance between chains is now a stochastic quantity both
in position and time.

To get around this problem, we calculate the force on a
per particle, i.e., the depletion pressure, which is the time
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FIG. 5. Comparing analytical formulas (dashed lines) to molec-
ular dynamics simulations (solid lines). The standard deviation of
the mean, σμ = σ/

√
N , of the simulations are marked with shaded

regions representing 2.5 σμ. Pressures for systems with lines with
density various densities, binned by line separation, x. The red
vertical dashed line marks x = 2, beyond which the entropic force
vanishes.

averaged pressure F/(2R) on a particle as a function of
distance, x, from the closest point of the other chain. This
way, we can also meaningfully compare depletion pressure
of a flexible polymer with the net force on the rigid polymer
per 2R length (cf. Fig. 5).

While the entropic pressure between flexible polymers is
similar to the entropic pressure between rigid linear polymers,
several interesting differences are apparent (Fig. 6). One is
that the force between flexible chains are always less than that
between the rigid chains. A second interesting feature is that

(a) (b)

FIG. 6. (a) Entropic pressure between flexible chains. The dotted
lines are the pressure predictions for a rigid linear polymer, Eq. (11).
While this is clearly not an accurate predictor of the magnitude of
the pressure for the flexible chain, the general shape of the pressure
curves are the same for x < 2. (b) Snapshot taken from a simulation
of two flexible polymers.

while the force between rigid chains is zero beyond x = 2, for
flexible chains it becomes repulsive.

The repulsive part of the force is due to the fact that a
flexible chain has many configurations it can be in, unlike a
rigid chain. A snapshot of the instantaneous configuration of
the two chains can be seen in Fig. 6(b). When two chains are
near each other, they block each other from folding in as many
ways as they could if they were far away from one another.
This leads to an entropic repulsion term, which is what causes
the pressure to be smaller overall than that between rigid
polymers. Since the entropic repulsion depends on the number
of allowable configurations for the entire chain, an entropic
force can be felt by particles that are not close enough to feel
the fluid entropic force that is due to fluid arrangements (i.e.,
particles with x > 2). The force is entirely due to the chain
entropic force.

VI. CONNECTION TO RISM

Our method can be seen as an alternate route to solving the
RISM equation, a technique for finding correlation functions
and depletion forces that is common in the polymer physics
literature. The inhomogeneous RISM equation [74] reads

h(r01) =
∫

dr2dr3ω(r02)C(r23)[ω(r31) + ρh(r31)], (14)

where h is the matrix of total correlation function, ω is the ma-
trix of intramolecular correlation functions, and c is the matrix
of direct correlation function. We use the inhomogeneous
version of RISM since the fixed vertical lines breaks radial
symmetry. The pair correlation function is g(r) = h(r) + 1.

In our system, the correlation functions are random vari-
ables that depend on the arrangement of both chains. Suppose
the chains l , l ′ are parametrized so their sites have positions
{p(m)

x , p(m)
y }, m ∈ {l, l ′}. Since we want to find the correlation

between just the x coordinates of the lines, we will use the
molecular correlation between {p(m)

x , 0} and the sites in the
line as ωm,i, as opposed to the typical ωm,i j correlation be-
tween sites i and j. For two random chain configurations α =
{h(l )

1 , . . . h(l )
N ; h(l ′ )

1 , . . . h(l ′ )
N } where l, l ′ index the two chains,

this is

ω
(α)
m,k (r) = δ

[
ry − h(m)

k + p(m)
y

]× δ
[
rx − p(m)

x

]
.

In our model, where the chains do not directly interact
in our range of interest of h, Cll ′,i j (r) = 0. Inserting these
functions into Eq. (14) and keeping only terms of order ρ,
the total correlation function between p(l )

x , p(l ′ )
x is

h(α)
ll ′ (�px ) = ρ

N∑
j,k=1

∫
R2

drsC
(α)
ls, j

{[
xs − p(l )

x

]
x̂ + [

ys − h(l )
j

]
ŷ
}

× C(α)
sl ′,k

{[
p(l ′ )

x − xs
]
x̂ + [

h(l ′ )
k − ys

]
ŷ
}
.

Hereafter, we abbreviate the vector positions in the C func-
tions as rl, j , rm,k . Note that Cα

ls, Cα
sl ′ are N component vectors,

one entry for each interaction site on the corresponding line.
Often, this is where the analytical part of the RISM pro-

cedure stops, the equations for h and C are evaluated using
Picard iteration or some similar technique, leading to the
radial correlation function. But our object of study is u(r) ≡
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〈U (α)(r)〉α , not the radial correlation function or potential of
mean force for any specific random polymer arrangement.
However, the potential of mean force for long chains should
converge to the disorder averaged potential of mean force in
the thermodynamic limit.

By definition, −βU (α)(r) = log [1 + h(α)(r)]. Recalling
that ρ is small, and averaging over the disorder,

−βu(x) = 〈log[1 + h(α)(x)]〉 = 〈h(α)(x)〉 + O(ρ2)

= ρ

N∑
j,k=1

∫
R2

drs
〈
C(α)

ls, j (rl, j )C
(α)
sl ′,k (rm,k )

〉

= ρ

∫ h+2

0
dxs

∫ L

0
dys

〈∑
j,k

C(α)
ls, j (rl, j )C

(α)
sl ′,k (rm,k )

〉
.

Note that the smallness of h is an essential element in the
simplification of this problem, since for most probability
distributions, 〈log f (x, ω)〉 �= log〈 f (x, ω)〉.

Concentrating on the inner integral, which ignores edge
effects, and noting that the two correlation functions depend
on different and independent chain arrangements,

χ (x) ≡
∫ L

0
dys

〈∑
j

C(α)
ls, j (rl, j )

〉〈∑
k

C(α)
sl ′,k (rm,k )

〉

= Lcls
(
x − p(l )

x

)
cls
(
p(l ′ )

x − x
)
,

cls
(
x − p(l )

x

) ≡
〈∑

j

C(α)
ls, j (rl,k )

〉
.

Going from the first to second line is a consequence of the
fact that if L is large, or when we are using periodic boundary
conditions, the Cs will on average be independent of y, and
the disorder of each chain can be averaged over indepen-
dently, so the disorder averaged sum of Cs is not a function
of y.

We now have to determine the vector or direct correlation
functions, C(α)

ls (x). For hard spheres at low density, the direct
correlation function is known to be �(2R − r) [75], which
makes physical sense given the nature of the hard sphere
interaction. Due to the fact that our disordered chain sites’
can be close to each other and strongly correlated, the cor-
relation function will differ from this. Physically speaking,∑

i Ci(r) should sum to 1 in regions of space into which
the hard sphere fluid cannot penetrate, and 0 where it can.
Therefore, a physically realistic choice when the liquid is
dilute is

C(α)
ls,i (r) =

{
0 ‖r − pi‖ � 2R
−[
∑

j �(2R − ‖r − p j‖)]−1 ‖r − pi‖ < 2R .

This evenly splits the responsibility of excluding liquid parti-
cles among all sites that exclude that region of space.

Since 〈∑ j Cα
ns(x)〉 just counts the probability that a random

configuration excludes a hard sphere from being at a distance
x from the chain, we get

χ (x) = L[1 − pφ (x)][1 − pϕ (x)],

−βu(x) = ρL
∫ x+2

0
dr[1 − pφ (r)][1 − pϕ (r)].

Expanding the terms in the integral, we get that

u(x)

ρkBT L
= − x +

∫ x+2

0
pφ (r)pϕ (x + 2 − r)dr

−
[

2 −
∫ 2

0
pφ (r)dr −

∫ 2

0
pϕ (r)dr

]
.

Note that the term in parenthesis is a constant (for fixed φ, ϕ),
so it does not matter in the averaged potential of mean force
and we will omit it. Some simplification arise due to the fact
that pφ,ϕ (r) = 1 for 2 � r. We have, therefore, rederived our
expression via RISM, which matches our expression for free
energy (up to constants that do not depend on h), u(x) =
−ρkBT [x − λ(x)]L.

VII. CONCLUSION

Our two main theoretical results are the fluid density profile
surrounding a disordered straight polymer, and depletion force
between two such chains [Eqs. (9) and (11)]. Additionally,
we have numerically determined the depletion force between
flexible polymers. While there are many studies on the interac-
tions between polymers with definite structure functions, here
we focused on disordered polymers, with random structure
functions. We evaluated the average correlation between a
disordered chain and a hard sphere fluid (i.e., the approach
probability, pφ), and used this to find the depletion force
between disordered chains in an approach similar to that of
Asakura-Oosawa equations. We also showed how RISM can
be extended, in the low density limit, to derive the average
mean potential for this random ensemble.

It would be interesting to extend the random RISM method
presented here to take into account fluids in the high density
limit. There has been success in spin glass theory in deal-
ing with averages over quenched disorder, e.g., the replica
approach, which is also used in replica density functional
theory [76,77] and replica Ornstein-Zernike theory [78] to
study fluids in random porous materials. A similar approach
might be fruitful here.

APPENDIX A: CALCULATION DETAILS

To evaluate Eq. (6) when ξ (r) > 1 we exchange the order
of the sum and integrals, and look at each term in the sum,

pφ (r, N ) = 1

L�N

N∑
j=1

Tj (r), (A1)

Tj (r) ≡
∫ L−2R(N−1)

x0+2R
dx1· · ·

∫ L−2R(N− j)

x j−1+2R
dx j�(x j − x j−1

− 2Rξ (r))
∫ L−2R(N− j−1)

x j+2R
dx j+1· · ·

∫ L−2R

xN−2+2R
dxN−1.

(A2)

But since our choice of which sphere was 0 is arbitrary, and
we are using periodic boundary conditions (so there is circular
symmetry), we must have that Tj (r) = Tk (r) for all pairs j, k.
In other words, all the Tj are equal, call this common value
T (r). We will evaluate the one that requires the least work,
T (r) = T1(r), since we can integrate all the integrals after the
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� function inductively:

T (r) =
∫ L−2R(N−1)

x0+2R
dx1�

(
x1 − x0 − 2Rξ (r)

) ∫ L−2R(N−2)

x1+2R
dx2· · ·

∫ L−2R

xN−2+2R
dxN−1

=
∫ L−2R(N−1)

x0+2R
dx1

�(x1 − x0 − 2Rξ (r))
(N − 2)!

× (L − 2R(N − 1) − x1)N−2. (A3)

We can deal with the � function by adjusting the bounds of integration. Making the necessary adjustments,

T (r) = 1

(N − 2)!

∫ L−2R(N−1)

x0+2Rξ (r)
dx1[x1 − x0 − 2Rξ (r)][L − 2R(N − 1) − x1]N−2, (A4)

if ξ (r) − 1 < N (1/φ − 1), and is 0 otherwise.
It is safe to exchange the lower bound of integration in Eq. (A2), x0 + 2R, with x0 + 2Rξ (y) since we are treating the case that

ξ (r) > 1. The second case comes from the fact that ξ (r) − 1 � N (1/φ − 1) means that the lower bound of integration would
have to be above the upper bound. The T integral can be performed as follows, call α ≡ 2Rξ (r) and β ≡ L − 2R(N − 1). Then

T (r) =
∫ β

α

dx(x − α)(β − x)N−2 =
∫ β−α

0
du(β − α − u)uN−2 = (β − α)N−1

N (N − 1)
= LN

N (N − 1)

{
1 − φ

[
1 + ξ (r) − 1

N

]}N

, (A5)

where we made the substitution u = β − x. The integral is then just two polynomial integrals which can be performed with ease.

T (r) = LN

N!

{
1 − φ

[
1 + ξ (r) − 1

N

]}N

, (A6)

if ξ (r) − 1 < N (1/φ − 1), and is zero otherwise. This can be put into Eq. (A1) and gives us our approach probability for
ξ (r) > 1, and can be combined with Eq. (7) to yield our complete expression for approach probability.

APPENDIX B: CALCULATION WITHOUT PERIODIC BOUNDARY CONDITIONS

Here, we give some details about the approach probability for a chain, without periodic boundary conditions. In the
thermodynamic limit, the probability is Eq. (9), but for finite N, L, there are corrections of order O(1/N ), and the problem
is more complicated. For simplicity, we assume that the spheres are of equal size (so κ = 2), and that θ = 0.

Let �
(l )
N,R,L be the measure of configurations of N spheres of radius R on a line of length L such that no sphere extends

“beyond” the line—that is, the centers of the spheres must fall in the range [R, L − R]. We suppose that the line is along the
x axis, from 0 to L. Using the same methods used to solve the analogous problem with periodic boundary conditions, we get
�(l ) = LN

N! (1 − φ)N .
A sphere launched toward the chain can collide if it has x coordinate in the range [−R, L + R], so we consider our launched

spheres to be chosen uniformly at random from this range. A sphere with x coordinate less than x1 can only interact with the first
sphere, likewise, a sphere with x coordinate greater than xN can only interact with the last sphere:

p(l )
φ (r, N ) = 1

(L + 2R)�(l )
N

⎡
⎣L(r) +

N∑
j=2

S j (r) + R(r)

⎤
⎦,

S j (r) ≡
∫

Dx�[x j − x j−1 − 2Rγ (r)], L(r) ≡
∫

Dx[x1 + 2R − Rγ (r)],

R(r) ≡
∫

Dx[L − xN − Rγ (r)],
∫

Dx ≡
N∏

k=1

∫ L−2(N−k+1)R

xk−1

dxk|x0=−2R.

In the case where γ < 1, the L(r), R(r) integrals can be evaluated (they have the same value, by symmetry)

L(r) = R(r) = LN+1

(N + 1)!
(1 − φ)N

[
1 + (1 − γ /2)

φ

N
− 1

2
φγ

]
≡ E (r),

and the sums telescopes and so can be evaluated,

p(l )(r) = 1

1 + φ

N

(
1 − φγ (r) − φ

N

)
.
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For the γ > 1 case, all the S j are equal, like before, and L(r) = R(r) by symmetry. By adjusting the integration bounds in the
integral, just as in Eq. (A4), we can evaluate S(r).

S(r) = LN+1

(N + 1)!
(1 − φ)N+1

(
1 − φ

1 − φ
(1 − γ )

1

N

)N
⎧⎨
⎩1 − φ

1 − φ
(γ − 1)

1

N

⎡
⎣1 −

(
φ

1 − φ

γ − 1

1 − φ

1−φ
(γ − 1) 1

N

1

N

)N
⎤
⎦
⎫⎬
⎭.

Putting all this together, we find that the approach probability to a chain without periodic boundary conditions is

p(l )(r) =
{

1
1+ φ

N

[
1 − φγ (r) − φ

N

]
γ (r) � 1

1
(L+2R)�(l ) [2E (r) + (N − 1)S(r)] γ (r) > 1

.

While this equation is much more complex than its periodic boundary condition counterpart, they both have the same limiting
value in the thermodynamic limit.

APPENDIX C: FREE ENERGY IN THREE DIMENSIONS

For a pair of disordered chains in three dimensions, the procedure for finding the free volume is similar to the case of
disordered parallel chains. Suppose the fluid radii, and the radii of the monomers are both R. Let VA be the volume within 2R
of the first chain, VB be the volume within 2R of the second chain, and Vint ≡ VA ∩ VB. The expected free volume is now a
complicated function of the positions of the centers of the chains, r1, r2, and normal vectors describing the orientations of the
chains, n̂1, n̂2:

VE ({r, n}) = V − [VA + VB − Vint({r, n̂})] +
∫

VA

dsPφ (r1, n̂1; s) +
∫

Vint

dsPφ (r1, n̂1; s) · Pϕ (r2, n̂2; s) +
∫

VB

dsPϕ (r2, n̂2; s),

Pφ (r, n̂; s) ≡ pφ{‖s − r − [(s − r) · n̂]n̂‖/R}.
The function pφ is the familiar probability of approach from before. Since the partition function is Z ({r, n̂}) =
VE ({r, n̂})N/(N!
N ), and F = −kBT log Z , we take the log and expand in terms of 1/V ,

F ({r, n̂}) = F0 − ρkBT

(
Vint({r, n̂}) +

∫
VA

dsPφ (r1, n̂1; s) +
∫

Vint

dsPφ (r1, n̂1; s) · Pϕ (r2, n̂2; s) +
∫

VB

dsPϕ (r2, n̂2; s)

)
,

where F0 is a term that does not depend on the configuration of the cylinders.
Unfortunately, after this point, further simplification, becomes impossible. To find the depletion force on the chains, we

evaluate the gradient of the free energy,

F ({r, n̂}) = −ρkBT · ∇r

(
Vint({r, n̂}) +

∫
VA

dsPφ (r1, n̂1; s) +
∫

Vint

dsPφ (r1, n̂1; s) · Pϕ (r2, n̂2; s) +
∫

VB

dsPϕ (r2, n̂2; s)

)
.

The torque on the chains could be evaluated similarly. Note that the volumes over which we are integrating depend on the
orientation of the particles. Note that F and the magnitude of F only actually depend on the relative locations and orientations
of the two chains.

As a final word of caution, this formula is only valid when
the minimum distance between the lines is �2R, which is
necessary to ensure that the arrangement of spheres on the
lines are independent from one another. Furthermore, edge
effects are not included, so this formula assumes that the parts
of the lines that are close to one another are away from the
ends of the lines.

APPENDIX D: SIMULATION DETAILS

We give some further details concerning the molecular
dynamics simulations used to obtain data for Figs. 3–5.
Straight polymers, the objects that we also treat theoretically
in this paper, are generated by first specifying the length of
the “linear backbone” of the polymer (which is not explicitly
represented by objects in the simulation, but helps us keep
track of where the monomers should go), L, and a target linear
volume fraction, φ = 2NR/L. Only certain volume fractions
are possible, the ones that correspond to integral numbers of

disks on the backbone. The total number of spheres, N , is
calculated from φ, R = 0.05.

The positions of the disks on the backbone are chosen by
picking N numbers uniform at random from [0, L − 2RN] and
sorting them so x1 < ... < xN . The positions of the disks are
set to r1 ≡ x1 + R, r2 ≡ r1 + x2 − x1 + 2R,..., rN = rN−1 +
xN − xN−1 + 2R. This method samples uniformly at random
from the set of all configurations of disks on the backbone
with the constraint that no disks overlap.

To create a flexible polymer, as we do to obtain data for
Figs. 3 and 6, we modify the above algorithm slightly. We
pick a small monomer radius, Rc = 0.02, for the disks that
act as chain links in the polymer. The chain disks do not
interact with any other particles except via harmonic bond and
angle forces with their (at most) two adjacent neighbors in
the chain. Again, based on the desired chain length and linear
volume fraction, the total number of (large) disks is calcu-
lated. Positions for the large disks are calculated as before, but
since we are filling the space between large disks with chain
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monomers, we calculate the expected number of chain parti-
cles between the two large disks, nx = (rk − rk−1)/(2Rc) + 1
and place nc = floor(nx ) + Ĉ chain particles between adjacent
large disks. The random variable Ĉ is 1 with probability (nx −
nc) ∈ [0, 1] and 0 otherwise. This compensates on average for
the fact that we always round nx down to get the deterministic
part of nc.

As mentioned before, the hard sphere interaction was
approximated by using a harmonic repulsion force with a very
large stiffness. This force was used for chain-chain, chain-
solvent, and solvent-solvent forces,

F(r) = −κ �(R1 + R2 − r)r̂,

where R1, R2 are the radii of the interacting spheres, κ is
the repulsion constant, and � is the Heaviside step function.
In our simulations, the radii of all the interacting particles
(the large monomers and the hard sphere fluid) are the same,
R = 0.05, each particle had density 1 (and therefore mass
m = 0.00785), and the spring stiffness used was κ = 500.
The period of collision was therefore about tc = 0.025. In
all simulations, periodic boundary conditions were used, and
time evolution is carried out using Velocity-Verlet integra-
tion, modified to run a Nose-Hoover thermostat [79] to keep
the system at constant temperature. To evaluate nonbonded
forces, a linked cells structure is used to create Verlet list for
force evaluation.

The straight polymers are each rigid disordered chains,
created as described above, which we constrain to only move
in the x direction, and remain vertical, all net torque and force
in the y direction are set to zero. The right chain was displaced
a random amount in the y direction, uniformly chosen to be
between 0 and 2R above the start of the left chain. This insures
that measurements are not effected by systematic correlations
between the spheres on the two chains, which can occur
at high φ. At distances greater than 5R, a harmonic force
was activated to prevent the chains from departing far away
thereby allowing us to collect larger amount of data.

For the straight polymer, each φ curve was composed
using data from 18 simulations, 6 where the chain were in

square boxes of solvent of side length 160R, with 408 solvent
particles, and 12 where the chains were in boxes of solvent of
side length 320R, with 1630 solvent particles. In both cases,
the length of the lines were 32R, and the volume density of
the solvent was φ = πR2

V = 0.05.
The pressure for the straight chains is calculated by binning

the total force on each chain, projected in the ±x̂ direction,
toward the other chain. Each bin is averaged, and the force is
divided by the length of the line, L.

As alluded to in the main text, calculating the pressure for
the flexible chains is more complicated since the orientation of
each chain segment is different, and the chains are no longer
parallel. For each monomer (disk) in each chain, we calculate
the nearest point on the flexible backbone of the other chain,
which may lie between two monomers. If this is the case, then
we assume that the chain is straight between monomers. We
then bin the force on the monomer projected in this direction,
n̂, divided by 2R (this is the pressure in the n̂ direction on the
particle), binning by the distance to that nearest point on the
other chain.

Since the flexible polymers are not constrained to be near
one another, have many more internal degrees of freedom,
and because we use smaller simulations than in the linear
polymer case, we average the system much more that in the
straight polymer case to obtain accurate data. Each φ curve
was composed of 150 simulations run for 30 000 seconds
each. Each simulation took place in a box of solvent with side
length 100R with 319 solvent particles. The length of the chain
was 40R, and the density of the solvent was φ = 0.1.

The GFlow molecular dynamics package is freely available
at Ref. [73].

APPENDIX E: NUMERICAL APPROXIMATION OF
ENTROPIC PRESSURE

We have use Ref. [80] to find an approximate closed form
expression for Eq. (11). For φ = ϕ,

P (x)= (c1+c2x4)φ2−tanh[(c3+x2)φ2](c4+c5 tanh[4φ4]),

in units of ρkBT . With c1 = −0.158, c2 = 0.031, c3 =
3.667, c4 = 0.899, and c5 = 0.236 the mean error is 0.5%.
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