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1. Introduction

Starting with the pioneering study of Zeller and Pohl [1],
experimental work over the last 40 years has shown conclusively
that the thermal, acoustic, and dielectric properties of virtually all
amorphous materials are not only qualitatively different than those of
crystals, but also show a truly amazing degree of quantitative
universality [2–4]. The theoretical interpretation of the low temper-
ature data on amorphous materials has for the last four decades been
dominated by the “tunneling two state system” (TTLS) model. This
model gives an attractive qualitative explanation of the characteristic
nonlinear effects observed in ultrasonic and dielectric absorption
(saturation, echoes, hole burning). In addition it predicts a frequency
and temperature dependence of the ultrasonic absorption Q−1(ω,T)
(here defined as l−1λ/2π2 in terms of the phonon mean free path and
wavelength) which appears to be in fairly good agreement with the
experimental data; in the present context we note that Q−1 is
predicted to be independent of ω and T, and the same within a factor
of 2 in two regions of the parameter space, in which, at least in terms
of the model, the physics is very different, namely the high frequency
“resonance regime” (kBT, ℏ/τ≪ω, where τ is a characteristic
relaxation time of the thermally excited TTLSs) and the low frequency
“relaxation regime” (ω≪ℏ/τ≪kBT). This prediction appears to agree
reasonably well with the data (see Figures 2 and 3 in ref. [4]). Finally,
at the cost of introducing a fairly large number of fitting parameters,
the model can reproduce most of the experimental data in the low-
temperature regime reasonably quantitatively.

Nevertheless, there are a number of problems with the TTLS
model. First, while in a few cases (such as KBr-KCN solutions [5])
it is possible to make a plausible identification of the “two level
systems”, in most amorphous materials their nature remains a matter
of conjecture. Secondly, the model as such says nothing about the
behavior at intermediate temperatures (1 K–30 K)which also shows a
very strong degree of qualitative (though not quantitative) univer-
sality. A third difficulty relates to the striking quantitative universality
and small numerical value of the quantity Q−1(ω); whether observed
directly or inferred (in the “resonance regime”) from the coefficient of
the log(T/T0) term in the ultrasound velocity shift, this quantity has
the value (3±2)×10−4 for almost all non-metallic glasses measured
to date [4].While the TTLSmodel contains enough independent fitting
parameters to “explain” this numerical result, the explanation
requires a degree of statistical coincidence between these parameters
which has no obvious basis in the model, and is prima facie nothing
short of amazing. Finally, the model in its original form neglects the
fact, which is emphasized below, that as a result of interaction with
the strain (phonon) field, the TTLSs must acquire a mutual interaction
[6]; while there exist theoretical approaches which take this feature
into account and even use it [7] to attempt to account for the small
universal value of Q−1, it is not obvious that at this end of the process
the TTLS structure is preserved, so that a question of self-consistency
may arise.

In [8,9] the conjecture was made that if we start from a very
generic model in which at short length scales there is a nonzero
contribution to the stress tensor from some non-phononic degrees
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of freedom whose only necessary feature is that their spectrum is
not harmonic-oscillator-like, and take into account their phonon-
mediated mutual interaction, we will recover at long length scales a
picture which reproduces most, if not all, features of the experimental
data below 1 K. The goal of the present paper is quite modest: To
attempt a somewhat more quantitative justification of this conjecture
with respect to one specific feature, namely the (near) frequency
independence and small universal value of Q−1 in the regime kBT,
ℏ/τ≪ω (i.e. what in the TTLS model is known as the high frequency
resonance regime). We do not attempt to discuss here the behavior
of Q−1 in other regimes (except for ℏ/τ≪ωbkBT), non-linear effects
or (except briefly at the end of Section 2.2) the intermediate-
temperature behavior.

We believe that it is one of the strengths of the present work that
our result does not rely on adjustable parameters, or the existence
of other microscopic (unmeasurable) universal ratios to explain the
observable one [10–14] (though cf. [7]). The only two inputs on
which our outcome depends sensitively are the ratios cl/ct and χl/χt

(cf. below for details of the notation) both of which are observed
experimentally to vary little between different amorphous systems
(also cf. Appendix-A). Our third input r0, which is the size of a
“microscopic amorphous block” (defined below) only enters into our
equations logarithmically.

The organization of the paper is as follows: In Section 2 we define
our model and introduce the central object of our study, namely the
dimensionless stress-stress correlation, whose thermally-averaged
imaginary part is themeasured ultrasonic absorptionQ−1. In Section 3
we carry out a real-space renormalization calculation of the average
of Qm

−1(ω) over the frequency ω and the starting state m (for details
of the notation see below) and show that it vanishes logarithmically
with the volume of the system and, for experimentally realistic
volumes, has a surprisingly small value, ~0.015. In Section 4 we argue
on the basis of a calculation up to second order in the phonon induced
interaction, that the functional form of Q−1(ω) at T=0 should be
(lnω)−1, and that when we combine this result with that of Section 3,
the numerical value of Q−1 for experimentally relevant frequencies
should be universal up to logarithmic accuracy and numerically close
to the observed value 3×10−4. In Section 5 we assess the extent to
which our calculations are consistent with experiments in the (linear)
resonance regime. In Section 6 we attempt to assess the significance
of our results.

Throughout this paper we set ℏ=kB=1. The notation a denotes
a “typical” atomic length scale. The suffix α= l, t denotes the phonon
polarization (l=longitudinal, t=transverse).
1 Note that despite the notation χ has the characteristics of a “stiffness” (∼ inverse
susceptibility) rather than a “susceptibility”.
2. Formulation of the problem

Consider a cube of an arbitrary isotropic amorphous material, with
side L which is assumed large compared to “microscopic” lengths a
such as the typical interatomic distance, but is otherwise arbitrary.We
define for such a block the strain tensor eij in the standard way: If
→u →r
� �

denotes the displacement relative to some arbitrary reference
frame of the matter at point →r, then

eij =
1
2

∂ui

∂xj
+

∂uj

∂xi

 !
ð1Þ

(Note that the anti-symmetric part of the tensor ∂ui/∂xj corre-
sponds to a local rotation; since a spatially uniform rotation costs no
energy, any terms in the Hamiltonian associated with this part will be
of order higher than zeroth in the spatial gradients, and hence for the
purposes of the ensuing argument irrelevant in the renormalization-
group sense; we therefore neglect any such terms in the following).
Let us expand the Hamiltonian of the block in a Taylor series in the
strain eij:

Ĥ = Ĥ0 + ∑
ij
eij T̂ ij + O e2

� �
ð2Þ

where the stress tensor T̂ ij is defined by

T̂ ij = ∂Ĥ = ∂eij ð3Þ

Note that in general, in a representation in which Ĥ0 is diagonal,
T̂ ij will have both diagonal and off-diagonal elements.

As usual, we can define the static elasticity modulus χ(0), a fourth
order tensor, by

χ 0ð Þ
ij:kl ≡ V−1 ∂〈T̂ ij〉=∂eij

� �
eq

≡ V−1〈∂2Ĥ=∂eij∂ekl〉eq
ð4Þ

where V=L3 is the volume of the block and the suffix “eq” denotes
that the derivative is taken in the thermal equilibrium state (both
sides of Eq. (3) are implicitly functions of temperature T). Since by
definition the properties of an isotropic amorphous material must be
invariant under overall rotation, symmetry considerations constrain
χij : kl

(0) to have the generic form

χ 0ð Þ
ij:kl = χl−2χtð Þδijδkl + χt δikδjl + δilδjk

� �
ð5Þ

where χl and χt are the standard longitudinal and shear elastic
constants; in the approximation of an elastic continuum, these are
related to the velocities cl and ct of the corresponding longitudinal and
transverse sound waves (of wavelength λ such that a≪λ≪L) by1

χl;t = ρc2l;t ð6Þ

where ρ is the mass density of the material. Such an approximation
however throws away all the effects of interest to us, as we shall now
see.

2.1. The Stress-Stress Correlation Function

Let us separate out from the Hamiltonian, the purely elastic
contribution Ĥel, namely,

Ĥel eij
� �

= const: + ∫1
2
d3r∑

ijkl
χ 0ð Þ

ij:kleij
→r
� �

ekl
→r
� �

+
1
2
∑
i
ρ→̇u

2
i

→r
� � ð7Þ

(where it is understood that the velocity is slowly varying over
distances a, as above). Similarly we define the “elastic” contribution to
the stress tensor T̂ ij by

T̂
elð Þ
ij ≡∑

ijkl
χ 0ð Þ

ij:klekl ð8Þ

(In above, eij (and ui) should strictly be treated as operators, but
we prefer not to complicate the notation unnecessarily). Then quite
generally, we have

Ĥ eij
� �

≡ Ĥel eij
� �

+ Ĥ′ eij
� �

ð9Þ
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where for the moment the “non-phonon” term H′(eij) is completely
general (in particular we do not assume it is necessarily “small”
compared to Hel). In analogy to (2) and (3) we can define a “non-
phonon” contribution to the stress tensor by

Ĥ′= Ĥ′0 + ∑
ij
eij T̂′ij + O e2

� �
ð10Þ

T̂′ij = ∂Ĥ′= ∂eij ð11Þ

From now on we shall always take the quantities Ĥ0 and T̂ ij

to refer to the non-phonon contributions and accordingly omit
the primes. Note carefully that the origin of eij in (10) is not
specified, and in particular it may have contributions from the
phonon field.

We can now define the quantity which will be the central
object of our study in this paper, namely the (non-phonon) stress-
stress correlation function (linear response function) at different
scales L. Consider an externally imposed infinitesimal sinusoidal
strain field,

eij
→r ; t
� �

= eijexp i →q :→r−ωt
� �n o

+ c:c ð12Þ

(eij real). This will give rise to a corresponding response of 〈Tij〉:

Tij
D E

→r; t
� �

= Tij
D E

exp i →q:→r−ωt
� �n o

+ c:c ð13Þ

where 〈Tij〉 is in general complex. Then we can define the complex
response function χij:kl

→q;ω
� �

in the standard way2

χij;kl
→q;ω
� �

=
∂ Tij
D E
∂ekl

→q;ω
� �

ð14Þ

We will usually omit the explicit →q-dependence of χ; it should be
remembered that in general→q andω/cl, t are independent variables, cf.
footnote 5 below.

In practice we shall usually be interested in values of |q| which are
close to ω/cl, t and will therefore usually omit the explicit →q depen-
dence of χ (However cf. footnote 5 below).

Since for the purposes of the argument below, we shall be
interested, at a geometrical scale L, in values of |q| which are of the
order of L−1, it is not immediately obvious that the symmetries of
χij:kl

→q;ω
� �

allow its representation in the simple form analogous to

(5); however, since it is clear that any complications associated with
this consideration are sensitive to our arbitrary choice of block shape,
we will assume that a more rigorous (q-space) calculation will get
rid of them, and thus assume that χijkl(ω) can indeed be represented
in the form (5), thereby defining “longitudinal” and “transverse”
response functions χl, t(ω).

All the above considerations are independent of the scale L of
the block considered, provided only that this is large compared to
atomic scales a. Let us now for a moment specialize to values of L of
the order of the wavelength of the phonons studied directly in glasses.
In view of the small values of Q−1 and related quantities observed
experimentally in this regime, it is very plausible to assume that the
coupling between the phonon and non-phonon degrees of freedom
(part of the second term in (10)) is a “weak” perturbation on the
phonon dynamics as described by Ĥel. With this assumption it is
straightforward to calculate the dimensionless ultrasonic attenuation
2 For brevity we omit some technical complications involved in the precise
definitionof χ; these are very standard, see e.g. [15].
Qα
−1(ω) of a phonon of frequency ω. Omitting the details of the

derivation, we just quote the result

Q−1
α ωð Þ ≡ λl−1

= 2π2 = Imχα ωð Þ
.

πρc2α
� �

ð15Þ

where the 4th rank tensor quantity Imχ(ω) (which we shall need in
full generality below) is given explicitly, in the representation in
which Ĥ0 is diagonal, by the formula

Imχij:kl ωð Þ = ∑
m

pmχ
mð Þ
ij:kl ωð Þ ð16Þ

χ mð Þ
ij:kl ωð Þ = L−3π∑

n
〈m jTij jn〉 n jTkl jmh i × δ En−Em−ωð Þ ð17Þ

where m,n denote exact many-body eigenstates of Ĥ0, with energies
Em, En, and pm is the probability of occurrence of initial state m
(in thermal equilibrium we of course have pm=Z−1exp{−βEm},
where Z is the partition function).

Since the above formulation is very generic, it is clear that the
standard TTLS model must be a special case of it, specified by par-
ticular choices of the matrix elements of Ĥ0 and T̂ . Without inves-
tigating these choices in detail (cf. below), let us note that according
to this model the form of Qα

−1(ω) is

Q−1
α ωð Þ = Q−1

hf tanh ω = 2Tð Þ: ð18Þ

This form seems to agree reasonably well with experiment, with
Qhf

−1~3×10−4. Note however that if (18) is valid for all T, then in
view of the Kramers–Kronig formula relating Qhf

−1 to χ0α, the latter
quantity actually diverges logarithmically in the limit T→0. This
might suggest (though it does not of course prove) that the true T=0
form of Qα

−1 is actually a weakly decreasing function of decreasing ω;
we will provide some evidence for this conjecture in Section 4.

2.2. Phonon-induced stress-stress interaction and real-space
renormalization program

Consider a whole set of blocks, each of size L and described by
the generic Hamiltonian (10); for the moment we work at zero
temperature. Since the quantity eij contains a contribution from the
phonon field, it is clear that exchange of virtual phonons will give rise
to an effective (“RKKY”-type) coupling between the stress tensors of
two different blocks 1 and 2, and since the phonon system by itself is
harmonic, this will have the generic form

H 12ð Þ
int =

1
2
∫ v1

d→r∫ v2d→r ′∑
ijkl

Λijkl
→r−→r ′
� �

Tij
→r
� �

Tkl
→r ′
� �

: ð19Þ

The function Λ ijkl
→r−→r ′
� �

is calculated in the paper of Joffrin and

Levelut [6]; while the paper is formulated explicitly in the language of
the TTLSmodel, it is clear that their form is generic. In the limit of large���→r −→r ′

��� (see below for the meaning of “large”) it has the following

form [16], where →n is the unit vector along →r −→r ′,

Λ ijkl
→r −→r ′
� �

=
1
ρc2t

1
2π j→r −→r ′ j3 Λ̃ ijkl

→n
� �

ð20Þ

Λ̃ ijkl = − δjl−3njnl

� �
δik + 1−c2t = c

2
l

� �h
−δijδkl−δikδjl−δilδjk

+ 3 δijnknl + δiknjnl + δilnknj + δjkninl + δjlnink + δklninj

� �
− 15ninknknl

i
ð21Þ

An approximation which should be adequate for our purposes is
to replace →r − →r ′ in (19) by

→
R1−

→
R2 when

→
Rs denotes the center of



3 It may be objected that the individual χijkl
(m)(ω) do not necessarily have this

symmetry; however, since all physically relevant quantities involve averages over m,
we shall neglect this complication.
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block s, and that ∫vs T̂ ij
→r
� �

d→r is the uniform stress tensor of the

block. Then the total Hamiltonian of the N coupled blocks is, in an
obvious notation,

ĤN = ∑
N

s=1
Ĥ

sð Þ
0 +

1
2
∑
s; s′=1
s≠s′

N

∑
ijkl

Λ ijkl
→
Rs−

→
R ′

s

� �
T sð Þ
ij T

s′ð Þ
kl ð22Þ

Eq.(22) then represents the Hamiltonian H0 of the “super block”
(of side ~N1/3L) composed by theN blocks of side L; we can then define
the stress tensor T̂ ij for this super block and iterate the procedure until
we reach the experimental scale. Note that because of the factor
proportional to L−3 in Λ ijkl and the fact that the correlation functions
of the Tij are defined intensively to have the same factor of L−3, the
procedure is scale invariant (in 3 space dimensions) and we might
hope that it will iterate to a fixed point at large length scales.

The program we would ideally like to implement, therefore, is
to start with given forms of Ĥ0 and T̂ ij at some “short” length scale,
introduce interaction between the corresponding “small” blocks
according to (22), diagonalize the Hamiltonian ĤN , obtain the
corresponding stress tensor ∂ĤN = ∂e Nð Þ

ij and iterate the procedure
up to the experimental length scales. In particular, we would be
interested in the extent to which the “output” forms of HN and Tij at
the experimental scale, are independent (or not!) of the “input” forms
at the starting length scale. In practice, a meaningful implementation
of this problem appears to require massive computational resources,
so in the rest of this paper we will concentrate on a few results which
can be plausibly obtained by analytical techniques.

First, however, we need to discuss the question of an appropriate
choice of L for the “input” blocks. It is well known that the tem-
perature dependence of the thermal conductivity of amorphous
materials changes at a temperature of the order of 1K; in fact, most
such materials show a pronounced “plateau” extending very roughly
between 1 and 10 K. At 10 K the dominant phonons have wavelengths
of the order of 50 Å, and in [9] it is argued that this is just the scale
at which we get a crossover from “Ising” to “Heisenberg” behavior
(formally, at smaller scales the approximations used in obtaining the
simple R−3 form of Λ , Eq.(20) breaks down). Thus, we tentatively take
the “starting” block size, which we will denote r0, to be ~50 Å (which
is still comfortably greater than a). Since the results obtained in
Sections 3 and 4 depend only logarithmically on r0, they will not be
particularly sensitive to this choice.

3. Average value of Q−1

To introduce this section let us consider the following heuristic
argument (cf. [17,9]): Imagine a set of spin-like objects (in three
spatial dimensions) which do not have direct mutual interactions but
do interact with the phonon field via a term proportional to the strain,
with some coefficient γ. As a result of this interaction, we will get an
effective “spin-spin” interaction which is schematically of the form g/
r3 times some angular factor which is of no great interest in this
context, where g≡ηγ2/(ρc2) with η a dimensionless number of order
1 (cf. below).

Assuming that for the resulting effective Hamiltonian it is possible
to define some kind of single-excitation density of states P which is to
a first approximation independent of E, it then follows on dimensional
grounds that P must be of the form const.g−1. Now in this model, the
dimensionless ultrasonic absorption Q−1 is simply π = 2ð Þ γ2 = ρc2

� �
P,

so it follows that Q−1 is “universal” (i.e. independent of γ, ρand c).
Moreover, since all phonon “colors” (modes) contribute to g, while
only one color is absorbed at a time, it follows that Q−1~ η−1~ n−1

when n is the number of phonon “colors.”
What we would like to do in this section is to try to (a) generalize

this argument to a more generic model which does not necessarily
assume “single-particle” excitations (with or without a constant
density of states) (b) take into account quantitatively the existence
not only of different phonon “colors” but of different stress tensor
components, and (c) argue that steps (a) and (b) alone lead to a
surprisingly small value of Q−1 (though not small enough to explain
by themselves the experimental data).

To this end, it is convenient to define for a block of size L quantities
χα

(m)(ω) in terms of χijkl
(m)(ω) (α= l, t) in a way exactly analogous to

that done in (5)3, and further define an average χα of χα
m(ω) over

both frequency ω and initial statem, and an associated dimensionless
quantity Q

−1
α as follows:

χα = N−1
s U−1

0 ∑
m

∫ U0

0
dωχ mð Þ

α ω−Emð Þ ð23Þ

Q−1
α = πρc2α

� �−1
χα ; ð24Þ

where Ns is the number of levels below the cutoff U0. The choice of U0

and the range of the sum over m will be specified below.
We now consider two statistically identical blocks 1 and 2, and

write the complete Hamiltonian Ĥ of the coupled system in the form

Ĥ = Ĥ0 + V̂ ð25Þ

with H0 and V̂ defined by the relevant special case of Eq.(22). Since by
hypothesis the matrix elements of Ĥ

sð Þ
0 and T̂

sð Þ
ij (and thus of Ĥ0 and V̂)

are uncorrelated, we may write

TrĤ
2−TrĤ

2
0 = TrV̂2 ð26Þ

provided, of course, that the three traces are over the same manifold
of the complete many-body Hilbert space. The question of the optimal
choice of this manifold is a delicate one. We know that for energy
scales En,mNU0=hc/L and length scales |R|bL, the assumptions that
give rise to the simple form in Eq.(20) no longer hold, and
m
���V̂ →R
� ����nD E

becomes a rapidly oscillating function of m,n, |R|. We

handle these oscillatory effects by assuming that the interactions have
no effect on EnNU0, and the corresponding |n〉. Thus we take the
relevant manifold to be simply spanned by those (many-body)
eigenstates of Ĥ

sð Þ
0 whose energies E0 are less than U0. By restricting

ourselves within a low energy manifold, we are implicitly assuming
that the interaction matrix elements that mix in high-energy states
into the manifold are negligible. To be quite explicit, we assume that
the matrix element V̂mn is negligible whenever one of the eigenener-
gies m,n of Ĥ0 is less than U0 and the other greater; call this
assumption (which we will carry over to subsequent iterations of the
renormalization process) assumption (A). It seems unlikely that this
approximation will influence the low-energy predictions that follow.
In addition, we will see that regardless of the length scale, U0 drops
out of the calculation (cf. Eq.(35), and we need not worry about its
precise value or L dependence. We hope to relax assumption (A), and
possibly others in a future study.

On general grounds, wemay assume that the density of eigenvalues
En of the interacting andnoninteracting systemshave the genericmany-
body form

p Eð Þ = ∑
∞

n=0
anE

n ð27Þ

with dominating powers much larger than unity (in general, the
dominating exponent of an extensive many-body system must be



4 To be sure, the approximation made in going from (19) to (22) is somewhat less
reliable than when combining two cubes side by side, and different ways of treating
the sum (integral) can alter C; here, as at several other points, it would seem that a
more reliable estimate of the numerical factors would require an explicit k-space
calculation.

5 To avoid confusion, we shall emphasize that in general (e.g. in considering the
average over ω in (36)) the inverse length scale q≡R−1 should be regarded as a
different variable than ω/c; it is only when evaluating the predictions for the
experimentally measured value of Q−1 that we should take q=ω/c.

6 Or slightly larger if we take R∼λ.
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proportional to the number of particles). While the actual many-body
density of states we deduce from the specific heat data,

p Eð Þ = p0 exp const: NEð Þ1=2
n o

ð28Þ

is consistent with this requirement, as we will see, none of our results
will be sensitive to the precise choice of an. Because of the high power
in Eq.(27), and taking into account that the number of states in the
superblock 1+2 is Ns

2, we can evaluate TrH0
2≈Ns

2U0
2 (cf. Appendix-B).

Moreover, if H2 is diagonalized within the manifold, it will have some
maximum eigenvalue U, and by the same reasoning we expect
TrĤ

2≈N2
s U

2. Thus,

TrĤ
2−TrĤ

2
0 = N2

s U2−U2
0

� �
ð29Þ

What about the RHS of Eq. (26)? Here, there is a tricky point. We
can evaluate the trace either in the eigenbasis of Ĥ0 or that of Ĥ. In the

first case, it is clear that Tr V̂2 is proportional to N2
s U

2
0 Q

−1
0

� �2
(where

we now add the suffix 0 to indicate that the quantity in question refers
to the original size-L blocks); omitting the details of the algebra
(cf. Appendix-B), we simply quote the result

TrV2 = CKN2
s U

2
0 Q−1

0

� �2 ð30Þ

where we have defined a geometrical factor C≡V2/[16π2(R1−R2)6],
which for two side-by-side cubes is 9/16π2, and where the factor K is
given by

K = 8= 3ð Þ −3 + 4p + 16q q + p + qp−1ð Þ½ � ð31Þ

which for typical (experimental) values of q≡1−ct
2/cl2≈0.6 (cf.

Appendix-1 for a theoretical justification) and p≡ Imχl/Imχt≈2.6, is
122. We note that the Q−1

0 in (30) actually refers to the transverse
coefficient Q−1

0t , the suffix of which we drop for notational simplicity.

It is also possible to evaluate TrV̂
2
in the eigenbasis of Ĥ, in terms

of the “renormalized” χ's of the individual blocks 1 and 2 defined by
taking, in the definition (17), the energies Em and states |m〉 to be the
eigenvalues and eigenstates of Ĥ rather than Ĥ0 (recall that thanks to
assumption (A), Ĥ can be diagonalized within our submanifold). It is
clear that all the geometrical factors, etc., are identical in the two
cases, so we get

TrV̂
2
= CKN2

s U
2 Q−1

r

� �2 ð32Þ

where Q
−1
r

� �
is the averaged absorption of one of the two blocks. We

now face the difficulty that this is not necessarily the averaged
absorption of the superblock 1+2 (or even related to it by a simple
numerical factor), because the definition of the latter involves the
squared matrix elements of the total stress tensor of the superblock,

T̂
1ð Þ
ij + T̂

2ð Þ
ij

� �
and thus contains terms like n

���� T̂ 1ð Þ
ij

����m
	 


m
���� T̂ 2ð Þ

ij

����n
	 


(where |m〉, |n〉 now denote eigenstates of Ĥ); while such terms were
originally (in the absence of V̂) uncorrelated, it is not obvious that
they remain uncorrelated after V̂ is taken into account. We shall,
however, argue that on average those terms are likely to be small

compared to terms of the form
����〈m
���� T̂ ij

(s)
����n〉
����2, because V̂ involves all

tensor components of T̂
1ð Þ
and T̂

2ð Þ
while the correlation only involves

the same component of T̂
1ð Þ

and T̂
2ð Þ
;call this assumption (B). If this

argument is accepted, we can identify the Qr
−1 in (32) with the

physical inverse absorption of the superblock, which we denote
simply Q−1.
Thus, putting together Eqs.(29),(30) and (32), we have

N2
s U2−U2

0

� �
= CKN2

sU
2
0 Q−1

0

� �2
= CKN2

sU
2 Q−1
� �2 ð33Þ

from which we can express Q
−1

(the inverse absorption of the
superblock 1+2) in terms of that, Q

−1
0 of the original blocks 1 or 2:

Q−1 = 1
�

Q−1
0

� �2
+ CK

� 
1=2
ð34Þ

We can now repeat this procedure, by combining the superblock
1+2 (which we recall is the two cubes 1 and 2 side by side) with a
similar superblock 3+4, and finally combining the square structure
so formed with a similar one to form a cube of side 2 L. The only
difference with the operation carried out explicitly above lies in the
geometrical factor C, which is 4 times larger than that in (30) for step
2 and 16 times larger for step 34, As a result, the Q

−1
of the cube of size

2 L is related to that of the original size-L one by (now denoted QL for
clarity)

Q−1
2Lð Þ =

1

Q−1
Lð Þ

� �2 +
189
16π2 K

2
64

3
75
−1=2

=
1

Q−1
Lð Þ

� �2 + K0

2
64

3
75
−1=2

ð35Þ

with K0 ~150. This completes the first stage of the iteration: We see
that even in a single step of the iteration the effects of the phonon-
induced stress-stress interaction is to strongly renormalize the
average ultrasonic absorption downwards.

We now consider the effect of iterating the step which led to (35),
by combining eight cubes of size 2 L to make one of size 4 L; for
convenience we keep the original definition of the low-energy
manifold (Embω0), though other choices are also possible. Since the
only point at which ω0 actually enters the result is implicitly in the
definition of the “average” in Q

−1
the scale invariant nature of the

problem implies that all considerations are exactly the same as at
the first stage, and we simply recover (35) with the replacement of
L by 2 L and 2 L by 4 L. Continuing the iteration up to a spatial scale R,
we find

Q−1 Rð Þ = Q 2
Lð Þ + K0log2 R=Lð Þ

h i−1=2 ð36Þ

with the constant K0 weakly material dependent and approximately
150. It is remarkable that this formula predicts that at T=0 the
ultrasonic absorption completely vanishes in the thermodynamic
limit. While we know of no particular reason why this behavior must
be unphysical, in practice we would guess that for any finite ultra-
sound wavelength λ, R would be replaced by a quantity of order λ5,
For experimentally realistic values R and the choice of L~50Å (cf. end
of Section 2) the value of Q

−1
is approximately 0.0156, While Q

−1
is

material independent, its value is rather large compared to the
experimental value in the MHz–GHz range. We think this is due to
the contribution to the average, of the rapid increase in Q−1 at higher
frequencies, as manifest in the thermal conductivity data around 10 K.
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To obtain the experimentally observed absorption in the MHz–GHz
range we need further considerations, one of which we now explore
in Section 4.

4. The frequency-dependence of χ(ω): second order perturbation
calculation

In the last section we obtained an expression (36) for the value of
Q−1(ω) (or equivalently χ(ω)) averaged over the specified (low-
energy) initial states m and over a frequency range U, but we could
deduce nothing about the frequency-dependence of χ. In the present
section we shall attempt to deduce some conclusions about the
frequency-dependence on the basis of the specific ansatz (38)
concerning the form of the “input” χ at scale L. The reader should
be warned that the argument of this section is heuristic and some-
what unorthodox.

We consider the consequences (at T=0) for χ(ω) on taking into
account the interaction term in V̂ in (22) up to second order in
perturbation theory for two neighboring blocks 1 and 2. In general
there will be changes in χ(ω) (Eq. (17)) due to (a) modification of the
many-body density of states (DOS) and (b) modification of the matrix
elements of the stress tensors T̂ij (which, obviously, we need to
calculate for the superblock 1+2, not for blocks 1 and 2 individually).
An important assumption which we shall make in this section is that,
at least for the purposes of obtaining qualitatively correct results,
effect (b) may be neglected,7 so that all we need to do is to calculate the
shift due to V̂ in the energies En of the superblock. The first order term
vanishes because of the lack of correlation in the matrix elements T̂ij

(1)

and T̂ij
(2); the second order term can be expressed using Eqs. (17) and

(38) (when Δ is the correction to the energy of a superblock state
En=En1

+En2
≡ω)

Δ ωð Þ = CK∫ ∞
−En1

∫ ∞
−En2

Q−1
0;n1 ω′ð ÞQ−1

0;n2 ω″
� �

× θ U− jω′ + ω″ j� �
−ω′−ω″
� �−1dω′dω″

ð37Þ

where C and K are the quantities defined above in connection with Eq.
(31). To evaluate this formula we need an input form for Q0

−1. For this
we shall make the simplest possible choice which is consistent with
our general assumptions, namely the “random” form.

χ mð Þ
α ωð Þ= πρc2α

� �
= const:θ Em + ωð Þ

≡ Q−1
0 θ Em + ωð Þ

ð38Þ

Note that Eq. (38) does not specify the matrix elements of Tij
completely (it may or may not be one of the standard “random
matrix” forms); we shall however postulate that T and H0 are
uncorrelated. It should be carefully noted that the TTLS form of χij : kl

(m)

is not a special case of Eq.(38); this may be seen by noting that the
form of Q−1(ω,T) given by the latter is approximately8

Q−1 ω; Tð Þ = Q−1
0 1−exp −βωð Þð Þ ð39Þ

which is different from Eq.(18), though not qualitatively so. What we
regard asmost important, however, is that the form ofχij : kl

(m) (ω) is very
different from that which would obtain were all the non-phononic
7 One of us has in fact calculated [18] the modification of χ(ω) to second order in V;
the expression is an extremely messy sum of a large number of terms with different
signs, and (unsurprisingly) its quantitative evaluation requires assumptions on the
matrix elements of Tij which go beyond (38).

8 Note that because of the high power law in Eq.(27), the factor θ(Em+ω) can
essentially be neglected in calculating Q−1(ω,T) (However it is possible that a more
refined analysis will lead to a modification of this factor).
degrees of freedom harmonic oscillators; in the latter case we would
simply get the result Q−1(ω,T)=ind.of T, which is qualitatively
different from the “saturating” forms (39) and (18). Crudely speaking,
the ansatz (38) describes a model intermediate between harmonic-
oscillatormodel and the TTLS one, but in some intuitive sense closer to
the latter. It is our hope that use of a possibly more realistic form of
χ(m) in the calculations of Section 4 will not lead to qualitatively
different results.

The expression (37) is finite for allω (provided the principal part is
correctly taken in the integral). The ratio R(ω) of the DOS of the
interacting superblock to the noninteracting one is given by

R ωð Þ = 1 + ∂Δ=∂ωð Þ−1

= 1−CKQ−2
0 ln U0 =ωð Þ

� �−1 ð40Þ

and in the absence of matrix element renormalization, this should be
the expression for Q−1(ω)/Q0

−1. However it is clear that we cannot
take this result very seriously, since the expression (40) is evidently
negative for small (and even quite large, since the quantity CKQ0

−1

is ≫1) values of ω.
What has gone wrong? Let us consider the following heuristic

argument: Suppose that we could somehow neglect all higher-order
effects of V̂ and thus treat the result (37) as exact. Then a negative
value of R(ω) simply means that the order of levels in the region of ω
has been inverted (i.e. each pair of levels crossed). This still give us a
finite level density, but it is now given relative to its original value by
themodulus of the expression (40)! Of course, whenwe introduce the
higher-order effects of V̂ , we will find that, barring pathology, we do
not get level crossing, but rather the familiar level-repulsion effect;
however, if we pretend for the moment that the overall effect of these
higher-order terms are “small” relative to the second-order ones, the
resulting DOS should not be much affected by the lack of crossing.
Consequently, we claim that at least over the large regime of ω for
which CK2Q0

−2ln(U0/ω)≫1, we have

Q−1 ωð Þ = CKQ−2
0 ln U0 =ωð Þ−1

h i−1 ð41Þ

which implies that for small ω

Q−1 ωð Þ = const: lnU0 =ωð Þ−1 ð42Þ

It is clear thatwe can extend this result to take into account all pairs
i, j in (22), in this case by a direct “single-shot” calculation. The result is
to simply replace the factor CK in (41), as in (36), by K0log2(R/L):

Q−1 ωð Þ = Q−1
0

K0Q
−2
0 log2 R= Lð Þln U0 =ωð Þ−1

ð43Þ

≈ const: ln U0 =ωð Þð Þ if ω≪ω0 ð44Þ

While this form seems at least qualitatively consistent with the
experimental data (see Section 5), it is not even approximately
universal (since the constant is inversely proportional to Q0

−1), and
even given a cutoff atω ~U0 does not satisfy (36). Moreover, it is not at
all clear that taking into account higher-order terms in V̂ will not
change the form of Q−1 qualitatively.

At this point, we adopt the following explicitly heuristic tactic:
We know directly from ultrasound experiments that for ω≪U0 the
frequency dependence of Q−1(ω) is at least approximately consistent
with that given in (43); we further know from the thermal con-
ductivity data that for ωNU0, Q−1 must have a much larger value, in



Table 1
The dependence of the value of Q (ω~1MHz) to its functional form.

s=0.5 s=0.7 s=0.9

Q0=0.1 0.0024 0.0011 0.0006
Q0=1 0.0024 0.0010 0.0004
Q0=10 0.0024 0.0010 0.0003
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fact, of order unity. We thus postulate for the overall frequency-
dependence of Q−1(ω) the ansatz9

Q ωð Þ−1 ωð Þ = 1

Q̃ 0 + A ln U0 =ωð Þ
ð45Þ

where Q̃0 is not necessarily the same as Q0 but is generally of the
same order, and may, like Q0, be system-dependent. We then find
the value of A from the requirement that (45) be consistent with (36),
i.e. that9

U−1
0 ∫ U0

0

dω

Q̃0 + A lnU0 =ω
= Q−1

0

� �2
+ K0log2 R=Lð Þ

� 
−1

≈ K−1
0 log2 R=Lð Þ½ �−1

ð46Þ

We see by a change of variables that the LHS of (46) is independent
of the cutoff U0 and of the form A−1F A−1 Q̃0

� �
where

F ξð Þ≡∫ 1

0

dx
1−ξ−1logx

= −eξEi −ξð Þ ð47Þ

≈ ln ξ2e2γ
� �.

2 ð48Þ

The approximation is valid for ξ≪1, and e2γ=3.17… is the Euler-
Macheroni constant. Thus, provided A−1Q̃0≪1, we have

Q−1 = A−1ln eγ Q̃0 = A
� �

ð49Þ

note that this result is only very weakly system-dependent. If we
now put Q̃0≈1 and require consistency of (49) with (36), we find
that A≈350. Now, setting in (45) ω/(2π) to be of the order 1 MHz
(a typical experimental value), we find

Q−1 1MHzð Þ = 2:7 × 10−4

which is precisely the “typical” experimental value.
Since the ansatz (45) is only a conjecture, it is interesting to

consider the somewhat more general form

Q−1 ωð Þ = Q1= s
0 + A ln U0 =ωð Þ

� �−s

and inquire about the sensitivity of the value of Q−1(1MHz) inferred
from requiring consistency with (36). For a general s this requires
numerical calculation; some representative results are shown in
Table 1. We see that while the value of Q−1 is appreciably sensitive
to the (presumably system independent) parameter s, it is only very
weakly sensitive to the system-dependent quantity Q0; thus, perhaps
unsurprisingly in view of the remarks in Section 3, the “universality”
of the ultrasonic absorption is more general than the specific ansatz
(45).

5. Discussion

In Sections 3 and 4 we have attempted to draw some conclusions
concerning the absorption of ultrasound at T=0, in the MHz–GHz
frequency range. However, no existing ultrasound experiments has
ever probed the regime ω≫T. Thus, in this section we shall compare
our predictions with data on related quantities such as the
temperature-dependence of the ultrasound absorption and velocity,
and the thermal conductivity. For the purposes of this discussion we
will assume (cf Section 3) that the many body states with ωbU are
9 One may perhaps object that here (and in (46)) U0 should be replaced by the
renormalized quantity U. However, as we shall see, the conclusions are independent of
U0.
typical of the states as a whole, i.e. that the (renormalized) quantity
χijkl

(m)(ω) is “on average” independent of m, except for the factor
θ(Em+ω); this greatly simplifies the predictions for the temperature-
dependencies of various quantities.

5.1. Temperature-dependence of the ultrasound absorption and velocity

In the standard TTLS model the temperature-dependence of the
absorption, expressed in terms of Q−1(ω) as above, is given by

Q−1 ω; Tð Þ = Q−1
hf tanh ω = 2Tð Þ ð50Þ

(where Q hf
−1 is predicted to be independent of ω). In the present

model the predicted dependence is straightforwardly calculated by
taking into account the possibility of transitions with stimulated
emission as well as absorption of a phonon, and using the assumption
above concerning χ(m)(ω), we find

Q−1 ω; Tð Þ = Q−1
hf ωð Þ 1−exp −ω = Tð Þð Þ ð51Þ

where now Q hf
−1=const./ln(U/ω). In Fig. 1 we show a comparison of

the two formulae (50) and (51) with experimental data [19] which
probes the regime ωNT. Since most experiments, including that of ref.
[19], vary T rather than ω, we note that when inferring the quantity
Q hf

−1 (i.e. the value of Q−1(ω) calculated in Section 4) from the raw
data, which is actually taken in the regimeω≪Twe should divide the
value of Q hf inferred within the TTLS model by a factor of 2.

We next turn to the temperature dependence of the ultrasound
velocity, Δc(T), expressed as a fraction of the velocity c0 at some
reference temperature T0

10. From the standard Kramers–Kronig
relation for the stress-stress response function, we have11

Δc
c0

=
−Δχ0

ρc20
= −Δ∫ ∞

0
dω
ω

Q−1 ω; Tð Þ: ð52Þ

Were we to insert in (52) the TTLS form Q−1(ω,T), Eq.(50), we
would get the standard result for T≫ω

Δc
c0

����
TTLS

= Q−1
hf ln T = T0ð Þ ð53Þ

Note that the TTLS requires a modification to its density of states
n(E)=n0(1+aω2) with free parameter a to fit the data above ~0.5 K
(cf. [20] and Fig. 1). In the present model, were we to treat Qhf

-1 as a
constant, we would get,

Δc= c = Δ Q�1
hf = 2

� �
−eω =TEi −ω = Tð Þ−e−ω =TEi ω = Tð Þ
h i

ð54Þ

which is precisely the same result as (53) in the ω≪T limit. In the
presence of [ln(U0/ω)]−1, the integration must be done numerically,
and is shown in Fig. 1 and compared with the TTLS result (with
unmodified density of states) as well as experimental data [19,20].
10 Because of the very small value of Δc/c, the precise choice of T0 makes very little
difference in the following.
11 Some care is necessary with the sign; cf. the definition of χ(ω) in Eq.(16).
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Fig. 1. Normalized inverse mean free path (top) and velocity shift (bottom). The
present theory (solid) is compared against TTLS without the ω2 term (dashed) and
experiment [19,20] (dots). While the functional forms predicted by both models are
qualitatively similar at low temperatures, the TTLS model must use an additional fitting
function n(ω)=n0(1+aω2) for the density of states to resolve the discrepancy in
fitting Δc/c data (bottom).
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Fig. 2. Temperature dependence of thermal conductivity. The present theory (solid)
K~T2ln U/T is compared against TTLS prediction K~T2 (dashed) and experiment [22]
(dots) below the “plateau”.
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5.2. Thermal conductivity

It is well known [21] that the thermal conductivity in amorphous
materials below 1 K is due entirely to phonons (any other degrees
of freedom being effectively localized). If so, then it should be well
approximated by the simple kinetic-theory formula

K =
1
3
Cph
v clph ð55Þ

where Cv
ph is the phonon contribution to specific heat, c is a phonon

velocity appropriately averaged over polarization (l, t) and lph is a
polarization and frequency-averaged phonon mean free path, which
is proportional to Q. Since the frequency weighting heavily weights
frequencies ~4kBT, we may set Q(ω,T) approximately equal to its high
frequency value and set lph = const:Qhf 4Tð Þ= 4T . Then for the TTLS
model, l

−1
ph ∝T , so the thermal conductivity K is predicted to be

proportional to T2. In the present model, lph = ln U0 = Tð Þ= T , so we
predict

K = const:T2ln U0 = Tð Þ ð56Þ

-a temperature dependence which is consistent with the usually
quoted dependence of the experimentally measured thermal con-
ductivity, namely K∝T2−β, β∼0.05−0.2, and certainly fits it better
than the TTLS prediction β=0 (see Fig. 2).

6. Conclusion

As already emphasized, our goal in this paper has been the
relatively modest one of investigating how far it is possible to under-
stand the linear ultrasonic properties of glasses in the “resonant”
regime, and in particular the small and near-universal value of the
zero-temperature dimensionless absorption Q−1(ω), in terms of a
model much more generic than the established TTLS model.

We believe that we have been at least partially successful in doing
so, in that we have shown that given assumptions (A) and (B) of
Section 3, a suitable frequency average of Q(ω) is quasi-universal,
in the sense that the only system-specific parameters on which it
depends are the ratio cl/ct and χl/χt which fluctuate only by a factor
of about 1.2 between different materials (see Appendix, and ref [3],
Fig. 1 and 3), and the high-energy cut-off U0~hc/L, which enters only
logarithmically. (b) that given the ansatz (lnω)−1 for the frequency
dependence of Q−1(ω), the absolute value of the absorption is close
to the experimental one. (c) that other properties related to Q−1(ω)
(the temperature dependence of Q−1 and of the velocity shift, and
the thermal conductivity) are consistent with our generic model.

In this paper we have not attempted to discuss two other
characteristic properties of glasses which are generally regarded as
strong evidence for the TTLS model, namely the nonlinear behavior
(saturation, echoes, hole-burning…) and the linear ultrasonic behav-
ior in the so-called relaxation regime. We believe that it is not
impossible that a complete renormalization calculation would
produce, at the “output” stage, a form of χ(m)(ω) (suitably averaged
overm) identical to that following from the TTLS model, in which case
it would of course account for all the above phenomena equally well.

Alternatively, if we assume that the output form of χ(m)(ω) is
identical to the postulated input form (45) apart from the constant
and a factor (lnω)−1, it is intuitively obvious that at least some of the
nonlinear behavior (e.g. acoustic saturation) will be qualitatively
similar to that in the TTLS model although the details will be different.
The linear ultrasonic absorption in the low-frequency “relaxation”
regime is however particularly puzzling, since the successful
prediction of the experimentally observed frequency- and tempera-
ture-(in) dependence (and even the magnitude) by the TTLS model
seems, at least at first sight, to be a consequence of parameter-
dependencies very specific to that model. At the time of writing it
is not clear to us whether it will be possible to reproduce these
dependencies in our more generic model. Of course, an alternative
point of view would be that the TTLS spectrum is in fact always
realized at the “input” stage (i.e. Eq. (38) needs to be modified) and
that its qualitative features are preserved through the renormalization
process; the main role of this process, would then be to give rise
to the universal small value of Q−1, and the final picture which
would then emerge would be somewhat similar to that of Burin and
Kagan [7].

Finally, we note that the only property of amorphous materials
which we have invoked in this paper is the conjectured existence
in them of an appreciable number of non-harmonic degrees of
freedom. Thus, our arguments should apply equally well to “disor-
dered crystals” (cf. [14]), with the slight modification that the angular

http://arXiv:0910.1283v1
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dependence of Λ ijkl may be different in detail. However, we also note
that nothing in our argument implies that all amorphous materials
(or a fortiori disordered crystals) must have the “canonical” value of
Q−1; if the input (scale-r0) value of Q−1 is appreciably smaller
than this value, then so will be the output one! However, observation
of anamorphous solid with the output Q−1 appreciably greater than
the canonical value would tell against our hypothesis.
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Appendix A. Transverse to Longitudinal Elastic Ratios

The present model depends on the numerical values of two near-
universal “inputs”, ct/cl and Imχt/Imχl. While these values are
experimentally justified [3], we feel it may be instructive to add
some theoretical justification at least to the trivial first ratio.

Consider a many-body Hamiltonian that consists of an arbitrary
inter-block interactionϕ(r) and kinetic energy, which for small strains
reduces to (7)12

Ĥel eij
� �

= const + L−3∫ ϕ̂ rð Þdr3 ðA:1Þ

Further, suppose that the relative displacement uij of two blocks i
and j are proportional to the distance rij between them. For example
for purely longitudinal and transverse strains, we would have ux=
exyry and ux=exxrx respectively. Then, by definition,

χ0t;l =
∂2

∂e2ij
L−3∫ ϕ rð Þh id3rj

eij =0
ðA:2Þ

where i≠ j and i= j give χ0t and χ0l respectively. Letting ∂ϕ/∂r=0
due to stability, and taking the derivative ∂/∂eij using the distance
proportionality assumption, we obtainχ0t∝∫ rx

2ry
2dΩ andχ0l∝∫rx

4dΩ,
where Ω is the solid angle, and the constants of proportionality are
identical. Since the speed of sound is related to the real part of the zero
frequency response function according to (6), we get

ct
cl

=
ffiffiffiffiffiffiffi
χ0t

χ0l

r
=

1ffiffiffi
3

p ðA:3Þ

which is 6% larger than the experimental (average) value.

Appendix B. Evaluation of the Traces

In this appendix we outline the algebra involved in obtaining Eqs.
(29) and (32) (the derivation of Eq.(30) is similar to the latter).

Let us expand the non-interacting and interacting two-block
density of states p(E) in powers of E, such that the coefficient of the
nth power is c0n and cn respectively (cf. Eq.(25)). For each set of
12 According to the virial theorem the expectation value of the potential energy is
equal to that of the kinetic energy for a harmonic Hamiltonian for both longitudinal
and transverse terms; thus considering the zero point kinetic energies does not change
the ratio χ0t/χ0t and will be omitted from our notation.
coefficients the normalization conditions require that the two body
system has Ns

2 levels whether they interact or not

∑
p

n=0
c0n

Un0+1
0

n0 + 1
= ∑

p

n=0
cn

Un+1

n + 1
= N2

s ðB:1Þ

The trace in question is

TrH2 = ∫ U

0
ω2f ωð Þdω = ∑

n=0
cn

Un+3

n + 3
;

if the terms for which n≫1 dominate the density of states (a premise
required for the extensivity of many-body energy levels), we can use
Eq. (B.1) to write

TrH2 = U2 ∑
n=0

cn
Un+1

n + 3
≈U2N2

s : ðB:2Þ

The evaluation of TrH0
2 is similar. Now let us turn to the trace of

the square of

V̂ab =
2

3vabρc
2
t
Λ̃ ijklT̂

að Þ
ij T̂

bð Þ
kl ðB:3Þ

where vab=4πrab3 /3 is the volume of a sphere defined by the inter-
block separation rab.

M = TrV2 = ∑
n1n2
m1m2

∑
ijkl

i′j′k′l′

Λ ijklΛ i′j′k′l′

× n1 j T̂ a
ij jm1

D E
n1 j T̂ a

i′ j′ jm1

D E
n2 j T̂ b

kl jm2

D E
n2 j T̂ b

k′ l′ jm2

D E ðB:4Þ

where |ns〉 is the nth eigenstate of block s. The sum over states ns and
ms is over the manifold described in the text, such that 0bEms

,Ens
bU.

Thus, for all ns we may write the identity as

∫U−Ems

−Ems

δ Ens−Ems
−ω′

� �
dω;

insert it in the sum twice with s=1,2 and evaluate the sums over
n1,n2

M =
4vavb

9 πvabρc
2
t

� �2 ∑
m1m2

∫ U−Em1

−Em1
∫ U−Em2

−Em2
dω′dω″

× ∑
ijkl

i′j′k′l′

Λ̃ ijkl Λ̃ i′ j′k′ l′χ
að Þ
ij:i′ j′

ω′ð Þχ bð Þ
kl:k′ l′

ω″ð Þ
ðB:5Þ

=
4vavb

9 πvabρc
2
t

� �2 U2N2
s ∑

ijkl
i′j′k′l′

Λ ijklΛ i′j′k′l′χ
a
ij:i′j′χ

b
kl:k′l′ ðB:6Þ

Now let us decompose each factor of χij:kl into the only two inde-

pendent components, as in Eq.(5). Since Λ̃ ijkl only depends on q, and
any χij : kl can be written in terms of χt and p, it is obvious that the

right hand side will be proportional to Q
−1
t

� �2
.

M =
vavb
vab

K Q−1
t

� �2 ðB:7Þ



3537D.C. Vural, A.J. Leggett / Journal of Non-Crystalline Solids 357 (2011) 3528–3537
where

K ≡ 4
9χ2

t
∑
ijkl
i′j′k′l′

Λ ijklΛi′j′k′l′χij:i′ j′χkl:k′l′ ðB:8Þ

While the evaluation of the sum over all tensor components
may seem complicated at first sight, the symmetries of χiji′j′χklk′l′

simplify the problem considerably. Any term including a χijkl with odd
number of equal indices (such as χ1323 or χ2223) vanish. Further-
more, any termwith indices {ijkli′j′k′l′} is equal to that with {i′j′klijk′l′},
{ijk′l′ijkl} and {i′j′k′l′ijkl}. The sum is evaluated to yield K=(8/3)(−3+
16(−1+q)q+4p(1+2q)2)≈122.
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