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Here we study the operation efficiency of a finite-size finite-response-time Maxwell’s demon, who can make
future predictions. We compare the heat and mass transport rate of predictive demons to nonpredictive ones and
find that predictive demons can achieve higher mass and heat transport rates over longer periods of time. We
determine how the demon performance varies with response time, future sight, and the density of the gasses on
which they operate.
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I. INTRODUCTION

A Maxwell’s demon is a device that uses information about
the microstates of system to extract work from or reduce
entropy in a system [1]. Maxwell’s demons have served as
a pivotal thought experiment to establish the close relation-
ship between thermodynamics and information processing.
The original thought experiment, which involved a demon
sorting gas molecules according to their energy, has recently
been expanded to include feedback control [2,3] and universal
computation [4–6]. Some authors describe the computational
process within the demon as manipulations of a tape bits
[7–10] or qubits [11], while others consider demons that
manipulate microstates by fully mechanical means [12–14].
Models of nonideal demons [7,8] account for the thermal
equilibriation of the demon with the system, the demon’s finite
mass [14], or finite size and response time [15]. Recently
experimental constructions have also become feasible [16–27]
and have been suggested as a practical means to produce
energy [24,28–32] or sort atoms [33].

The close connection between information processing and
entropy generation motivates us to ask if there might also be
thermodynamic implications of predicting the future. Imagine
two Maxwell’s demons, each with finite response time, where
one makes decisions based only on immediate molecular ar-
rivals, whereas the other one predicts future arrivals and plans
ahead. How much, if any, will a difference will this make in
the rate at which they pump heat and mass?

Knowing the future would fundamentally change the ac-
tions of a demon. A predictive demon could make trade-offs
such as rejecting a desirable particle if it knew that doing so
would also keep out a large number of undesirable particles
that would arrive afterwards, before the demon would be able
to close the gate to keep them out. Previously, we studied how
the finite size and response time constrains a demon’s heat
and mass transport rate [15]. However, our model demon only
used local information, and did not take into consideration
future arrivals.

In the present study, we establish heat and mass transport
limitations of a predictive Maxwell’s demon with finite size

and response time and compare these limitations to that of a
nonpredictive demon. This way, we aim to begin exploring the
thermodynamic consequences of prediction making.

II. NONPREDICTIVE DEMONS

Here we start with a brief overview of the demon model
with finite size A and response time τ , which will be identical
for both the predictive and non-predictive cases.

Our system consists of left and right subsystems of ideal
gas with volumes Vl , Vr , energies El , Er , numbers Nl , Nr of
particles of mass m. Throughout, we will subscript variables
that refer to the left and right subsystem by l and r, and
variables that depend on a generic side with s, e.g., Es for the
energy of the s-side, with s ∈ {l, r}. We theoretically consider
d = 1, 2, or 3-dimensional systems, but only simulate d = 2.
The subsystems are separated by a gate of area A (A ≡ 1 for
a one-dimensional system and to be the length of the gate
for a two-dimensional system) controlled by the demon. We
assume that the subsystems are large enough that each sub-
system acts as a self-averaging canonical distribution. We take
Ns, Es → ∞ with fixed ρs ≡ Ns/Vs and Ēs ≡ Es/Vs, where
the temperature, 1/βs, and energy per particle, Ēs = Es/Ns,
are related by βsEs = Nsd/2 ≡ βsNsĒs, as required by the
equipartition theorem.

We analyze two types of demons. (1) An energy demon
opens the gate whenever the net flow of energy from left to
right would be positive. (2) A number demon opens the gate
whenever the net particle transfer from left to right is positive.

The probability that n particles are incident on the gate
during a length of time τ follows a Poisson distribution with a
Poisson parameter,

κs = ρsτA√
2πβsm

= ρsτA

√
Ēs

d π m
≡ νsτ. (1)

The rates νl , νr are crucial in characterizing the demons’
performance. For example, the average energy and number
currents for nonpredictive demons with small response time
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τ are [15]

Ė (d )
τ = d + 1

2βl
νl e

−νrτ + O[τ e−(νl +νr )τ ]

Ṅ (d )
τ = νl e

−νrτ + O[τ e−(νl +νr )τ ].

As mentioned, a nonpredictive demon simply “seizes the
day” by making decisions only according to the mass or
energy flux during a present time interval τ . We will see that
a predictive demon, on the other hand, will be able to forgo
short-term success for higher average transmission rates in
the long run. It is known that having to sacrifice short-term
gains can be beneficial in the long run in similar scenarios, for
example, see Refs. [2,34].

III. PREDICTIVE DEMONS

We assume that a predictive demon can know when par-
ticles will be incident on the gate area from the left or right
subsystem during the next (possibly infinite) amount of time,
tc. We call tc the clairvoyance time of the demon and con-
sider demons that run for a finite amount of time, T . We
divide the total number of particles transported by the de-
mon by T to obtain the time averaged current. In summary,
the three timescales in the system are the clairvoyance time
of the demon, tc, its reaction time, τ , and the total time of
operation, T .

Given a sequence of times at which individual particles hit
the gate area from the left or right, the predictive demon must
determine the optimal sequence of gate openings and closings,
subject to the response time constraint, i.e., the gate cannot
change its open or close state faster than τ .

We assume that particle arrivals to the gate area are in-
dependent events, and we assign a “score” to each arrival
according to a suitable characteristic of the particle, which
the demon aims to maximize. For a number demon, the score
will be 1 and −1 for arrivals from the left and right sides of
the gate. For an energy demon, the score associated with a
particle arrival is the energy of the particle, again with a sign
that depends on its direction.

To quantify how well the predictive demon operates, we
will compare it to the nonpredictive demon. To do so, we
first allow the nonpredictive demon to decide what offset
0 � t0 < τ its time division should have. When the total
time of the simulation is long, the offset does not effect
the average score. The demon will then bin events into the
bins [kτ − t0, (k + 1)τ − t0], k � 0, and decide for each bin
whether it is better for the gate to be open or closed. Figure 1
illustrates how the two types of demons will treat the same
set of events and why the predictive demon is able to achieve
better performance than the nonpredictive demon.

IV. SIMULATING A PREDICTIVE DEMON

We created a program that determines the schedule of
gate openings and closings for predictive and nonpredictive
demons for a given set of random left and right particle
arrivals with Boltzmann-distributed energies [35]. To imple-
ment the scheduling, the predictive demon divides time into
very small microbins and then converts scheduling into a
discrete problem by placing particle arrival events into these

FIG. 1. A schematic example illustrating the difference between
a nonpredictive demon (top row) and a predictive (bottom row)
demons, both with response time τ . The nonpredictive demon de-
cides on whether to open or close the gate based on tallying the
desirable (green plus) and undesirable (red minus) particles within
the present τ interval. In contrast, the predictive demon optimizes its
open or close intervals globally, while still satisfying the constraint
that the state of its gate cannot change faster than τ . In this example,
the nonpredictive demon generates a net current of one particle (three
particles in the desired direction and two partiles in the undesired
direction while the gate is open), whereas the predictive demon
transports 4 particles within the same time.

microbins. We call the number of microbins per τ the res-
olution, g, of the simulation. We take the large-g limit to
approximate the continuous time problem. More details on the
simulation can be found in Appendix B. We have found that
demon performance does not change much beyond g = 50
(see Appendix C).

Using our program, we numerically study how the ef-
ficiency of predictive demons change and compares to the
nonpredictive demons as we change subsystem temperatures,
number densities, and demon response time. We do so by
generating a realization of particle arrival times and scores and
pass this to the scheduler program. The energy of a particle
given that it hits the gate area follows a Gamma distribution
(cf. Appendix A and [15]),

P(E ) = β (d+1)/2
s E (d−1)/2e−βsE

�[(d + 1)/2]
, (2)

which we use to assign energy scores.
The performance of the number and energy demons is

quantified by the average mass and heat transfer (average
score per unit time) they can achieve.

V. THERMODYNAMIC CONSEQUENCES OF
PREDICTION MAKING

We start by studying the basic properties of a who can see
infinitely far into the future (tc → ∞) and determine how it
compares to a nonpredictive demon.

First, we show how the demons’ performance varies with
the system parameters (Fig. 2). The number density of the
left subsystem is fixed at ρl = 50. We find that for both
number and energy demons, the predictive demon has the
maximal advantage over the nonpredictive demon when the
right subsystem is denser, but not too much denser, than the
left subsystem.

Second, we study how the demons’ performance changes
as the total time they must schedule over, T , increases (again,
tc → ∞). Intuitively, as T increases, both demons should do
worse. To see why, suppose that the average score on an
interval of time of length t is St . Then the average performance
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(a) (b)

FIG. 2. Performance versus density. The performance of number
demons (a) and energy demons (b) for predictive and nonpredictive
(orange) cases are plotted as a function of right subsystem density,
while the left subsystem density is kept constant (vertical dashed
line), averaged over 500 particle arrival sequences.

on two separate intervals of length t is just 2 St . However, if
these time intervals are not separated, but contiguous, then
the “boundary conditions” of the best schedules on each time
interval will in general not align.

The demon performance as a function of total time T
is shown for several different right subsystem parameters in
Fig. 3. The heat and mass currents for the predictive demons
quickly asymptote (blue curves), whereas that for the nonpre-
dictive demons asymptote far later (red curves). A predictive
demon’s advantage over the nonpredictive demon continues to
grow long after the change in its performance has stabilized.
We also see that while the performance of both demons drop
when the density of the right subsystem increases, the differ-
ence in performance increases for both the number and energy
demons.

If we had restricted the nonpredictive demon so that its
binning offset, t0, was zero, then changing the length of time
it must operate over would not change the performance—its

(a) (b)

FIG. 3. Performance vs total time. Performance was average over
5000 random sets of events. (a) Predictive (blue) and nonpredictive
(red) demons and their difference (green) is plotted for number
(a) and energy demons (b).

(a) (b)

FIG. 4. Number and energy currents generated by predictive
demons, as a function of response time. For all runs, the total time
was T = 10, and the time sight was tc = 1. (a) The performance of
a number demon as response time changes. (b) The performance of
the energy demon as response time changes.

performance would always be at a minimum. Clearly, since
the performance of the nonpredictive demon decreases by a
large amount as tsched (see Fig. 3), it is a big advantage for the
nonpredictive demon to be able to determine its time offset,
at least for short times. Indeed, in the limiting case where
tsched � τ , both types of demons operate in exactly the same
way.

Third, we move on to demons who have finite future sight
tc, operating for a long time T � tc. Simulating this demon
is more complicated than simply scheduling gate openings
and closings over a fixed amount of time that contains all the
events. Since the demon only has knowledge of the events for
a small part of the total time, it must revise its belief of what
the best course of action is whenever it becomes aware of new
information. The demon also must also contend with the fact
that the gate will most likely have to remain open or closed for
some period of time beyond tc. If the subsystems parameters
are such that it is very likely that the net flow of particles will
be negative during this time, then the demon should consider
choosing a schedule that results in a lower score during the
interval [0, tc] but does not require the gate to be open as long
during the period after tc.

Since part of the schedule extends into a time the demon
cannot see, the score is now a random variable that can be
decomposed into a sum of the (deterministic) score Xd , of the
schedule in the interval [0, tc], and of the (probabilistic) score
X̂r of the part of the schedule beyond tc.

When calculating the projected score for the schedule, we
take the expectation value, Xd + 〈X̂r〉, to determine which
schedule is best. We have observed that not taking the random
part of the scheduling score into account results in very low or
even negative demon performance as τ increases.

The performance of demons with fixed time sight (tc =
1.0) and varying response times is shown in Fig. 4 and is
similar to that in Ref. [15], where for τ ≈ 0, the rates decrease
exponentially, but as τ increases, additional terms of higher
orders slow down the decrease. We also check what happens
when the time sight is kept fixed and the response time varies
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(a) (b)

FIG. 5. Number demon performance, varying response time and
time sight. The systems had parameters ρl = 50, ρr = 100. (a) Num-
ber rate vs response time for several fixed time sights. An averaging
of 500 runs with t = 1 second was used. (b) Number rate vs time
sight for several fixed response times. The best fitting functions of
the form Ṅτ (tc ) = aτ (1 − e−λτ tc ) for each τ are shown in gray.

[Fig. 5(a)] and when the response time is fixed and the time
sight varies [Fig. 5(b)]. The qualitative behavior of predictive
energy demons is similar (see Fig. 4).

In Fig. 5(a), we see that having larger time sight is strictly
better. Figure 5(b) shows demons with fixed response time as
tc is varied. Of course, faster response time is strictly better.
While most of the curves that we found in Ref. [15] and here,
including Ṅτ (∞), are “smoothly decreasing,” they cannot be
fit to simple exponential or rational functions. Interestingly,
while the infinite time sight rates, Ṅτ (∞), are nontrivial func-
tions, the correction for finite time sight appears to be quite
simple,

Ṅτ (tc) = (1 − e−λτ tc )Ṅτ (∞). (3)

Despite our best efforts, we were not able to derive this ele-
mentary relationship.

VI. ANALYTICAL CONSIDERATIONS

Assuming that a demon has tc = ∞ and a total scheduling
time T , for any response time τ , microbin time dt = τ/g, and
a random variable v̂ that encodes the distribution and score of
events, we can define the discrete Scheduling process, Ŝt =
Ŝt [τ, dt, v̂, T ] ≡ {Ŝt , Ŝ∗

t }, which is the best score possible
during the remaining time in the scheduling interval given that
the door was open for at least the previous τ or closed for at
least the previous τ (Ŝt and Ŝ∗

t , respectively). The scheduling
process is defined by the set of equations

Ŝt = max(Ŝt+dt + v̂t (dt ), Ŝ∗
t+τ ), (4)

Ŝ∗
t = max(Ŝt+τ + v̂t (τ ), Ŝ∗

t+dt ), (5)

where v̂t (
t ) is the event score between t and t + 
t .
If we could solve for the average growth rate, 〈ŜT /T 〉, of

these equations as T → ∞, then we would obtain the perfor-
mance of a predictive demon with infinite tc; and since we

know from (3) that the finite sight demon is related to the infi-
nite sight demon in a simple way, we would essentially have a
full solution to the behavior of cyclically operating predictive
demons (though we would have to find a way to obtain λτ ). We
could also take dt → 0 to obtain the continuous time limit.

Equations like (4) and (5) are called Bellman equations,
used extensively in mathematical optimization and dynamic
programming [36,37]. These equations break the problem
down into recursively computable pieces and are solved back-
wards in time. They have also been used in statistical physics
to, e.g., find globally optimal control protocols for Brownian
particles in a flashing ratchet [38], and where it was also found
that using Bellman’s principle beats a local gready algorithm,
or to study the cost of dynamics in nonequilibrium density
currents [39]. Here we set Ŝt = 0 and Ŝ∗

t = 0 for t > T and
solve (4) and (5) backwards in time. The two component
processes represent the best possible score from time t onward
given that the door was previously open (Ŝt ) or given that
it was previously closed (Ŝ∗

t ). At each time point, we have
already computed the values of Ŝt ′ , Ŝ∗

t ′ for t ′ > t , and know
the random variable v̂. We simply have to decide whether it
would be better to have an open door or closed door, and the
maximum score is just the larger of these potential scores.

Equation (4) says that the if the door was open, then the
demon can keep it open for the next dt and the reevaluate
if the door should be opened or closed (resulting in a score
of Ŝt+dt + v̂t (dt )), or the demon can shut the door, which
must remain shut until t + τ , and then decide what the best
course of action is at that point in time, given that the door
had been shut (resulting in a score of Ŝ∗

t+τ ). The best score
at this point in time is simply the max of these two scores.
The reasoning behind (5) is similar. Our simulation simply
automatically solves these equations for given realizations of
the events. To ensure that our algorithm operates correctly,
we have run brute-force searches over all possible sequences
of door openings or closings for some feasible times and
microbin sizes. If the number of total microbins becomes
too large, then the brute-force method quickly becomes in-
tractable. For the realizations that we checked, we see that the
Bellman algorithm does correctly compute the best possible
schedule and score for the demon.

While there is literature on the asymptotic behavior of
stochastic algorithms [40], on differential equations con-
taining max or min terms [41], and on stochastic Bellman
equations [42,43], it seems like an analytical solution to (4)
and (5) would be very hard to come by, especially since the
problem involves coupled stochastic processes, and we have
not yet been able to solve for the average behavior of Ŝt or Ŝ∗

t .

VII. DISCUSSION

We have developed an optimal protocol for predictive
Maxwell’s demons, determined their heat and mass transfer
rates, and compared these to the performance of their non-
predictive counterparts. Knowing the future greatly enhances
heat and mass transport performance.

In closing, we should emphasize that (1) the limitations
on heat or mass currents reported here stem from the finite
response time of the demons (which may be due to the in-
ertia of the gate or time required to measure and process
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information). A demon who could measure and haul particles
at infinite velocity could of course achieve infinitely large
entropy reduction rates, whether predictive or nonpredictive.
The fact that fundamental physics prohibits infinitely fast
measurement and gate motion suggests to us that information
driven heat and mass transfer (and thus entropy reduction rate)
is bounded by fundamental physics. (2) Being able to predict
the future does not, of course, provide additional free negative
entropy. The total entropy that can be pumped out of the
system is set by the number of erasures the demon must carry
out during measurement and information processing, as set by
Landauer’s principle . Rather, prediction making improves the
rate of entropy reduction and heat or mass transport.

APPENDIX A: ENERGY DISTRIBUTION OF PARTICLES

Here we derive Eq. (2), which states that distribution of
a particle’s energy, conditioned on the event that it hits the
gate, is

P(E ) = β (d+1)/2E (d−1)/2e−β E

�[(d + 1)/2]
.

We start with the Maxwell-Boltzmann distribution in d di-
mensions,

pd (v) =
(

m β

2π

)d/2

�d vd−1e−β m v2/2,

where �d is the surface area of a (d − 1) sphere and is 2, 2π,

and 4π in dimensions 1, 2, and 3.
Let A be the event that a particle hits the gate. In Ref. [15],

we showed that pd (A|v) = cd v τ A/V and p(A) = κ/N ,
where cd = 1/2, 1/π, 1/4 in dimensions 1, 2, and 3. Recall
that κ = ρ τ A√

2πβ m
.

By Bayes’s law,

P(E ) = P(E |A) = P(A|E )P(E )

P(A)
.

Changing variables in the Maxwell-Boltzmann distribution
and evaluating P(A|E )/P(A) gives us that

pd (E ) = 1
2 (β/π )d/2 �d E (d−2)/2e−βE

P(A|E )/P(A) = 2 cd

√
π β E .

Combining this with the fact that cd �d = π (d−1)/2/�((d +
1)/2) yields Eq. (2).

APPENDIX B: SIMULATION DETAILS

In this section, we give more details on how we simulate
the predictive demon. As we noted above, the general idea is
that we discretize time into “microbins” that are some frac-
tion, 1/g of the demon response time. We call g the resolution
of the simulation, with the intuitive effect that the demon
operating continuously is better and better approximated as
g → ∞.

Suppose that T = tc, so that the demon can accurately
predict when all particles will hit the gate area. The particle hit
times and energies are generated according to the distributions
(1) and (2) and can be represented as two lists of time or en-
ergy pairs (t (l )

0 , E (l )
0 ), . . . and (t (r)

0 , E (r)
0 ), . . .. To simulate the

demon, we divide the time interval [0, T ] into the microbins
[0, τ/g), [τ/g, 2τ/g), . . . , [T − τ/g, T ), and bin the particle
hit lists by time. For each microbin, we compute a “score” for
the microbin, which will either be the net energy or the net
particle flow during the microbin (depending on whether we
are simulating an energy or number demon).

To carry out the Bellman calculation, we use exactly
Eqs. (4) and (5), modified to be nonstochastic. Given our
discretization, t is restricted to be an integer multiple of τ ,
dt = τ/g, and v̂t (
t ) is the total score of the microbins be-
tween times t and t + 
t . We simply initialize ST = S∗

T = 0
and calculate ST −τ/g, S∗

T −τ/g, ST −2τ/g, S∗
T −2τ/g, and so on, until

we get to t = 0. At that point, the maximum performance of
the demon is simply max(S0, S∗

0 ).
The simulation of the demons with T � tc is not much

more difficult. The demon repeatedly calculates what course
of action will lead to the best possible score, performs that ac-
tion, and moves τ/g forward in time to repeat this procedure.
The best course of action for the demon can be calculated
as described above, but instead of the maximum performance
being computed by max(S0, S∗

0 ), we record when the demon
opens and closes the gate as time goes by and do not allow
the gate to have its state change until the time delay τ expires.
For example, if the gate was opened by the demon τ/2 ago,
then the maximum performance achievable by the demon is
v0(τ/2) + max(Sτ/2, S∗

τ/2) since the demon must keep the
gate open until at least +τ/2 (recall that v0(τ/2) is the event
score from time 0 to time τ/2). The one additional component
to simulating what is the best possible action for the demon
is that for times closer than τ to the end of the demon’s
time sight, we just add the expected number of particles to

FIG. 6. Convergence of a number demon’s performance as the
number of microbins increases, normalized by the performance of
a nonpredictive number demon. As g → ∞, the discrete algorithm
for the demon better and better approximates the continuous demon
model. Clearly, the discrete algorithm with g = 50 is a good approx-
imation to the continuous case, as the score ratio has stabilized by
that point.
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pass through the door in the hidden part of time to St , where
T < t ′ < t + τ .

APPENDIX C: TIME RESOLUTION AND DEMON
PERFORMANCE

In this section, we show how the resolution of the demon’s
scheduling procedure effects its performance. Recall that we
divide time into “microbins” with a certain resolution g, which
is the number of microbins in a response time, τ (so the length
of a microbin is τmb = τ/g). In principle, if a real demon was
trying to schedule its sequence of gate openings or closing
with an algorithm similar to ours, then there would be a

trade-off between the amount of time and computational re-
sources necessary to do the scheduling and the resolution the
demon would use, but in the paper, we simply use a “large”
resolution to approximate the continuous limit.

As visible in Fig. 6, demon score increases rapidly as the
resolution increases, especially for the case where the subsys-
tems have similar parameters.

When there is only one microbin, predictive and nonpre-
dictive demons act exactly the same, hence the ratio of scores
being 1. As the number of microbins increases, the predictive
demon has more freedom to adjust exactly when it opens and
closes its gate. Because of this, the performance of the demon
rapidly increases with granularity, before asymptotically ap-
proaching the score of an ideal, continuous predictive demon.
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