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1  | INTRODUC TION

From subcellular structures to ecological communities, life is or-
ganized in compartments and modules performing specific tasks. 
Organelles (Kutschera & Niklas, 2005; Siegel, 1960), single (Lewis, 
2007) and multi-phenotype (Fu et al., 2018; Koufopanou, 1994) 
bacterial populations, tissues and organs in multicellular organisms 
(Carroll, 2001; Hedges, Blair, Venturi, & Shoe, 2004), casts and so-
cial classes in colonial animals (Beshers & Fewell, 2001; Smith, Toth, 
Suarez, & Robinson, 2008), and guilds in ecological communities 
(Futuyma & Moreno, 1988; May & Seger, 1986; Terborgh, 1986), all 
fulfil specialized roles that are vital for the functioning of a larger 
whole. Specialization also gives rise to metabolic interdependencies 
in microbial populations and can serve as a strong mechanism for 
community assembly (Zelezniak et al., 2015).

Evolution of specialization is typically studied in terms of fit-
ness trade-offs or economic considerations. Specialization emerges 
if relatedness is high and if fitness returns accelerate (Michod, 

2007; Michod, Viossat, Solari, Hurand, & Nedelcu, 2006; Rueffler, 
Hermisson, & Wagner, 2012; Tannenbaum, 2007; Taylor, 1992; 
Vural, Isakov, & Mahadevan, 2015; Willensdorfer, 2009). There 
are two classes of evolutionary forces moving a population from 
having one type of individual performing multiple functions –gen-
eralism–, towards one that has multiple types of individuals per-
forming distinct functions –specialism–. The first is ‘incompatible 
optimas’ (Goldsby, Dornhaus, Kerr, & Ofria, 2012; Solari, Kessler, & 
Goldstein, 2013; Sriswasdi, Yang, & Iwasaki, 2017): if a population 
must optimize two functions at once, but the phenotypes optimiz-
ing these are incompatible, then the population will split into two 
phenotypes. For example, the somatic and germ cells in volvox col-
onies are optimized for motility and reproduction. As a result, they 
have entirely different positioning (Solari, Kessler, & Michod, 2006), 
morphology (Kirk, 2001), and protein expression (Kirk & Kirk, 1983). 
In multicellular cyanobacteria, cells differentiate into carbon-fixat-
ing cells and nitrogen-fixating heterocysts (Rossetti, Schirrmeister, 
Bernasconi, & Bagheri, 2010). E. coli can differentiate into transient 
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nongrowing cells and normally growing cells to hedge their bets 
across different environments (Lewis, 2007). A travelling band of 
E. coli will exhibit a continuum of navigation styles, each specializing 
in processing different local conditions while still moving in unison 
(Fu et al., 2018).

A second type of evolutionary pressure originates from the 
economies of scale. Undertaking one process at high volume is more 
cost-effective than undertaking multiple processes at low volume. 
The morphological characteristics necessary to accomplish two dis-
tinct functions require two investments in overhead. Specialization 
is then favoured if fitness returns are accelerated by further in-
vestment into a specific task (Cooper & West, 2018; West, Fisher, 
Gardner, & Kiers, 2015).

It is well known that spatial structure is key in the evolution of co-
operation (Durrett & Levin, 1994; Lion & Baalen, 2008; Taylor, 1992; 
Uppal & Vural, 2018; Wakano, Nowak, & Hauert, 2009). By forming 
fragmenting groups, multicellular organisms and social colonies can 
combat fixation of cheaters. Coexistence of cheaters and cooper-
ators is also enhanced in spatially structured populations (Wilson, 
Morris, & Bronstein, 2003). Understanding how spatial structuring 
arises and competition within and across groups can shed light on 
how cooperation and resistance to cheaters arise (Lion & Baalen, 
2008). Here, we will be interested in the role of spatial structuring in 
the evolution of specialization.

Existing computational models of evolution of specialization 
that consider spatial structure or finite group size typically abstract 
away the underlying physics (Cooper & West, 2018; Gavrilets, 2010; 
Ispolatov, Ackermann, & Doebeli, 2012; Menon & Korolev, 2015; 
Oliveira, Niehus, & Foster, 2014; Rueffler et al., 2012; Schiessl et 
al., 2019; Vural et al., 2015; Willensdorfer, 2008). While concep-
tually useful, such models reveal little about the interplay between 
evolutionary and mechanical forces during the formation and evolu-
tion of specialization. Real-life microbial exchanges are mediated al-
most entirely by viscoelastic secretions that diffuse and flow (West, 
Diggle, Buckling, Gardner, & Griffin, 2007). Extracellular enzymes 
digest food (Bachmann, Molenaar, Kleerebezem, & Hylckama Vlieg, 
2011; Greig & Travisano, 2004; Pirhonen, Flego, Heikinheimo, & 
Palva, 1993), surfactants aid motility (Kearns, 2010; Xavier, Kim, & 
Foster, 2011), chelators scavenge metals (Griffin, West, & Buckling, 
2004; Guerinot, 1994; Harrison & Buckling, 2009; Kümmerli, 2010; 
Neilands, 1984; Ratledge & Dover, 2000), toxins fight competi-
tors and antagonists (An, Danhorn, Fuqua, & Parsek, 2006; Inglis, 
Gardner, Cornelis, & Buckling, 2009; Mazzola, Cook, Thomashow, 
Weller, & Pierson, 1992; Moons et al., 2006; Moons, Van Houdt, 
Aertsen, Vanoirbeek, & Michiels, 2005), virulence factors exploit 
a host (Allen, McNally, Popat, & Brown, 2016; Kohler, Buckling, & 
Delden, 2009; Sandoz, Mitzimberg, & Schuster, 2007; Zhu et al., 
2002), and extracellular polymeric substances provide sheltering 
(Davies, 2003; Mah & O'toole, 2001; Xue, Sendamangalam, Gruden, 
& Seo, 2012). Since cells must be within a certain distance to ex-
change such services, spatial aggregation is considered a prerequi-
site for multicellular specialization. Spatial effects matter (Durrett 
& Levin, 1994; Fletcher & Doebeli, 2009; McNally et al., 2017; 

Specialization

Large waste diffusion: Larger waste diffusion lowers self-
competition and allows specialists to form denser groups 
to better utilize public goods secreted by neighbours.
Large public good benefit: A high benefit for public goods 
allows specialists to still be fit without secreting as many 
public goods. This also helps cheaters exploit producers.
Lower secretion costs: A lower secretion cost can help spe-
cialists dominate over generalists, since a smaller penalty 
for cooperation can make generalists groups too large and 
more vulnerable to specialist mutations. In this case, large 
generalist structures are easily taken over by specialist 
mutants.
Group structure: Specialists form groups when waste diffu-
sion is larger than public good diffusion and when costs are 
not too low. When specialists do not form groups, they are 
easily taken over with cheaters, leading to either ‘chasing 
cheaters’, (Video S6), or extinction. When generalists form 
smaller, fragmenting groups, they are able to escape takeo-
ver by specialists and out-compete specialists.
Fitness type: The fitness type dictates which types of spe-
cialist structure we see—pure or mixed. In the OR case, 
specialists generally evolve into structures of isolated 
types of specialists (Video S4). The AND structure is there-
fore essential to have true division of labour, where each 
type of specialist exists equally in the group (Video S3).

Cheater coexistence

Lack of group structure and small invasion fitness: Cheaters 
cannot exist on their own, but must ‘predate’ on produc-
ers—generalists or specialists. When producers are fit, and 
do not form groups, they can grow quicker than cheaters 
fully taking over. This occurs when waste diffusion is large, 
and when secretion costs are low. Low secretion cost also 
lowers the invasion fitness of cheaters, since the advantage 
of not secreting is lower, helping them to coexist (Video S6).

Extinction

When cheaters take over: Cheaters take over when their in-
vasion fitness is large and mutation rates are faster than 
group fragmentation rates. This occurs when public good 
benefit is large and/or when waste diffusion is large, as 
seen in top-middle regions of plots given in Figure 5.
When groups are not stable: When costs are large and public 
good benefit is low, cooperators need to form denser groups 
to increase fitness. However, with low waste diffusion, denser 
groups over-pollute themselves and are no longer stable. We 
see this in the bottom-right regions of plots in Figure 5.
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Wakano et al., 2009; Wilson et al., 2003), and multiple factors can 
couple together to influence the evolution of cooperation (Dobay, 
Bagheri, Messina, Kümmerli, & Rankin, 2014) and division of labour 
(Dragoš et al., 2018) in unexpected ways.

In this study, we find that mechanical factors such as diffu-
sion constants, molecular decay rates and fluid flow patterns play 
a crucial role in shaping the interaction structure of an ecological 
community. We find, through first-principles computer simula-
tions and matching analytical formulas, that microbes self-aggre-
gate and form evolving clusters, whose size, shape and economical 
exchanges are sensitively dependent on the physical parameters 
defining the abiotic environment. Such structures have already 
been empirically observed in E. coli (Budrene & Berg, 1991), S. ty-
phimurium (Blat & Eisenbach, 1995), and B. subtilis (Mendelson & 
Lega, 1998) (Figure 1) and studied theoretically (McNally et al., 
2017; Stump, Johnson, & Klausmeier, 2018; Tsimring et al., 1995; 
Wakano et al., 2009). However, the interplay between evolution-
ary and mechanical forces within and between these structures 
and their role in the formation and evolution of community inter-
actions remain unknown.

Since many bacterial products leak outside the cell, members 
of the local community can exploit their neighbours and evolve to 
delete costly functions. The Black Queen Hypothesis suggests that 
loss of functionality occurs due to selfish mutations and can form 
the basis for mutualistic relationships (Morris, Lenski, & Zinser, 2012; 
Sachs & Hollowell, 2012). Thus, from evolutionary game theoretical 
considerations alone, one expects that specialists always eventually 
dominate a population of generalists. How then should we explain 
the persistence of generalists in nature, and even the coexistence of 
various combinations of generalists, specialists, and cheaters within 
one niche?

To address this question, we construct a mechanistic model 
that naturally gives rise to distinct microbial clusters. We then 
analyse the evolutionary transitions between generalized and 
specialized interactions within clusters for different fluid flow 

patterns, diffusion lengths, molecular decay constants and cell 
growth kinetics. Lastly, we study the competitive interactions 
across clusters.

In doing so, we establish the physical factors that counteract game 
theoretical expectations, that is factors that allow generalists to resist 
specialization, and generalists and specialists to resist cheaters. We 
also establish physical factors that counteract competitive exclusion, 
that is allowing multiple community types to coexist within the same 
fluid niche. Lastly, we determine what physical properties make ‘so-
cially uninhabitable’ niches, where free-riders emerge, exploit and in-
variably destroy both generalist and specialist communities.

2  | METHODS

Any model aiming to describe evolution of functional specializa-
tion must include at least two functions, so that subpopulations can 
potentially specialize to perform one function each. In our model, 
microbes can secrete two public goods and a waste/toxin. These 
molecules diffuse, flow and decay (cf. Figure 2).

The specific assumptions of our model, qualitatively stated, 
can be enumerated as follows: (1) the system consists of microbes 
that can secrete two kinds of public goods. A public good refers 
to a secretion that promotes the growth of nearby microbes (in-
cluding the producer). The producer also pays a metabolic cost for 
secreting the public good. (2) Every microbe secretes a waste mol-
ecule that curbs the growth of those nearby. (3) The secretions and 
bacteria obey the physical laws of fluid dynamics and diffusion. (4) 
Whether a microbe secretes both, one or none of the public goods 
is hereditary, except for mutations. However, every phenotype 
emits waste.

We study two models separately. (5) In one, which we call AND, 
access to both kinds of goods is necessary. In the other, which we 
call OR, both goods contribute to fitness, but the lack of one can be 
compensated with the other.

Our work consists of discrete, stochastic agent-based simula-
tions and related continuous deterministic equations. In addition, 
to gain better analytical understanding, we construct a sim-
ple effective model that captures the essential outcomes of the 
simulations.

2.1 | Continuous deterministic equations

We construct equations governing the number density of four phe-
notypes n0(x,t), n1(x,t), n2(x,t), n3(x,t) two chemical secretions that are 
public goods c1(x,t), c2(x,t), and a waste compound c3(x,t), as a func-
tion of space x and time t. n3(x,t) is the number density of microbes 
that secrete both kinds of public goods, to which we refer as ‘gen-
eralists’. The microbes that secrete only public good one or two are 
denoted by n1(x,t) and n2(x,t), to which we refer as ‘specialists’. Those 
that secrete no public goods are denoted by n0(x,t), to which we refer 
as ‘cheaters’.

Fluid shear

Enhanced group fragmentation: A shearing flow stretches 
and distorts groups. It can help groups fragment and re-
produce quicker, allowing stability over cheating mutations 
(Uppal & Vural, 2018).
Enhanced specialization in linear and vortex flows: Shearing 
flow can help specialist groups fragment quicker than gen-
eralist groups and therefore transition a population to con-
tain more specialists (Figure 4c,d, Video S2).
Coexistence of group types: The local shear rate can deter-
mine what groups are stable. A spatially varying flow pro-
file can then allow for coexistence of different community 
structures across the full fluid domain (Figure 6, Videos S7 
and S8).



     |  259UPPAL And VURAL

Here, indices i, j = 0, 1, 2, 3 label phenotypes, whereas the index 
α = 1, 2, 3 labels chemicals, that is the two public goods and waste. Thus, 
Equations (1) and (2) comprise 7 coupled spatiotemporal equations.

In both equations, the first two terms describe diffusion and ad-
vection. The flow field v(x,t) is a vector-valued function of space and 
time and includes all information pertaining the flow patterns in the 
environment. In general, it is obtained by solving separate fluid dynam-
ics equations. Mutations and secretions are governed by two matrices,

The secretion rate of chemical α by phenotype i is given by the 
matrix element Siα, and its decay rate by λα. The mutation rate from 
phenotype j to i is given by Mij. The diagonal elements Mii indicate the 
rate at which i mutates to become something else.

Note that in our model, the secretion of public goods is binary, 
that is a good is either secreted or not. Mutations toggle on and off 
with probability µ whether an individual secretes either public good. 
A mutation can cause a generalist to become a specialist, but two 
mutations, one for each secretion function, are required for a gener-
alist to become a cheater. Same with back mutations.

The fitness function fi(c) determines the growth rate of pheno-
type i. We consider two cases separately: when both public goods 
are necessary for growth (AND) and when the public goods can sub-
stitute one-to-one for one other (OR).

As we see, in both cases, growth rate increases with the local 
concentration of public goods, c1, c2 and decreases with the concen-
tration of waste, c3. βα is the cost of secreting public good α, so that 
growth of phenotype i is curbed by an amount proportional to its 
public good secretion. Waste is produced without any cost.

Note that with increasing concentration of goods, microbes re-
ceive diminishing returns. Similarly, with larger waste, death rate 
approaches a maximum value. These functional forms are well un-
derstood, experimentally verified (Monod, 1949), and commonly 
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F I G U R E  1   Pattern-forming populations. (a, b) Examples of spatial patterning of bacteria in experiments performed by Budrene and Berg 
(1991). E. coli formed spots (a) and stripes (b) in response to public goods they themselves excrete. (c, d) Aggregation patterns observed 
in S. typhimurium in experiments by Blat and Eisenbach (1995). (e, f) Spot (e) and hole (f) patterns observed in experiments with synthetic 
bacteria performed by Karig et al. (2018). Figures courtesy of authors
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used in population dynamics models (Allen & Waclaw, 2018). a's and 
k's are constants defining the initial slope and saturation values of 
growth and death (see Table 1).

2.2 | Discrete stochastic simulations

Our analytical conclusions (cf. Section S1) have been guided and 
supplemented by agent-based stochastic simulations in two dimen-
sions. Videos of these simulations are provided in Supplementary 
Videos. Our simulation algorithm is as follows: at each time in-
terval, Δt, the microbes (1) diffuse by a random walk of step size 
!=

√
4dbΔt+ v⃗Δt derived from the diffusion constant plus a bias 

dependent on the flow velocity. (2) Microbes secrete chemicals 
locally onto a discrete grid that then diffuse using a finite dif-
ference scheme. (3) Microbes reproduce or die with a probabil-
ity dependent on their local fitness and time step, given by f(c)
Δt. If fΔt is negative, the microbes die with probability 1, and if 
fΔt is between 0 and 1, they reproduce an identical offspring with 
probability fΔt. Upon reproduction, offspring are placed at the 
same location as their parent. (4) Random mutations may alter the 
secretion rate of either public good—and thus the reproduction 
rate—of the microbes. Mutations occur on each secretion function 
with probability µ and turn the secretion of the public good on or 
off. The secretion rate is assumed to be heritable and constant in 
time. Numerical simulations for figures were performed by imple-
menting the model described above using the Matlab program-
ming language and simulated using Matlab (Mathworks, Inc.). The 
source code for discrete simulations is provided as a supplemental 

file. Additional details of model implementation are discussed in 
Section S2.

A summary of the system parameters is given in Table 1, 
along with typical ranges for their values used in the simulations. 
Parameter values as well as the simulation domain (the physical 
region being simulated) are also given in figure captions. The rel-
evant ratios of parameters are consistent with those observed 
experimentally (Drake, Charlesworth, Charlesworth, & Crow, 
1998; Gibson, Wilson, Feil, & Eyre-Walker, 2018; Kim, 1996; Ma, 
Zhu, Ma, & Yu, 2005; Rusconi & Stocker, 2015). Note also that 
the choice of parameters will be restricted to ensure a finite sta-
ble solution is possible. For example, we enforce the quantity 
a12 − aw−β1s1 − β2s2 < 0. This is because, if this quantity was posi-
tive, then a dense population, where the Hill terms in the fitness 
functions are saturated, will continue to have a positive fitness 
and grow indefinitely. In the case where secretion rate and/or pro-
duction costs are low, the waste term is crucial to ensure a finite 
carrying capacity. We therefore choose aw ≥ a12. Other constraints 
on existence and stability are derived in our Turing analysis (see 
Section S1). Further discussion on parameter selection and sensi-
tivity is also given in Section S2.

2.3 | Simple effective model

To gain better analytical understanding, we set to reproduce the 
outcomes our complex model with a much simpler effective model, 
which we describe in Section S3. Our effective model is based on 
the observation that microbes aggregate into self-reproducing 

F I G U R E  2   Schematics and dynamics of the model. (a) Microbes cooperate by secreting public goods into their environment. Generalists 
(large green circles) secrete two public goods (small yellow and red circles). Specialists (large red and yellow circles) secrete only one of the 
two public goods. Cheaters (dark green) secrete none of the public goods. All microbes secrete a metabolic waste (small blue circles). (b) 
Fitness contour plots and types of stable groups in each fitness variant. In the top row, we plot the fitness contours as a function of public 
good concentrations c1 and c2. In the bottom row, we show the types of stable groups in each fitness form. The red line represents the 
contour corresponding to zero fitness. In the AND case, the red line can never cross the c1, c2 axes, and the fitness is negative when either 
chemical is not present. Therefore, the only types of stable groups are generalists or mixed specialists, as shown in the bottom-left panel. 
In the OR case, the contours form straight lines. A decrease in one chemical is equally compensated by an increase in the other chemical. 
The zero contour always crosses the c1, c2 axes. It is therefore also possible to have pure specialist groups in the OR case, as shown in the 
bottom-right panel. (c) Evolutionary paths between group types. Groups typically move towards less secretion since cheaters have higher 
invasion fitness than specialists, who, being ‘half-cheaters’, have higher invasion fitness than generalists
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cooperative groups. Different group types, rather than individ-
ual microbes, constitute the basic building blocks of our effective 
model, and the fragmentation rates of these group types constitute 
the basic parameters of the model. These parameters are ‘measured’ 
from our complex simulations and depend on the physical properties 
of the system (see Figures S2 and S3). The results of our effective 
model are compared to simulation results in Figure 4.

3  | RESULTS

3.1 | Cooperative groups as Turing patterns

Through numerical simulations and analytical formulas, we see that 
the system gives rise to spatially segregated cooperating groups in 
a certain parameter range, as shown in Figure 3. Spots or stripes 
in reaction diffusion systems are known as Turing patterns, which 
form whenever an inhibiting agent diffuses faster than an activat-
ing agent. In our model, the inhibiting and activating agents are the 
waste and the public goods.

In general, the structure and size of these cooperating groups will 
vary with physical parameters. We show in Figure 3 how the Turing 
pattern-forming region varies with diffusion constants, in the ab-
sence of mutations or flow. Our analytical result, derived in Section 
S1, shown by the thick blue lines, delineates the parameter space into 

pattern-forming and non-pattern-forming regions. While simulations 
agree well with analytical results, we see some patterns slightly be-
yond the theoretical region. This is due to the stochastic nature of 
the simulations which is known to widen the pattern-forming region 
(Biancalani, Fanelli, & Di Patti, 2010; Butler & Goldenfeld, 2009).

In our simulations, we observe that cooperative groups of mi-
crobes, that is spots and stripes, grow and fragment, thereby giving 
rise to new structures of the same type. The spatial structure of these 
patterns differs between generalists and specialists and therefore has 
a strong effect on the evolutionary trajectory of the system.

3.2 | Effects of secretion cost on specialization

We next determine the role of secretion cost βα on group structure and 
hence specialization, in the absence of flow. To see the effect of trade-
offs on specialization, we varied the cost of public good secretion and 
determined when specialization occurs in both AND and OR fitness 
forms. To simplify our analysis, we set s1 = s2 = s. In order for both 
types of specialists to then coexist, we also set β1 = β2 = β. Therefore, 
generalists pay an overall cost of 2β, specialists pay β, and cheaters 
pay no cost. As such, a specialist mutant will invade a generalist group, 
and a cheater mutant will invade a specialist group. In the absence of 
spatial structure and flow, the entire population will be dominated by 
cheaters and will go extinct.

What can we say about the competition between different group 
types (as opposed to between different strains within a group)? Since 
with all else equal, increasing costs harm generalists twice as much 
as specialists, one might expect that increasing the cost of the goods 
would favour the specialists over generalists. Counterintuitively, 
we find the opposite. Specialist groups indeed grow faster and 
form larger, expansive and denser groups, which however are at 
once taken over by cheaters. In contrast, generalists form smaller, 
sparser and weaker groups that fragment more often, which limits 
the spread of mutants (see Figures S2 and S3). Therefore, at higher 
cost β, the ‘weak’ generalists are able to coexist and even dominate 
‘strong’ specialists (Figure 4a,b).

In general, a large uniform population is more susceptible to in-
vading mutants. In contrast, when the population is organized as 
fragmenting patches, the community structure will prevail as long 
as the fragmentation rate is larger than the invasive mutation rate. 
Thus, the type, size, growth and fragmentation of the groups ulti-
mately dictate whether generalism, specialism or a coexistence of 
group types is evolutionarily stable.

3.3 | Effect of flow patterns on specialization

Fluid dynamical forces can strongly influence the eco-evolution-
ary dynamics of a microbial population. For example, fluid flows 
can shape the competition and matrix secretion in biofilms (Nadell, 
Ricaurte, Yan, Drescher, & Bassler, 2017). A shearing fluid flow 
has also been shown to modify social behaviour by enhancing 

TA B L E  1   Summary of system parameters

 Quantity Values for OR Values for AND

db Microbial diffusion 0.4 × 10−4 cm2/s 1 × 10−6 cm2/s

d1 Good 1 diffusion 5 and 25 × 10−6 
cm2/s

5 and 20 × 10−6 
cm2/s

d2 Good 2 diffusion 5 and 25 × 10−6 
cm2/s

5 and 20 × 10−6 
cm2/s

dw Waste diffusion 10–80 × 10−6 
cm2/s

10–80 × 10−6 
cm2/s

λ1 Good 1 decay 5.0 × 10−3 s−1 5.0 × 10−3 s−1

λ2 Good 2 decay 5.0 × 10−3 s−1 5.0 × 10−3 s−1

λw Waste decay 1.5 × 10−3 s−1 1.5 × 10−3 s−1

k12 Goods saturation 0.01 3 × 10−5

kw Waste saturation 0.1 0.1

s1 Good 1 secretion 
rate

5.0 × 10−3 s−1 0.01 s−1

s2 Good 2 secretion 
rate

5.0 × 10−3 s−1 0.01 s−1

sw Waste secretion 
rate

0.01 s−1 0.09 s−1

a12 Benefit from goods 62.5–
80 × 10−3 s−1

40–75 × 10−3 s−1

aw Harm from waste 8.0 × 10−3 s−1 10.5 × 10−3 s−1

β1 Cost of good 1 0.01–0.26 0.01–0.15

β2 Cost of good 2 0.01–0.26 0.01–0.15

µ Mutation rate 5.0 × 10−8 s−1 2.0 × 10−7 s−1
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the group size and fragmentation rate (Uppal & Vural, 2018). We 
therefore expect that the flow patterns will affect the mode of 
cooperation (specialist vs. generalist) and the physical structure 
of groups.

For constant shear, we used a planar Couette flow, with velocity 
profile and shear rate given as,

where vmax is the maximum flow rate and H is the height of the domain. 
Flow is along the x̂ direction and is zero in the centre y = 0, and maximal 
at the boundaries y = ±H. We used periodic boundary conditions along 
the left and right walls (x̂ direction), and Neumann boundary conditions 
for the top and bottom surfaces (ŷ direction).

The effect of shear is in general nontrivial and will depend on the 
group structure observed. We find that a shearing flow increases 
group fragmentation rate of microbes organized in distinct circular 
spots, whereas it simply enlarges groups when they are organized in 
an elongated, stripe-like fashion.

In Figure 4c,d, we show the effect of shear at intermediate costs, 
where its effect is strongest. We found in both cases that larger 
shear helps specialists by enhancing their fragmentation rate and 
enlarging generalist groups (Figures S2 and S3), since larger gener-
alists groups generate more mutations, and since faster fragment-
ing specialist groups are better able to resist takeover by cheaters. 
Here, fluid shear transitions the system from a generalist or coexist-
ing state to a specialist state (Video S2). Thus, fluid shear promotes 
specialization.

Since advective flow is something that one can tune in an ex-
perimental or industrial setting, it is exciting to think of possibilities 

where flow is used to control the social evolution of a microbial com-
munity. Furthermore, since shear is in general spatially dependent, 
we can use different velocity profiles to localize this control to dif-
ferent regions.

3.4 | Effect of public good benefit, cooperation 
cost and competition on evolution of specialization

We next study how varying public good benefit, production cost and 
waste diffusion affect the stability of different community struc-
tures (Figure 5). We find that higher waste diffusion and public good 
benefit help specialists and higher secretion cost favours general-
ists. Figure 5 also shows what conditions lead to coexistence of dif-
ferent group types.

If waste diffusion is large, self-competition is lower, and special-
ists can form denser groups without over-polluting themselves (top 
regions in Figure 5a,b). They can then better utilize public goods se-
creted by their neighbours. If the public good benefit, a12, is large, 
specialists also do better since secreting fewer public goods still 
gives a large benefit (top regions in Figure 5c,d, see also Video S3 for 
AND fitness variant and Video S4 for OR fitness).

As we have already seen, specialization emerges when trade-offs 
are small, that is at smaller β. At higher β, generalists are able to coexist 
with specialists (see Figure 5g and Video S5 for OR fitness) and consti-
tute the majority of the population (Figure 5e and Video S1).

We also see that cheaters can persist stably with the popu-
lation when their invasion fitness is lower than the growth rate 
of producers. This occurs in regions where producers do not form 
groups but grow either as stripes or homogeneously in space, which 
happens when public good benefit is large and when secretion 

v = vmax

y

H
x̂,

||||
dv

dy

||||=
vmax

H
,

F I G U R E  3   Pattern formation in bacteria. In both AND and OR fitness types, microbes can form clusters. We set both the mutation rate 
and fluid flow rate to zero to study pattern formation in generalist and specialist microbes without additional physical and evolutionary 
complications. While this figure only shows generalists and specialists subject to AND-type fitness, we observe qualitatively identical 
patterns for the OR-type fitness. The thick blue line is the result of our analytical calculation indicating the regime where patterns emerge, 
which agrees with computer simulations (see Section S1). The population can be homogeneous or form stripes or spots. These patterns can 
also grow and fragment, forming new colonies. The diffusion constants are normalized by the bacterial diffusion constant, db = 1 × 10−6 
cm2/s. Secretion constants used are s1 = s2 = 0.015 s−1 and sw = 0.005 s−1, and public good cost is β1 = β2 = 0.1. The rest of the parameters are 
as given in Table 1
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costs are low. In this case, cheaters ‘chase after’ producers, which 
grow into free space (Figure 5h and Video S6). High waste diffu-
sion also helps cheaters, since they are able to chase producers 
without over-polluting themselves or their hosts (top-left regions 
in Figure 5a,b). When their invasion fitness is about equal to the 
producer growth rate, cheaters take over fully, driving the popu-
lation to extinction (top-centre regions in Figure 5a,b). When the 
population aggregates into groups, cheater growth is limited to 

the group. Cooperation then prevails if groups reproduce faster 
than cheaters emerge. This happens when secretion costs are 
large. Remarkably, higher secretion costs can therefore stabilize 
specialist populations against cheater invasion (top-right regions in 
Figure 5a,b), since higher costs yield smaller groups which generate 
fewer mutations.

We see two regions of extinction: when public good benefit and 
waste diffusion are large, at medium costs (top-centre regions in 

F I G U R E  4   Effects of cooperation cost and fluid shear on specialization. Points with error bars represent numerical results averaged 
over 5 runs at simulation time T = 2 × 106 S in a domain of size 20 mm × 20 mm. Error bars correspond to one standard deviation from the 
mean. Solid lines are from our effective theoretical model given in Section S3. (a, b) Effects of secretion costs in the absence of flow. In 
each fitness variant, we see that specialization is more abundant for low costs. At lower costs, generalist groups are ‘too fit’ and form large 
aggregate structures that are more susceptible to mutations. At higher costs, a, we see generalists out-compete specialists, in the AND case 
(see Video S1) and b, coexist with specialists in the OR case (Video S5). At low costs, specialists again dominate. (c, d) Effects of fluid shear. 
A shearing flow causes groups to fragment quicker and stripes to elongate and grow larger. (c) In the AND case, with secretion cost β = 0.12, 
we observe that shear transitions the system from a coexisting state to a specialist state (see Video S2). Here, shear causes generalists 
groups to elongate and become more susceptible to mutations. (d) In the OR case, at cost β = 0.17, shear again causes a transition from a 
coexisting state to a pure specialist state. We therefore see in both cases that flow shear will promote specialization. Parameter values for 
diffusion are d1 = d2 = 5 × 10−6 cm2/s, dw = 15 × 10−6 cm2/s. For public good benefit, in the AND case, a12 = 6.5 × 10−3 s−1, and in the OR case, 
a12 = 7.5 × 10−3 s−1. The rest of the parameter values are given in Table 1
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F I G U R E  5   Effects of waste diffusion, public good benefit and cooperation cost on specialization. (a,b) Population composition for 
varying secretion cost β and waste diffusion dw for AND (a) and OR fitness types (b). Each square is filled proportionally to the population 
composition of generalists, specialists and cheaters. When waste diffusion is larger than the public good diffusion, the population will 
form spatial structures. Under certain conditions, we see that generalists, specialists and cheaters coexist. At low costs, specialization and 
cheating are more abundant. At medium costs, cheaters spread faster than groups fragment, leading to extinction, shown as empty regions. 
At higher costs, specialists form smaller groups that fragment quicker than cheaters spread and are stable at steady state. Specialists do 
better overall when waste diffusion is large, since they can then form denser groups without over-polluting themselves. (c,d) Population 
compositions for varying secretion cost β and public good benefit a12 for AND (c) and OR fitness types (d). Higher public good benefit, a12, 
also helps specialization, since secreting fewer public goods still gives a large benefit. Interestingly, higher benefit also leads to more extinct 
states, since cheaters can take over quicker. (e–h) Simulation snapshots for various possible stable populations. Under certain conditions, we 
can see (e), stable generalists, shown here for AND fitness (Video S1). Parameters here are β = 0.12, d1 = d2 = 5 × 10−6 cm2/s, dw = 15 × 10−6 
cm2/s, a12 = 6.5 × 10−3 s−1. (f) Stable specialists in AND fitness (Video S3). Parameters here are d1 = d2 = 5 × 10−6 cm2/s, dw = 15 × 10−6 
cm2/s, a12 = 6.5 × 10−3 s−1 β = 0.08. (g) Generalists coexisting with specialists in OR fitness (Video S5). Parameter values d1 = d2 = 25 × 10−6 
cm2/s, dw = 40 × 10−6 cm2/s, a12 = 6.5 × 10−3 s−1, β = 0.14, µ = 5 × 10−8 s−1 (h) Coexistence of generalists, specialists and cheaters in AND 
fitness (Video S6). Parameter values d1 = d2 = 20 × 10−6 cm2/s, dw = 60 × 10−6 cm2/s, a12 = 7.5 × 10−3 s−1, aw = 105 × 10−3 s−1, β = 0.02, 
µ = 2 × 10−7 s−1. Population values were obtained by taking a time average over 1 run for each parameter value, over time steps T = 1 × 106 s 
to T = 2 × 106 s. Public good diffusion for the AND case (a,c) is d12 = 20 × 10−6 cm2/s, for the OR case ( b, d) d12 = 25 × 10−6 cm2/s. Flow rate 
is set to 0, and other parameters are as given in Table 1
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Figure 5a-d), and when public good benefit and waste diffusion are 
low, at high costs (bottom-right regions in Figure 5a-d). The first case is 
due to cheaters taking over groups, leading to the tragedy of the com-
mons. Interestingly, this occurs more with higher public good benefit. 
The population of producers becomes ‘too fit’ and more vulnerable to 
cheating mutations. For the second case, since costs are high and ben-
efits are low, microbes need to form dense groups to utilize enough 
goods to be stable. However, due to the low waste diffusion, these 
groups over-pollute themselves and are no longer stable.

We see similar trends for both the AND (Figure 5a,c) and OR 
cases (Figure 5b,d). The main distinction between the two being, 
for the OR case, we predominately see pure specialist groups and 
only have mixed specialists in the AND case. We do not see many 
mixed specialists in the OR case since mutations take over generalists 
groups quicker and stabilize as pure groups, whereas in the AND case, 
pure groups would die out unless the complementary specialist also 
evolves in the same group. The AND structure is therefore essential 
to have true division of labour, where each type of specialist exists 
equally in the group.

3.5 | Localization of specialization and coexistence 
in axial and circular flows

We next study the evolution of specialization in axial (Hagen–
Poiseuille, Figure 6a) and circular (Rankine vortex, Figure 6d) flows. 
Again, we set the cost parameter to a value where shear makes the 
biggest difference. As with the case with constant shear (Figure 4c,d), 
we set for AND fitness, β = 0.12 and for OR fitness, β = 0.17. For a 
Hagen–Poiseuille flow in a two-dimensional pipe, the flow rate and 
shear rate are given by,

The flow pattern is in the x̂ direction and maximal at the centre of 
the pipe, corresponding to y = 0. Because of no-slip boundary con-
ditions, flow is zero at the boundaries of the pipe y = ±H (Figure 6a). 
The shear rate magnitude is given by taking the derivative of the 
flow rate with respect to y and varies linearly with distance y. The 
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F I G U R E  6   Coexistence of specialists and generalists in pipes and vortices. The local shear profile dictates which interaction structure 
is stable. When shear is spatially varying, we can get coexistence of generalists and specialists. (a) Schematic of Hagen–Poiseuille flow in 
a 2-dimensional pipe. (b) In the AND case in a pipe flow, we observe generalists residing at the boundaries followed by specialists towards 
the middle. In the centre where shear is lowest, cheaters quickly spread and consume groups, leading to a local tragedy of the commons. 
The population then goes extinct in the centre region (cf. Video S7). Flow parameters are H = 100 mm, vmax = 125 mm/s and mutation rate 
µ = 5 × 10−7 s−1. (c) For the OR case, in a pipe, generalists and specialists coexist at the boundary while specialists dominate the centre. Flow 
parameters for the OR case are H = 120 mm, vmax = 90 mm/s and mutation rate µ = 5 × 10−8 s−1. (d) Schematic of flow profile in Rankine 
vortex. (e) In a Rankine vortex flow, in the AND case we see generalists where shear is lowest, and specialists residing in an annulus where 
shear is at its maximum (cf. Video S8). Flow parameters for the vortex in the AND case are R = 20 mm, Γ = 4000π mm2/s and mutation rate 
µ = 3 × 10−7 s−1. (f) In the OR case, we see similar results, with coexistence of groups at low shear regions and an annular region composed of 
specialists. Flow parameters for the OR case are R = 20 mm and Γ = 1,800π mm2/s and mutation rate µ = 5 × 10−8 s−1. The total simulation 
domain for vortices was 60 mm × 60 mm. Secretion costs used are β = 0.12 for the AND fitness, and β = 0.17 for the OR fitness. Diffusion 
parameters used were d1 = d2 = 5 × 10−6 cm2/s, dw = 15 × 10−6 cm2/s. Public good benefit in the AND case was a12 = 6.5 × 10−3 s−1 and for 
the OR case, a12 = 7.5 × 10−3 s−1. The rest of the parameters are as given in Table 1. Population densities were obtained from averaging 5 
runs at simulation time of T = 2 × 106 s
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shear rate is zero at the centre of the pipe and maximal at the bound-
aries of the pipe.

From our results with a constant shear (Figure 4c,d), we expect 
higher shear regions of the pipe to be occupied by specialists and 
lower shear regions to be occupied by generalists. However, we see 
the opposite to occur (Figure 6b,c). This is due to boundary and sec-
ond-order effects. Generalist groups on the boundary fragment more 
often and are able to prevent takeover by mutations. Longer groups 
are formed in regions of intermediate shear and generate more muta-
tions, leading to a predominately specialist population in this region 
(Figure 6b,c, Video S7). The fragmenting generalist groups act as a 
source for specialists groups in the intermediate regions of the pipe. 
Near the centre of the pipe where the shear rate is low, groups do 
not fragment as quickly and are taken over by cheaters. We therefore 
see a coexistence of group types across the pipes, with generalists 
at the boundary, followed by specialists in the intermediate regions 
(Figure 6b,c), and an extinct population due to groups being destroyed 
by cheaters at the centre (Figure 6b).

Next, we study evolution in a Rankine vortex. The flow and 
shear profiles for a Rankine vortex with radius R and circulation Γ 
are given by,

The flow pattern is now in the angular direction "̂. The magnitude 
of flow increases linearly up to the vortex radius R and then drops 
as 1/r, where r=

√
x2+y2 is the distance from the vortex centre 

(Figure 6d). The circulation parameter Γ corresponds to the line in-
tegral of the flow field along a closed path and has units of velocity 
times length. Here, we use it to tune the rate of flow and shear rate. 
The shear rate σ is in the radial direction. It is zero within the vortex 
r < R, maximal at the vortex radius r = R, and decreases as 1/r2 for r > R. 
There is no shear in the radial direction r̂ .

The distribution of specialists and generalists in the vortex agrees 
better with previous results from constant shear (Figure 6e,f). We 
see generalists persist in regions of low shear and specialists mainly 
reside in an annular region where shear is large (Figure 6e,f, Video 
S8). In either case, we see coexistence of communities with different 
interaction structures across the full domain. A varying shear profile 
can therefore allow for different group types to dominate different 
regions in the fluid and stably coexist in other regions.

4  | DISCUSSION

Fletcher and Doebeli, (2009) show that altruism is favoured when 
cooperators are more likely to interact with other cooperators and 
less likely to encounter cheaters. Such assortment can be attained 
when populations are viscous (Taylor, 1992) and spatially self-
structured (Stump et al., 2018; Wakano et al., 2009). Kin selection is 
then the main driving evolutionary force of cooperation in spatially 

structured populations (Lion & Baalen, 2008). Our findings are con-
sistent with these ideas.

More specifically, we have seen that invasion fitness alone does 
not govern the evolution of interactions within a community. Rather, 
physical dynamics governing the habitat and the microbes prove 
highly influential in whether specialized cooperation, generalized 
cooperation or cheating strategies will dominate, as well as whether 
multiple types of groups will coexist. We showed that the spatial 
structure and dynamical properties of communities, as modulated 
by diffusion constants, decay rates, fluid dynamical forces and do-
main geometry can outweigh the role of fitness economics. These 
physical factors give generalist cooperator groups a fighting chance 
against specialist cooperators, and generalist and specialist cooper-
ators against cheaters. As such, we view division of labour as a me-
chanical phenomena as much as an economical one.

While analysing the competition between different interaction 
strategies within a community, we also investigated the competition 
between different kinds of communities. While a given niche with 
given physical parameters will be typically exclusively dominated by 
either generalist groups, specialist groups or cheaters, we also found 
that for a range of parameters, the physical and economical factors 
will counteract in a balanced way, leading to the coexistence of mul-
tiple interaction structures within one fluid niche.

A shearing flow can influence the evolution of cooperation in mi-
crobial populations (Nadell et al., 2017; Uppal & Vural, 2018). Here, 
we also saw that fluid flow can alter the spatial structure and dy-
namic properties of communities, and hence the evolution of their 
cooperative interactions. A shearing flow increases the group size 
of generalists and fragmentation rates of specialists and therefore 
alters the evolutionary stability of the community interaction struc-
ture. When the fluid shear profile varies over space, we observe that 
generalists and specialists not only find the most suitable position 
for themselves in the fluid and dominate there, they can also coexist 
in certain regions.

Many authors view undifferentiated multicellularity as a pre-
requisite for specialization (Bonner, 1998; Gavrilets, 2010; Michod, 
2007; Pfeiffer & Bonhoeffer, 2003; Rossetti et al., 2010). In the case 
where generalists form a spatially homogeneous population and 
specialists form groups, we have seen that a transition to special-
ization can split the population into discrete subpopulations, that is 
functional multicellular groups. In this light, division of labour can be 
viewed as a first cause of multicellularity, rather than a consequence.

Though we paid close attention to physical realism, we also 
made important simplifying assumptions in our first-principles 
model. First, we assumed identical mutation rates between all pairs 
of phenotypes, whereas in reality, loss-of-function mutations are 
often more likely. Second, for most simulations we took the diffu-
sion constants and decay rates of the two public goods to be iden-
tical. Studying cases where d1 ≠ d2 or λ1 ≠ λ2 could give additional 
interesting results that we have not explored here. Specifically, we 
think that the existence of a diffusion length blurs the distinction 
between public and private goods, and communities might end up 
with larger numbers of producers of the less diffusive (more private) 
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good and larger numbers of exploiters of the more diffusive (more 
public) good. We also neglect the finite sizes and complex shapes 
of microbes, and instead take them as point particles. Additionally, 
since microbes live in a low Reynolds number environment, we 
ignore the inertia of microbes, whereas in reality, microbes will 
themselves influence the fluid flow patterns. This effect will be-
come especially important in highly dense populations and when 
microbes actively stick to one another or integrate via extracellular 
polymers. Finally, we neglect the taxis of microbes. In reality, mi-
crobes can exhibit complex swimming patterns and move towards 
or against chemical gradients.

Theoretical and experimental investigations of these additional 
factors will provide further insights into the interplay between me-
chanical factors and evolution of community interactions.
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