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evolution of social behavior in microbial
populations
Gurdip Uppal*, Dervis Can Vural*

Department of Physics, University of Notre Dame, Notre Dame, United States

Abstract How producers of public goods persist in microbial communities is a major question in

evolutionary biology. Cooperation is evolutionarily unstable, since cheating strains can reproduce

quicker and take over. Spatial structure has been shown to be a robust mechanism for the

evolution of cooperation. Here we study how spatial assortment might emerge from native

dynamics and show that fluid flow shear promotes cooperative behavior. Social structures arise

naturally from our advection-diffusion-reaction model as self-reproducing Turing patterns. We

computationally study the effects of fluid advection on these patterns as a mechanism to enable or

enhance social behavior. Our central finding is that flow shear enables and promotes social

behavior in microbes by increasing the group fragmentation rate and thereby limiting the spread of

cheating strains. Regions of the flow domain with higher shear admit high cooperativity and large

population density, whereas low shear regions are devoid of life due to opportunistic mutations.

DOI: https://doi.org/10.7554/eLife.34862.001

Introduction
Cooperation is the cement of biological complexity. A combined investment brings larger returns.

However, while cooperating populations are fitter, individuals have evolutionary incentive to cheat

by taking advantage of available public goods without contributing their own. Avoiding the cost of

these goods allow larger reproduction rates, causing cheaters to proliferate until the lack of public

goods compromise the fitness of the entire population. In other words, while cooperating popula-

tions are fitter than non–cooperating ones, cooperation is not evolutionarily stable. How then can

social behavior emerge and persist in microbial colonies?

The evolution of cooperation is an active field of research, with multiple theories resolving this

dilemma (Axelrod and Hamilton, 1981; Sachs et al., 2004; Sachs and Simms, 2006; Nowak, 2006).

According to (Fletcher and Doebeli, 2009) the fundamental mechanism is assortment. That is, in

order for cooperation to evolve, cooperators and cheaters must experience different interaction

environments.

How this assortment is achieved is a central question. Possibilities include positive and negative

reciprocity (Trivers, 1971; Clutton-Brock and Parker, 1995; El Mouden et al., 2010), where coop-

erators are rewarded later by others, or where cheaters are inflicted a cost, via policing or reputa-

tion. For example, quorum signals reveal whether available public goods add up to the population

density. In this case, altruists cut back public good production to eliminate cheaters (albeit with col-

lateral damage) (Allen et al., 2016; Sandoz et al., 2007; Diggle et al., 2007). Another idea is group

selection (Wynne-Edwards, 1962; Haldane, 1932; Traulsen and Nowak, 2006; Wilson, 1975) and

its modern incarnation, multi-level selection, (Wilson and Sober, 1994) which propose that cooper-

ating groups (or groups of groups) will reproduce faster than non-cooperating ones and prevail. Kin-

selection theory (Hamilton, 1964a, 1964b; Williams, 1966; Smith, 1964; Hamilton, 1975;

Lion et al., 2011) provides a mechanism that arises from individual level dynamics. Kin-selection
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proposes that individuals cooperate with those to which they are genetically related, and thus, a

cooperative genotype is really cooperating with itself.

Hamilton conjectured that kin selection should promote cooperation if the population is viscous,

that is when the mobility of the population is limited (Hamilton, 1964a; Hamilton, 1964b). This

helps ensure that genetically related individuals cooperate with each other. However, competition

within kin can inhibit altruism (Taylor, 1992; Wilson et al., 1992). One solution to this is if individuals

disperse as groups, also known as budding dispersal. This was shown to promote cooperation theo-

retically by Gardner and West (2006) and demonstrated experimentally by (Kümmerli et al., 2009).

Budding dispersal has also been studied by (Pollock, 1983; Goodnight, 1992; Kelly, 1994) and by

(Wilson et al., 1992) from a group selection perspective.

There may be multiple and overlapping mechanisms underlying assortment. There is much

debate in the literature over which theories best explain the evolution of cooperation and under

which conditions each theory may be applicable. There is still not agreement, for example, on

whether kin-selection and group selection can be viewed as equivalent theories (Lion et al., 2011;

Kramer and Meunier, 2016). According to (Simon et al., 2012; Simon et al., 2013), since related-

ness need not impact certain group level selection events, such as various games between groups,

group selection is distinct from kin selection. Also, individual and group level selection events are

generally asynchronous in nature and therefore cannot be equivalent. However, the debate still goes

on (Kramer and Meunier, 2016; West et al., 2007; Gardner, 2015; Goodnight, 2015).

Typically, evolution of cooperation is quantitatively analyzed with the aid of game theoretic mod-

els applied to well-mixed populations, networks and other phenomenological spatial structures

eLife digest According to the principle of the ‘survival of the fittest’, selfish individuals should

be better off compared to peers that cooperate with each other. Indeed, even though a population

of organisms benefits from working together, selfish members can exploit the cooperative behavior

of others without doing their part. These ‘cheaters’ then use their advantage to reproduce faster

and take over the population.

Yet, social cooperation is widespread in the natural world, and occurs in creatures as diverse as

bacteria and whales. How can it arise and persist then? One idea is that when individuals form

distinct groups, the ones with cheaters will perish. Even though a selfish individual will fare better

than the rest of its team, overall, cooperating groups will survive more and reproduce faster;

ultimately, they will be favored by evolution. This is called group selection.

Here, Uppal and Vural examine how the physical properties of the environment can influence the

evolution of social interactions between bacteria. To this end, mathematical models are used to

simulate how bacteria grow, evolve and drift in a flowing fluid. These are based on equations

worked out from the behavior of real-life populations.

The results show that flow patterns in a fluid habitat govern the social behavior of bacteria. When

different regions of the fluid are moving at different speeds, ‘shear forces’ are created that cause

bacterial colonies to distort and occasionally break apart to form two groups. As such, cooperative

groups will rapidly form new cooperating colonies, whereas groups with cheaters will reproduce

slower or perish.

Furthermore, results show that when different areas of the fluid have different shear forces, social

cooperation will only prevail in certain places. This makes it possible to use flow patterns to fine tune

social evolution so that cooperating bacteria will be confined in a certain region. Outside of this

area, these bacteria would be taken over by cheaters and go extinct.

Bacteria are both useful and dangerous to humans: for example, certain species can break down

pollutants in the water, when others cause deadly infections. These results show it could be possible

to control the activity of these microorganisms to our advantage by changing the flow of the fluids

in which they live. More broadly, the simulations developed by Uppal and Vural can be applied to a

variety of ecosystems where microscopic organisms inhabit fluids, such as plankton flowing in

oceanic currents.
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(Szabó and Fáth, 2007; Allen et al., 2013; Nowak and Sigmund, 2004; Vural et al., 2015). While

there are few models that take into account spatial proximity effects, (Medvinsky et al., 2002;

Nadell et al., 2010; Nadell et al., 2013; Dobay et al., 2014; Driscoll and Pepper, 2010) and the

influence of decay and diffusion of public goods (Dobay et al., 2014; Wakano et al., 2009;

Hauert et al., 2008), how advective fluid flow influences social evolution remains mostly unexplored.

The present study aims to fill this gap.

A flowing habitat can have a drastic effect on population dynamics (Tél et al., 2005;

Nickerson et al., 2004; Koshel’ and Prants, 2006; Sandulescu et al., 2008). For example, a flowing

open system can allow the coexistence of species despite their differential fitness

(KarolyiKárolyi et al., 2000). Interactions between fluid shear and bacterial motility has been shown

to lead to shear trapping (Rusconi et al., 2014; Berke et al., 2008) which causes preferential attach-

ment to surfaces (Berke et al., 2008; Li et al., 2011). Turbulent flows can also lead to a trade-off in

nutrient uptake and the cost of locomotion due to chemotaxis (Taylor and Stocker, 2012), and can

drastically effect the population density (Pigolotti et al., 2012; Perlekar et al., 2010). Most impor-

tantly, the reproductive successes of species (and individuals within a single species) are coupled

over distance, through the secretion of toxins, goods, and signals (Mimura et al., 2000; Alli-

son, 2005; Hibbing et al., 2010). The spatial distributions of all such fitness altering intermediaries

depend on flow. Indeed, the experimental study by Drescher et al. (2014) has shown that flow can

help promote cooperation in bacterial biofilms. Thus, we are motivated to find out how flow plays a

role in the evolution of cooperation.

Here we theoretically study how fluid dynamics molds the social behavior of a planktonic micro-

bial population. Qualitatively stated, our evolutionary model has three assumptions: (1) Individuals

secrete one waste compound and one public good. The former has no cost, whereas the latter

does. (2) Mutations can vary the public good secretion rates of microbes, thereby producing a con-

tinuum of social behavior. (3) Microbes and their secretions diffuse and flow according to the laws of

fluid dynamics.

Under these assumptions, we find, through computer simulations and analytical theory, that bac-

teria self organize and form patterns of spots, which then exhibit an interesting form of budding dis-

persal when sheared by ambient fluid flow. The dispersal process preserves the group structure,

thereby enabling evolutionarily stable social behavior.

Our model is applicable to a wide variety of social ecosystems ranging from phytoplankton flow-

ing in oceanic currents to opportunistic bacteria colonizing blood or industrial pipelines. Our findings

imply that greater social complexity amongst planktonic species would be observed in regions of

large shear, such as by rocks and river banks. We might even speculate that multicellularity may

have originated near fluid domains with large shear flow, rather than the bulk of oceans or lakes.

This paper is organized as follows: We first establish that under certain conditions our physical

model gives rise to spatially organized cooperative structures. The structures are a natural byproduct

of the dynamics of the system. Furthermore, these social structures reproduce in whole to form new

identical structures. Variants of such structures have already been studied in ecological settings

(Tian et al., 2011; Camara, 2011; Baurmann et al., 2007; Wilson et al., 2003) and growth patterns

of microbial populations havebeen explored (Ben-Jacob et al., 1994; Chang-Li et al., 1988). We

then study the effects of mutation. We first start with a simplified model with only two phenotypes:

cheater and altruist. We then generalize to a continuum of public good secretion rates. In both

cases, we observe that above a certain mutation rate, cheating strains take over groups which leads

to total extinction. The latter finding is consistent with other empirical (Rainey and Rainey, 2003;

Diggle et al., 2007) and theoretical studies (Nowak and May, 1992).Through the fragmentation of

social groups, and death of cheating groups, we recover the results of Simpson’s paradox

(Chuang et al., 2009) where individual groups may decrease in sociality, but the population as a

whole becomes more social.

After setting up the stage for naturally forming social groups, we present our central and novel

finding, that flow shear can lead to evolutionarily stable cooperative behavior within the popula-

tion. Specifically, we demonstrate and study the evolution ofsociality of a microbial population (1)

subjected to constant shear, (2) embedded in a cylindrical laminar flow and (3) in a Rankine vortex.

We find that in all three cases population density and cooperative behavior scales with flow shear.

The mechanism of action is that shear distortion enhances the fragmentation of cooperative clus-

ters, thereby increasing the group fragmentation rate and limiting the spread of cheaters. If the
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shear is large enough that groups are torn apart

at a larger rate than the mutation rate, then

cooperation will prevail. Otherwise, groups will

become dominated by cheaters, and eventually

die out (Figure 2, Videos 1–3).

Results
We study a physically realistic spatial model of

microorganisms, where fluid dynamical forces

contribute significantly to the evolution of their

social behavior. Our analysis consists of simula-

tions and analytical formulas.

We simulate microbes as discrete particles

subject to stochastic physical and evolutionary

forces, and the compounds secreted by

microbes as continuous fields. In contrast, our

analytical expressions are derived from analo-

gous equations that are entirely continuous and

deterministic. In general, we should not expect

the discrete simulations to perfectly be described by the continuous set of partial differential equa-

tions. Nevertheless, the continuous system of equations do allow us to obtain relevant quantities

such as group size and group fragmentation rate to a good approximation (cf. appendix 1 and Fig-

ure 3).

In our model, the microorganisms secrete two types of diffusive molecules that influence each

other’s fitness (Figure 1). The first molecule, the concentration of which is denoted by c1 x; tð Þ, is a

beneficial public good that increases the fitness of those exposed, whereas the second, c2 x; tð Þ, is a

waste compound or toxin that has the opposite effect, and effectively acts as a volumetric carrying

capacity. The continuous equations that represent our system are

qn

qt
¼ dbr2n�v �rnþ n a1

c1

c1þ k1
�a2

c2

c2þ k2
�b1s1

� �

þ�
d2

qs2
1

n; (1)

qc1

qt
¼ d1r2c1�v �rc1þ

Z

¥

0

ns1ds1�l1c1; (2)

Video 1. This is a video file of a simulation of the

homogeneous phase.

DOI: https://doi.org/10.7554/eLife.34862.003

Video 2. This is a video file of a simulation of the

group phase.

DOI: https://doi.org/10.7554/eLife.34862.004

Video 3. This is a video file of a simulation of the

group phase under Couette flow.

DOI: https://doi.org/10.7554/eLife.34862.005
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qc2

qt
¼ d2r2c2�v �rc2þ s2

Z

¥

0

nds1�l2c2: (3)

Here n is a shorthand for n x; t; s1ð Þ, the number density of microbes at time t and position x that

produce the public good at a rate of s1. These microbes pay a fitness cost of b1s1 per unit time. The

production rate of waste s2 on the other hand, is assumed constant for all, and has no fitness cost.

Waste limits the number of individuals that a unit volume can carry. Microbes secreting public goods

at a rate s1 replicate to produce others with the same secretion rate. This reproduction rate is given

by the square bracket. However, the production rate s1 can change due to mutations. This is

described by the last term of Equation 1. Mutations can be thought as diffusion in s1 space.

In all three equations the first two terms describe diffusion and advection, while the last two

terms of Equation 2 and Equation 3 describe the production and decay of chemicals. The first two

terms in the square bracket describe the effect of the secreted compounds on fitness. This saturat-

ing form is experimentally established and well understood (Monod, 1949). The crucial third term in

the square bracket describes the cost of producing the public good, which increases linearly.

Social groups as turing patterns
Diffusion can cause an instability that leads to the formation of intriguing patterns (Turing, 1990),

which among other fields, have been investigated in ecological context (Tian et al., 2011;

Camara, 2011; Baurmann et al., 2007; Wilson et al., 2003). These so called Turing patterns typi-

cally form when an inhibiting agent has a diffusion length greater than that of an activating agent.

For our model system, the waste compound and public good play the role of inhibiting and activat-

ing agents, and patterns manifest as cooperating microbial clusters Figure 2. The size and reproduc-

tion rate of these clusters, in terms of system parameters, can be estimated from a Turing analysis

(cf. appendix 1). Figure 3 shows the values of diffusion constants that gives rise to Turing patterns,

as well as the size of the groups.

In the homogeneous phase, the system is evolutionarily very unstable, since as soon as one cheat-

ing mutant emerges, it quickly takes over the entire population, ultimately causing the population to

go extinct (Video 1). The group phase tolerates cheaters better, since once a cheater emerges it will

take over and compromise the fitness of only one group, while the others will live on. However, in

the absence of group fragmentation, novel cheating mutations will ultimately emerge in all groups,

and annihilate the population one group at a time (Video 2).

The main contribution of this paper is to demonstrate that stable social cooperation can be

induced or enhanced by fluid flow gradients. Specifically, shear forces induced by advective flow dis-

torts and fragments microbial clusters, leading to a kind of budding dispersal, which in turn enables

evolutionary stable cooperation (Figure 2, Video 3).

It is well known that evolutionary outcomes can depend on individuals being discrete

(Durrett and Levin, 1994). In our model, having a continuous population density can allow for the

existence of ‘micro-mutant populations’ which can spread easier between adjacent groups. The dis-

creteness further separates the clusters of microbes from each other, since there cannot exist frac-

tional individuals. In reality microbes are quantized, and we thus expect a discrete simulation to

better model the biology. In Figure 3 we present the phase diagram of the system, as obtained by

analytical theory, discrete agent based simulations (where microbes are discrete, self-replicating

brownian particles), and continuous simulations (where Equations 1,2,3 are solved numerically). In

order not to obfuscate the biology, we report our detailed mathematical treatment in the appendix.

Effect of shear on groups
We quantitatively determine the effect of different flow velocity profiles on the social evolution of

the system. A constant fluid flow merely amounts to a change in reference frame, which of course,

does not change the evolutionary fate of the population. However, we find that velocity gradients

cause significant changes to the social structure, both spatially and temporally. Specifically, we find

that large shear rate causes microbial groups to distort and fragment, which in turn facilitates group

reproduction. To investigate this effect in detail, we ran simulations for three fluid velocity distribu-

tions: Couette flow, Hagen-Poiseuille flow, and Rankine vortex.

Uppal and Vural. eLife 2018;7:e34862. DOI: https://doi.org/10.7554/eLife.34862 5 of 22

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.34862


Evolution of sociality in constant shear for a binary phenotype
We first look at a simplified system with just two phenotypes, cheater and altruist, to gain a basic

understanding of the mechanism involved. Mutations can cause a switch in social behavior.

To see the effect of shear on social evolution, we introduced Couette flow to the microbial habi-

tat. In this case, the flow velocity takes the form

v xð Þ ¼ vmax

r

R
ẑ;

where R is the radius of the pipe, and z is the longitudinal direction.

The shear rate is the derivative of the flow velocity and is related to the maximum flow rate vmax,

s¼ dv

dr
¼ vmax

R
:

We ran simulations for various shear rates and diffusion constants and observed that shear does

not significantly influence the region of parameter space that gives rise to cooperating groups. How-

ever if the system parameters are conducive to the formation of groups, shear tears groups apart

and increases the rate at which spatially distinct cooperative clusters form.

We find that the group fragmentation rate ! sð Þ, depends linearly on the shear rate s (Figure 4)

! sð Þ ¼msþ!0;

where !0 is the fragmentation rate solely due to microbial diffusion and can approximately be given

by the Turing eigenvalue !0 »Lmax (see appendix). The constant of proportionality m is given empiri-

cally from our simulations and depends on diffusion lengths and group density. This holds in the low

density regime. Once the population density becomes large, group-group interactions slow the

group reproduction rate and the population saturates.

Figure 1. Schematics of our Model. The microbes secrete two types of molecules into the environment. The first, a beneficial public good that

promotes growth, and the second, a waste or harmful substance hinders growth. Cheating microbes produce lessor none of the former, while

benefiting from public goods secreted by the altruistic population.

DOI: https://doi.org/10.7554/eLife.34862.006
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Larger shear corresponds to a faster rate of group fragmentation, thus enabling or enhancing

social behavior in the microbial population. Given the group size and fragmentation rate as a func-

tion of shear, we can calculate roughly where the critical shearrate is for sociality. We also find that

the group population N increases linearly with shear,

N sð Þ ¼ nsþN0:

Figure 2. Snapshots of homogeneous and group phases without and with shear. Microbes interact by secreting diffusive chemicals into their

environment. Cooperators are seen as bright green dots, and cheaters are seen as dark green dots. The waste compound is shown as blue and the

public good as red, the two combined is seen as magenta. Top row: In the homogeneous phase the microbes spread to fill the domain. Cheaters

quickly begin to take over, and eventually take over the whole domain. With no cooperators left, the public good decays away and the system goes

extinct. Middle row: In the group phase, when the diffusion length of the waste compound is larger than the diffusion length of public good, microbes

form stable groups. As the microbes increase in number, the groups split apart and form new groups. As mutations occur within groups, the cheaters

take over and the group goes extinct. Cooperation can only be stable here if groups reproduce quicker than mutants take over. Bottom row: By adding

a shearing flow to the group system, we can cause the groups to split apart quicker. Mutations still take over groups, but the groups are able to

reproduce quicker than mutants take over, thus allowing cooperative groups to prevail at steady state. The simulation videos corresponding to this

figure are provided in the Videos 1–3.

DOI: https://doi.org/10.7554/eLife.34862.007
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where n and N0 are the slope and intercept of the line in Figure 4B. This also influences where the

critical shear rate will be.

Cooperation is stable if a group is able to fragment before a cheating strain emerges and prolifer-

ates in the group. Therefore, for stability, we need the take-over time to exceed the time it takes for

a group to reproduce. A mutant emerges at a rate of �N sð Þ (we emphasize that � is not the generic

mutation rate, but the rate at which a particular social gene mutates). Once a mutant emerges, it

takes some time td to spread to where the daughter group forms. td will depend on where the

mutant first emerges. Assuming a uniform distribution, and taking the diffusion time in two dimen-

sions as a function of radius r, td rð Þ ¼ r2=4db, we obtain

<td>¼
Z

R

0

r2

4db

2r

R2
dr¼ R2

8db
;

Figure 3. Turing analysis results. The top-left figure, (A) shows the group size 2p=kfast as obtained by our

theoretical analysis (appendix); whereas the bottom figure, (B) shows the same for continuous simulations, and the

top-right figure, (C) is for agent based simulations. The black line in (B) divides parameters that give rise to striped

patterns, and those that give rise to spots, corresponding images are shown to the left and right of (B). Due to the

discreteness of the agent based simulations, Turing patterns are not always stable where they might be in the

continuous analogue. We see that the discrete simulations cut off around where we would see stripes in the

continuous case, and do not see striped patterns in the discrete case. For different sets of parameters, we can also

see Turing patterns in the discrete-stochastic case where they might not occur in the continuous case. For the

region where Turing patterns are stable, the continuous theory gives a good prediction of group size and group

reproduction rate. The Matlab code and data for this figure is provided in Figure 3—source data 1.

DOI: https://doi.org/10.7554/eLife.34862.008

The following source data is available for figure 3:

Source data 1. Matlab data and code files for Figure 3.

DOI: https://doi.org/10.7554/eLife.34862.009
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where R is the group radius. The take-over rate is then given by taking the inverse of the total take-

over time, and the critical shear rate sc necessary for social cooperation is given by equating the

take-over rate with the reproduction rate,

! scð Þ ¼
1

�N scð Þ
þ<td>

� ��1
: (4)

The critical shear rate sc above which the system can maintain stable cooperation is then given

by the positive root,

Figure 4. Critical shear for cooperativity for cheater-altruist system. (A) Group fragmentation rate versus shear rate. We see that the group

fragmentation rate increases linearly with the shear rate. (B) Group population versus shear rate. As the shear distorts and elongates the group, the

average group population also increases linearly with shear. (C) Average population versus shear rate for different mutation rates. Simulations were run

for a time of 5:0� 10
5 s and averaged over 10 runs for each shear rate and mutation rate. Error bars correspond to one standard deviation. Here, a

mutation corresponds to a full cheater, with no public good secretion. The population goes extinct under larger mutation rates unless the shear rate is

above the critical value. The critical shear values for different mutation rates are roughly obtained by 10 and are shown by the vertical dashed lines

corresponding to curves of the same color. The Matlab code and data for this figure is provided in Figure 4—source data 1.

DOI: https://doi.org/10.7554/eLife.34862.010

The following source data is available for figure 4:

Source data 1. Matlab data and code files for Figure 4.

DOI: https://doi.org/10.7554/eLife.34862.011
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sc ¼
�bsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2s� 4ascs
p

2as
(5)

where as ¼<td>�mn;bs ¼<td>�n!0þ<td>�mN0þm��n; and cs ¼<td>�N0!0þ!0��N0.

The values obtained from Equation 5 is indicated by the vertical dashed lines in Figure 4 and

agrees with the computationally observed critical shear reasonably well. It may be possible to

improve this formula further by taking into account additional factors, such as the non-uniform spa-

tial distribution of population within a group and the elongation of groups with shear. Furthermore,

as the mutants increase in numbers it becomes more likely that one of them crosses over the daugh-

ter group, thereby reducing further the expected <td>. We see better agreement with analytical

theory and simulations at lower mutation rates, since these corrections are mainly to the diffusion

time <td>, and become more significant at higher mutation rates, where <td>� 1=�N, (cf.

Equation 4).

If shear is below the critical value (Equation 5), the system will be in a non-social state. Ultimately,

cheaters will take over, and wipe out all groups. When shear is increased above the critical value

however, the system will transition to a stable social state, thereby maintaining its fitness and dense

population indefinitely. Figure 4 shows the long-time population of the system versus the shear

rate. The population goes extinct under larger mutation rates unless the shear rate is above the criti-

cal value.

When is shear necessary, and when is it just a sufficient condition for cooperation? By setting

sc ¼ 0 in Equation 5 and solving for � we can also obtain the critical mutation rate above which

shear is necessary in order to have social cooperation. We get �c ¼ 6:9� 10
�7 analytically and our

simulations show a critical mutation rate around �c ¼ 5:5� 10
�7.

Evolution of sociality in constant shear for a continuum of phenotypes
As we will see, we obtain similar results when the available phenotypes include a continuum of social

behaviors. In this case, a mutation changes the secretion rate of a microbe by a uniformly chosen

random number between 0 and 1 s
�1.

We observe from our simulations, that mutations that increase the secretion rate of a microbe do

not fixate, since the microbe now pays a higher cost and is less fit than its neighbors. However, once

a mutation that lowers the secretion rate of a microbe occurs within a group, it quickly takes over

the entire group, leaving individual groups homogeneous in secretion rate.

We show the diversity of social behaviors across groups and within individual groups in greater

detail in Appendix 1—figure 1. Since less cooperative phenotypes always dominate more coopera-

tive phenotypes, we find no diversity of social behavior within a group. However we do see a large

variation across groups, which increases with shear.

Groups with different secretion rates reproduce at different rates. Groups with too low of a secre-

tion rate are not stable and die off. In general, the system will evolve to a distribution of groups with

secretion rates centered around the value of secretion rate that maximizes the group reproduction.

For larger mutation rates, the system will tend towards lower average secretion rate and/or go

extinct. The average secretion rate of the population can be maintained at a higher value by intro-

ducing shear flow, Figure 5.

We therefore have the same qualitative result as in the two phenotype case, if shear is below

some critical value, the system will be in a non-social state. Ultimately, cheaters will take over, and

wipe out all groups. As before, the social state of the population can transition from a non-coopera-

tive state to a cooperative one with increased flow shear.

Evolution of sociality in a flowing pipe
We now further generalize our results by looking at laminar flow with fixed boundaries, and with a

continuum of public good secretion rates. For Hagen-Poiseuille flow, the shear rate varies linearly

with the radius, taking its maximum value adjacent to the boundaries, when r ¼ R. The flow and

shear profiles are given as,

v¼ vmax 1� r2

R2

� �

;
dv

dr
¼�2vmax

r

R2
:

Uppal and Vural. eLife 2018;7:e34862. DOI: https://doi.org/10.7554/eLife.34862 10 of 22

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.34862


We therefore expect to see groups fragment quicker at the boundary, leading to larger coopera-

tion, higher average secretion rate, and larger population, which is indeed what we do see (Figure 6,

Video 4).

Earlier studies have proposed and shown that shear trapping due to the interaction between bac-

terial motility and fluid shear can result in preferential attachment to surfaces, (Rusconi et al., 2014;

Figure 5. Evolution of sociality in constant shear (continuum of secretion rates). Individual groups are essentially homogeneous in secretion space,

whereas the meta-population contains a distribution of groups with different secretion rates (Appendix 1—figure 1). (A) Groups that have a higher

secretion rate reproduce quicker than those of lower secretion rate. Shear works to increase the reproduction rate of groups. (B) Just as in the two

phenotype case, the population of the system increases with shear, since groups are able to split apart quicker than novel cheating mutations occur. (C)

The average secretion rate of the entire population generally increases with shear and saturates around where the group reproduction rate is sufficient

to maintain the population. Simulations were run for a time of 2:0� 10
5 s and averaged over 80 runs for each shear rate and under a mutation rate of

� ¼ 1:6� 10
�6
s
�1. Error bars correspond to one standard deviation. The Matlab code and data for this figure is provided in Figure 5—source data 1.

DOI: https://doi.org/10.7554/eLife.34862.012

The following source data is available for figure 5:

Source data 1. Matlab data and code files for Figure 5.

DOI: https://doi.org/10.7554/eLife.34862.013

Uppal and Vural. eLife 2018;7:e34862. DOI: https://doi.org/10.7554/eLife.34862 11 of 22

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.34862.012
https://doi.org/10.7554/eLife.34862.013
https://doi.org/10.7554/eLife.34862


Figure 6. Evolution of sociality in pipe and vortex geometries (continuum of secretion rates). The top row gives

simulation snapshots of the system in a Hagen-Poiseuille flow in a pipe (A) and of the system in a Rankine vortex

(B). The middle row gives the average microbial population and the shear rate magnitude versus distance from the

center of the pipe (C) and the center of the Rankine vortex (D). Since shear is spatially dependent, the population

is localized in regions of large shear. For Hagen-Poiseuille flow, we see that the population is larger at the

boundaries, where the shear is also larger (C). This is because groups fragment quicker at the boundaries and are

able to overcome take-over by mutation, whereas near the center they cannot. For the Rankine vortex we also see

that the population follows very closely to the shear (D), which suggests that the growth is proportional to shear.

We caution that this holds in the low density limit. At higher densities the population saturates and is no longer

proportional to shear. The bottom row gives the average public good secretion rates of the entire population for

Hagen-Poiseuille flow (E) and for Rankine vortex flow (F). Again, regions of larger shear admit more cooperative

populations with larger public good secretion rates. Simulations were run for a duration of 2:0� 10
5 s under a

mutation rate of � ¼ 2� 10
�6
s
�1 and data was averaged over 200 runs. The undulations observed in the

population plots are due to the finite size of the groups. Groups form layers of width equal to the group diameter.

The population curve therefore shows undulations of width equal to the group width. Simulation videos of Hagen-

Poiseuille flow and Rankine vortex flow are provided in Videos 4, 5 and Matlab code and data for (C)-(F) is given

in Figure 6—source data 1.

DOI: https://doi.org/10.7554/eLife.34862.014

The following source data is available for figure 6:

Source data 1. Matlab data and code files for Figure 6.

DOI: https://doi.org/10.7554/eLife.34862.015
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Berke et al., 2008; Li et al., 2011). In a similar spirit, we suggest that inhabiting surfaces may have

the additional advantage of enhanced sociality, due to shear driven group fragmentation and

dispersal.

Evolution of sociality in vortices
In a vortex, the region above the critical shear value constitutes an annulus. Thus, we expect social

behavior to be localized. Any point in the fluid outside this annulus will be taken over and destroyed

by cheaters. In our simulations, at steady state we indeed see clusters whirling around exclusively

within annulus, neither too near, nor too far from the vortex core (Video 5). Life cannot exist outside

this annulus, as cheaters kill these groups.

The Rankine vortex in two dimensions is characterized by a vortex radius R and a rotation rate G.

The shear rate acting on a group acts tangential to the flow. The velocity profile and shear magni-

tude are given as,

v¼
Gr

2pR2 �̂; r� R
G

2pr
�̂; r>R

(

s¼ 0; r� R
G

2pr2
; r>R

�

where r2 ¼ x2þ y2.

The shear rate is then a maximum at the minimum value of r which occurs at the vortex radius R.

We therefore expect to see the largest concentration of groups at the vortex radius, which is what

we observe in our simulations (Figure 6).

Limitations
While we paid close attention to physical realism, we also made important simplifying assumptions

which under certain circumstances, may lead to incorrect conclusions. We caution the reader by enu-

merating the limitations of our model. First, since many microorganisms live in a low Reynolds num-

ber environment, we have chosen to neglect the inertia of microorganisms. However in reality, the

microorganisms influence the flow around them. This effect will be particularly significant for a dense

microbial population, especially when the microbes stick onto one other, or integrate via extracellu-

lar polymers. A more sophisticated model would include the coupling of the microbes to the flow.

Secondly, the finite size and shapes of the microorganisms have been neglected. Instead, we have

treated microbes as point particles, which will also invalidate our model in the dense population

limit. Lastly, real microbes display a large number of complex behaviors such as biofilm formation

and chemotactic migration. Here we have ignored the active response of microorganisms to the

chemical gradients that surround them and to the surfaces they might attach and migrate. Instead,

we took them as simple Brownian particles.

Video 4. This is a video file of a simulation of the

group phase under a Hagen-Poiseuille flow.

DOI: https://doi.org/10.7554/eLife.34862.016

Video 5. This is a video file of a simulation of the

group phase under a Rankine vortex flow.

DOI: https://doi.org/10.7554/eLife.34862.017
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Discussion
It is well known that spatial structure is crucial in the evolution of cooperation, (Wilson et al., 1992;

Taylor, 1992; Lion and Baalen, 2008). Many of these studies introduce these mechanisms ‘manu-

ally’, for example density regulation and migration are enforced by applying carrying capacities and

migration rates to groups. In this study we have distanced ourselves from the typical game theoretic

abstractions used to investigate evolution of cooperation. Instead we adopted a mechanical point of

view. We investigated in detail, the fluid dynamical forces between microbes and their secretions, to

understand how cooperation evolves among a population of planktonic microbes inhabiting in a

flowing medium. In our first principles model, the spatial structuring and dispersion occur naturally

from the physical dynamics.

We found that under certain conditions, microbes naturally form social communities, which then

procreate new social communities of the same structure. More importantly, we discovered that

regions of a fluid with large shear can enhance the formation of such social structures. The mecha-

nism behind this effect is that fluid shear distorts and tears apart microbial clusters, thereby limiting

the spread of cheating mutants. Our proposed mechanism can be seen as shear flow enhanced bud-

ding dispersal. This can also be viewed under the phenomenon of Simpson’s paradox

(Chuang et al., 2009) where individual groups may decrease in sociality, but the population as a

whole becomes more social.

In our investigation, we found only certain regions of the fluid domain admits life, social or other-

wise, as governed by the domain geometry and flow rate. From this perspective, it appears that evo-

lution of sociality is a mechanical phenomenon.

In our physics-based model, groups emerge from individual-level dynamics and selection. Groups

with cheaters are negatively selected, and give way to those without cheaters. On the other hand

the ensemble of groups do not exhibit any variation in their propensity to progenerate cheaters, nei-

ther is such propensity heritable. Rather, the progeneration of cheating is a (non-genetic) symptom

that inevitably manifests in every group that has been around long enough. In this sense, it might be

appropriate to view the emergence and spread of cheaters in a microbial population as a phenome-

non of ‘aging’, in the non-evolutionary and mechanical sense, that any system consisting of a large

number of interdependent components will inevitably and with increasing likelihood, fall apart

(Vural et al., 2014).

Table 1. Summary of system parameters.

Parameter Definition Values

db Microbial diffusion constant 0:3906� 10
�6
cm

2
s
�1

d1 Public good diffusion constant ð1 to 60Þ � 10
�6
cm

2
s
�1

d2 Waste diffusion constant ð1 to 50Þ � 10
�6
cm

2
s
�1

v Flow velocity ð0 to 100Þ � 10
�5
cms

�1

l1 Public good decay constant 5:0� 10
�3
s
�1

l2 Waste decay constant 1:5� 10
�3
s
�1

k1 Public good saturation 0:01

k2 Waste saturation 0:10

s1 Public good secretion rate ð0 to 1:0Þs�1

s2 Waste secretion rate ð0 to 1:0Þs�1

a1 Benefit of public good 7:5� 10
�3
s
�1

a2 Harm of waste compound 8:0� 10
�3
s
�1

b1 Cost of secretion 0:2

� Mutation rate ð6:0 to 20:0Þ � 10
�7
s
�1

DOI: https://doi.org/10.7554/eLife.34862.018
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Materials and methods
The analytical conclusions we derive from our system (Equations 1,2,3) has been guided and supple-

mented by an agent based stochastic simulation. Videos of simulations are provided in Videos 1–

5. Our simulation algorithm is as follows: at each time interval, Dt, the microbes (1) diffuse by Brow-

nian motion, with step size d derived from the diffusion constant and a bias dependent on the flow

velocity, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

4dbDt
p

þ vDt, (2) secrete chemicals locally that then diffuse and advect using a finite dif-

ference scheme, and (3) reproduce or die with a probability dependent on their local fitness given

by f ¼ Dt a1
c1

c1þk1 � a2
c2

c2þk2 � b1s1

h i

. If f is negative, the microbes die with probability 1, if f is between

0 and 1 they reproduce with probability f , and if f is larger than 1, they produce number of offspring

given by the integer part of f and another with probability given by the decimal part of f . Upon

reproduction, random mutations may alter the secretion rate of the public good –and thus the

reproduction rate– of the microbes. Mutations occur with probability � and can change the secretion

rate by a random number between 0 and s1. The secretion rate is assumed to be heritable, and con-

stant in time. Numerical simulations for figures were performed by implementing the model

described above using the Matlab programming language and simulated using Matlab (Mathworks,

Inc.). The source code for discrete simulations is provided in Source code 1 and the source code for

continuous simulations used in Figure 3B is provided in Source code 2.

A summary of the system parameters is given in Table 1, along with typical ranges for their values

used in the simulations. The relevant ratios of parameters are consistent with those observed experi-

mentally (Kim, 1996; Ma et al., 2005).
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Szabó G, Fáth G. 2007. Evolutionary games on graphs. Physics Reports 446:97–216. DOI: https://doi.org/10.
1016/j.physrep.2007.04.004

Taylor JR, Stocker R. 2012. Trade-offs of chemotactic foraging in turbulent water. Science 338:675–679.
DOI: https://doi.org/10.1126/science.1219417, PMID: 23118190

Taylor PD. 1992. Altruism in viscous populations — an inclusive fitness model. Evolutionary Ecology 6:352–356.
DOI: https://doi.org/10.1007/BF02270971

Tél T, de Moura A, Grebogi C, Károlyi G. 2005. Chemical and biological activity in open flows: a dynamical
system approach. Physics Reports 413:91–196. DOI: https://doi.org/10.1016/j.physrep.2005.01.005

Tian C, Ling Z, Lin Z. 2011. Turing pattern formation in a predator–prey–mutualist system. Nonlinear Analysis:
Real World Applications 12:3224–3237. DOI: https://doi.org/10.1016/j.nonrwa.2011.05.022

Traulsen A, Nowak MA. 2006. Evolution of cooperation by multilevel selection. PNAS 103:10952–10955.
DOI: https://doi.org/10.1073/pnas.0602530103, PMID: 16829575

Trivers RL. 1971. The evolution of reciprocal altruism. The Quarterly Review of Biology 46:35–57. DOI: https://
doi.org/10.1086/406755

Turing AM. 1990. The chemical basis of morphogenesis. 1953. Bulletin of Mathematical Biology 52:153–197.
DOI: https://doi.org/10.1007/BF02459572, PMID: 2185858

Vural DC, Isakov A, Mahadevan L. 2015. The organization and control of an evolving interdependent population.
Journal of the Royal Society Interface 12:20150044. DOI: https://doi.org/10.1098/rsif.2015.0044

Vural DC, Morrison G, Mahadevan L. 2014. Aging in complex interdependency networks. Physical Review E 89:
022811. DOI: https://doi.org/10.1103/PhysRevE.89.022811

Wakano JY, Nowak MA, Hauert C. 2009. Spatial dynamics of ecological public goods. PNAS 106:7910–7914.
DOI: https://doi.org/10.1073/pnas.0812644106, PMID: 19416839

West SA, Griffin AS, Gardner A. 2007. Social semantics: altruism, cooperation, mutualism, strong reciprocity and
group selection. Journal of Evolutionary Biology 20:415–432. DOI: https://doi.org/10.1111/j.1420-9101.2006.
01258.x, PMID: 17305808

Williams GC. 1966. Adaptation and Natural Selection. Princeton. Princeton University Press.
Wilson DS, Pollock GB, Dugatkin LA. 1992. Can altruism evolve in purely viscous populations? Evolutionary
Ecology 6:331–341. DOI: https://doi.org/10.1007/BF02270969

Wilson DS, Sober E. 1994. Reintroducing group selection to the human behavioral sciences. Behavioral and Brain
Sciences 17:585–608. DOI: https://doi.org/10.1017/S0140525X00036104

Wilson DS. 1975. A theory of group selection. PNAS 72:143–146. DOI: https://doi.org/10.1073/pnas.72.1.143,
PMID: 1054490

Wilson WG, Morris WF, Bronstein JL. 2003. Coexistence of mutualists and exploiters on spatial landscapes.
Ecological Monographs 73:397–413. DOI: https://doi.org/10.1890/02-0297

Wynne-Edwards V. 1962. Animal Dispersion in Relation to Social Behaviour. New York: Hafner Publishing Co.

Uppal and Vural. eLife 2018;7:e34862. DOI: https://doi.org/10.7554/eLife.34862 18 of 22

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.1016/j.jtbi.2011.07.014
http://www.ncbi.nlm.nih.gov/pubmed/21820447
https://doi.org/10.1111/j.1558-5646.2012.01835.x
https://doi.org/10.1038/2011145a0
https://doi.org/10.1038/2011145a0
https://doi.org/10.1016/j.physrep.2007.04.004
https://doi.org/10.1016/j.physrep.2007.04.004
https://doi.org/10.1126/science.1219417
http://www.ncbi.nlm.nih.gov/pubmed/23118190
https://doi.org/10.1007/BF02270971
https://doi.org/10.1016/j.physrep.2005.01.005
https://doi.org/10.1016/j.nonrwa.2011.05.022
https://doi.org/10.1073/pnas.0602530103
http://www.ncbi.nlm.nih.gov/pubmed/16829575
https://doi.org/10.1086/406755
https://doi.org/10.1086/406755
https://doi.org/10.1007/BF02459572
http://www.ncbi.nlm.nih.gov/pubmed/2185858
https://doi.org/10.1098/rsif.2015.0044
https://doi.org/10.1103/PhysRevE.89.022811
https://doi.org/10.1073/pnas.0812644106
http://www.ncbi.nlm.nih.gov/pubmed/19416839
https://doi.org/10.1111/j.1420-9101.2006.01258.x
https://doi.org/10.1111/j.1420-9101.2006.01258.x
http://www.ncbi.nlm.nih.gov/pubmed/17305808
https://doi.org/10.1007/BF02270969
https://doi.org/10.1017/S0140525X00036104
https://doi.org/10.1073/pnas.72.1.143
http://www.ncbi.nlm.nih.gov/pubmed/1054490
https://doi.org/10.1890/02-0297
https://doi.org/10.7554/eLife.34862


Appendix 1

DOI: https://doi.org/10.7554/eLife.34862.022

Here we describe a number of simplifying assumptions and following mathematical analysis

that allow us to make sense of our simulation results, both qualitatively and quantitatively. Our

approach is the standard Turing analysis commonly used to describe pattern formation in

reaction diffusion systems. We first obtain a steady state solution, that is find out the

population density and concentration of the public good and waste compound that leads to

an equilibrium state. We then linearize the system around this equilibrium, and find out what

kind of perturbations destabilize this equilibrium. The spotty patterns that form upon

destabilization biologically correspond to cooperating microbial communities, the size of

which we obtain in terms of system parameters. Our analytical outcomes are compared to

discrete simulations in Figure 3.

Our simulations start with the whole population having a given secretion rate. The Turing

analysis conducted below is then to find the group size and reproduction rate with this

secretion rate.

Appendix 1—figure 1. Secretion rate distributions of groups under different shear rates.

Microbes are grouped by their position in space and the distribution of their secretion rates is

plotted. Simulations were started with a secretion rate of 100 and random mutations were

allowed to change the secretion rate of individual microbes. Distributions are given by looking

at 10 simulations for each shear rate after a duration of 2:0� 10
5 s. (A) With no shear, there are

very few groups left at the chosen time and these will eventually go extinct. Cheaters have

taken over these groups and individual groups are homogeneous in secretion rate. (B) With

some added shear, groups are better able to beat cheating mutations, but the bulk of

the distribution is still at lower secretion rates. (C) At higher shear rates there are more groups

centered at a higher secretion rate due to shear augmented group fragmentation. In all cases,

groups that initially start off with a heterogeneous population quickly become homogeneous,

as seen by the delta peaks in the distributions. Each peak corresponds to a group. In the

larger population however, groups of different secretion rates can and do coexist, as seen by

the distribution of the peaks. In this case we can still analyze individual groups by looking at

their secretion rate. The Matlab code and data for this figure is provided in Appendix 1—

figure 1—source data 1.

DOI: https://doi.org/10.7554/eLife.34862.023

The following source data is available for figure :

Appendix 1—figure 1—source data 1. Matlab data and code files for figure in appendix.

DOI: https://doi.org/10.7554/eLife.34862.024
We also observe in our simulations, that groups are typically homogeneous in terms of

secretion rate; that is once a cheating mutation occurs in a group, it fixates and quickly takes

over the group, on a time scale much quicker than the group fragmentation (Appendix 1—

figure 1). In other words, while the populations in different groups may have different

secretion rates, the secretion rate within one group is approximately uniform. We can

therefore simplify our equations to determine the spatial structure of a group in terms of the

secretion rate of its constituents, even after mutations occur. To determine the native group
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size and reproduction rate (i.e. when there is no shear and mutation) we can now write down a

simplified set of equations,.

qn

qt
¼ dbr2nþ n a1

c1

c1þ k1
�a2

c2

c2þ k2
�b1s1

� �

(6)

qc1

qt
¼ d1r2c1þ ns1�l1c1; (7)

qc2

qt
¼ d2r2c2þ ns2�l2c2: (8)

Through some rescaling, we can non-dimensionalize the system. If we define the rescaled

variables as

x
! x

! ffiffiffiffi

l1
db

q

; t l1t; ca ca
ka
; da da

db

sa sa
kala

; � ðk1l1Þ2�; a1 a1

l1
; a2 a2

l1
;

b1 b1k1; v
! v

! ffiffiffiffiffiffiffi

1

l1db

q

; s l2
l1
;

(9)

then our equations become,

qn

qt
¼r2nþ n a1

c1

c1þ 1
�a2

c2

c2þ 1
�b1s1

� �

; (10)

qc1

qt
¼ d1r2c1þ ns1� c1; (11)

qc2

qt
¼ d2r2c2þ nss2�sc2: (12)

We will now obtain steady states and conditions for linear stability. We first obtain the

steady states in the absence of diffusion and investigate the stability of the system. The steady

states are given by

n a1

c1

c1þ 1
�a2

c2

c2þ 1
�b1s1

� �

¼ ns1� c1 ¼ nss2�sc2 ¼ 0:

This gives, either the trivial solution n* ¼ c*
1
¼ c*

2
¼ 0, or the solutions:

c*a ¼ n*sa; n* ¼�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2� 4ac
p

2a
;

where a ¼ a1 � a2 � b1s1ð Þs1s2; b ¼ a1s1 � a2s2 � b1s1 s1 þ s2ð Þ; and c ¼ �b1s1. For this to be a

sensible solution, we require n* to be real and positive. This also imposes conditions on the

system parameters.

Next, we establish the local stability of this solution by perturbing the system away from

the steady state and expand up to first order. We take the perturbation

w ¼ n; c1; c2ð ÞT� n*; c*
1
; c*

2

� �T
, and substitute it into our system to get the linear system

q

qt
w¼ Aw: (13)

With the stability matrix, A, given as,
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A¼
0 f1 f2

s1 �1 0

ss2 0 �s

0

B

@

1

C

A
; (14)

where

f1 ¼
a1n

*

n*s1þ 1ð Þ2
f2 ¼�

a2n
*

n*s2þ 1ð Þ2
:

The system is stable if the eigenvalues, L of this matrix have a negative real part. The

characteristic polynomial for the eigenvalues is given as L3 þ A0L
2 þ B0Lþ C0 ¼ 0, where

A0 ¼ 1þs;
B0 ¼ s� f1s1� f2s2s;
C0 ¼�s f1s1þ f2s2ð Þ:

Since the first two coefficients of the characteristic equation are positive, by Descartes’ rule

of signs, in order to get only negative real part eigenvalues, we need B0 and C0 to be positive

as well. This is a requirement for linear stability. Thus, we have the conditions

s� f1s1� f2s2s� 0;
�f1s1� f2s2 � 0) jf1s1j � jf2s2j:

Next we include diffusion and analyze the instability caused by diffusion. Fourier expanding

the solution

W x; tð Þ ¼
k

P

cke
ik�xeL kð Þt; (15)

and plugging this into our equations, we get the eigenvalue equation,

�k2Dþ Að ÞW ¼ LW, where

D¼
1 0 0

0 d1 0

0 0 d2

0

B

@

1

C

A
: (16)

Solving for the eigenvalues again gives a characteristic equation of the form

L
3 þ AL2 þ BLþ C ¼ 0, where now

A¼ A0þQ k2
� �

; (17)

B¼ B0þF k2
� �

; (18)

C¼C0þ	 k2
� �

; (19)

and the k2 dependent functions are,

Q k2
� �

¼ 1þ d1þ d2½ �k2; (20)

F k2
� �

¼ d1d2þ d1þ d2½ �k4þ d1sþ d2þsþ 1½ �k2; (21)

	 k2
� �

¼ d1d2k
6þ d1sþ d2½ �k4þ s� d2f1s1� d1f2s2s½ �k2: (22)

We can again use Descartes’ rule of signs, this time looking for an instability, which will

happen when 	 k2ð Þ is sufficiently negative. To be precise, the range of unstable wavenumbers

satisfy,
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	 k2
� �

<�C0: (23)

At the critical values for the diffusion parameters, the function 	 k2ð Þ þ C0 only vanishes at

one point, the local minumum of 	 k2ð Þ. This occurs at the critical k2 value where d	=dk2 ¼ 0,

giving

k2
crit
¼
�bk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2k � 4akck

q

2ak
; (24)

where ak ¼ 3d1d2; bk ¼ 2 d1s þ d2½ �; and ck ¼ s � d2f1s1 � d1f2s2s: We take the positive root in

33 corresponding to the physical, positive k2.

For all combinations of parameters giving rise to stable groups, we observe in our

simulations that the group size approximated well by 2p=kfast, where, kfast is the wave number

corresponding to the fastest growing mode (i.e. the value that maximizes L k2ð Þ). The size of

the microbial clusters, as obtained by analytical theory 2p=kfast and stochastic simulations are

shown in the top row of 3. The color indicates the size of microbialgroups.

Roughly speaking, if we view a microbial cluster as the cause of perturbation at a nearby

location, the Turing instability will manifest as group reproduction. We should strongly caution

that as the instability proceeds, the system moves away from the initial unstable fixed point

around which it was linearized, and thus the exponential dependence in 24 should eventually

break down. Nevertheless, the eigenvalues in the exponents still provide us with an

approximate estimation of the group reproduction rate, within a factor of two near the phase

boundary.
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