\qquad
\qquad

Exam 1, Math 20580

Feb. 15, 2024

- The Honor Code is in affect for this examination. All work is to be your own.
- Please turn off and stow all cellphones and electronic devices.
- Calculators are not allowed.
- The exam lasts for 75 minutes.
- Be sure that your name and your instructor's name and your section number are on the front page of your exam.
- There are 12 problems, 8 are multiple choice and 4 are partial credit.
- Be sure that you have all 8 pages of this exam.
- Multiple choice questions should have distinct answers. (If for some reason you think this is not the case, let your instructor know after the exam and do one of the following. If you think a multiple choice question has no listed correct answer, leave the line blank. If you are right you will get full credit. If you think a multiple choice question has more than one correct answer, X ONE of them: you will never get credit for a line with two or more X's.)

Please mark you answers with an \mathbf{X}, not a circle.

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)
8. (a)
(b)
(c)
(d)
(e)

MC Total. \qquad

9 \qquad
10. \qquad
11. \qquad
12. \qquad
Total.

Multiple choice problems

1. (7 points) If A and B are 2×2 matrices such that $A=\left[\begin{array}{rr}1 & -1 \\ -1 & 3\end{array}\right]$ and $A B=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$, then what is the matrix B ?
(a) $\left[\begin{array}{ll}4 & 6 \\ 2 & 4\end{array}\right]$
(b) $\left[\begin{array}{ll}4 & 2 \\ 6 & 4\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
(d) $\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$
(e) $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$
2. (7 points) Let A be the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 0 & -1 & 2 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Which of the following matrices is the reduced row echelon form (RREF) of A ?
(a) $\left[\begin{array}{rrrrr}1 & 0 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$
(c) $\left[\begin{array}{rrrrr}1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$
(e) $\left[\begin{array}{rrrrr}1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
3. (7 points) For which of the following equations are there 2×2 matrices A and B which do NOT satisfy the equation:
(I): $\quad A(A+B)=A^{2}+A B$
(III): $\quad A B=B A$
(II): $\quad A^{2}-B^{2}=(A-B)(A+B)$
(IV): $\quad B(A+B)=B A+B^{2}$.
(a) (II) only
(b) (I), (III) and (IV) only
(c) (I), (II) and (IV)
(d) (I) and (IV) only
(e) (II) and (III) only
4. (7 points) For which values of h and k is the matrix $A=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & h & k & 1\end{array}\right]$ in reduced row echelon form (RREF)?
(a) $h=1$ and any k
(b) $(h, k)=(0,0)$ only
(c) $(h, k)=(0,0)$ and $(h, k)=(0,1)$ only.
(d) $(h, k)=(1,0)$ and $(h, k)=(1,1)$ only
(e) $h=0$ and any k
5. (7 points) Let A be a 5×6 matrix such that the dimension of the null space of A is 4 . What is the dimension of the null space of the transpose matrix A^{T} ?
(a) 3
(b) 2
(c) 1
(d) 0
(e) 4
6. (7 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by counterclockwise rotation of the plane about the origin by angle $\frac{3 \pi}{2}$ (in radians). Which of the following is the standard matrix of T ?
(a) $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
(d) $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$
(e) $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$
7. (7 points) Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{r}
-1 \\
-2 \\
1
\end{array}\right]
$$

in \mathbb{R}^{3}. Which of the following statements is true?
(a) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent
(b) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ spans \mathbb{R}^{3}
(c) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{4}\right\}$ is linearly independent
(d) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is a basis of \mathbb{R}^{3}
(e) $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is linearly dependent
8. (7 points) Consider the basis

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

for \mathbb{R}^{3}. Let \vec{x} denote the vector

$$
\vec{x}=\left[\begin{array}{r}
3 \\
-2 \\
5
\end{array}\right] \quad \text { and write } \quad[x]_{\mathcal{B}}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

for the coordinate vector of \vec{x} with respect to \mathcal{B}. Find a, b and c. Which number below is the value of c ?
(a) 3
(b) -5
(c) -1
(d) 5
(e) 1

Partial credit problems

9. (11 points) The matrix A has the reduced row echelon form (RREF) B, as shown below:

$$
A=\left[\begin{array}{rrrrr}
0 & 0 & 3 & -3 & 1 \\
1 & -1 & -4 & 7 & 7 \\
-2 & 2 & 2 & -8 & -5 \\
0 & 0 & -1 & 1 & 2
\end{array}\right], \quad B=\left[\begin{array}{rrrrr}
1 & -1 & 0 & 3 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis of the column space $\operatorname{col}(A)$ of A.
(b) Find a basis of the null space $\operatorname{null}(A)$ of A.
10. (11 points) Find the inverse of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 0 \\
2 & 1 & 3
\end{array}\right] .
$$

11. (11 points)
(a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation given by the formula

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{r}
x_{1}+x_{2} \\
x_{2}+x_{3} \\
x_{1} \\
x_{3}
\end{array}\right]
$$

Write down the standard matrix $A=[T]$ of T.
(b) Let $S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by the formula $S(\vec{x})=B \vec{x}$ for \vec{x} in \mathbb{R}^{4} where

$$
B=\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

Fill in the \ldots below to give a formula for S like that given for T in (a):

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{l}
\ldots \ldots \ldots \\
\cdots \ldots \ldots
\end{array}\right]
$$

(c) Compute explicitly the standard matrix $C=[S \circ T]$ of the composite $S \circ T$ of T and S.
12. (11 points) Consider the two bases \mathcal{B} and \mathcal{C} of \mathbb{R}^{2} given by

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{r}
2 \\
-1
\end{array}\right]\right\}, \quad \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
5
\end{array}\right]\right\}
$$

(a) Let \vec{x} be the vector in \mathbb{R}^{2} with \mathcal{B}-coordinate vector

$$
[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{r}
-6 \\
1
\end{array}\right]
$$

Find \vec{x} explicitly as a vector in \mathbb{R}^{2} i.e. write \vec{x} in the form $\vec{x}=\left[\begin{array}{l}a \\ b\end{array}\right]$ for some scalars a and b.
(b) Find the change of coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{C} (recall that $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is the matrix such that $[\vec{v}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \cdot[\vec{v}]_{\mathcal{B}}$ for all vectors \vec{v} in $\left.\mathbb{R}^{2}\right)$.
(c) Use (b) to find the \mathcal{C}-coordinate vector $[\vec{x}]_{\mathcal{C}}$ of the vector \vec{x} in (a).

