Name:

Instructor:

Exam 2, Math 20580 March 7, 2024

- The Honor Code is in affect for this examination. All work is to be your own.
- Please turn off and stow all cellphones and electronic devices.
- Calculators are **not** allowed.
- The exam lasts for 75 minutes.
- Be sure that your name and your instructor's name and your section number are on the front page of your exam.
- There are 12 problems, 8 are multiple choice and 4 are partial credit.
- Be sure that you have all 8 pages of this exam.
- Multiple choice questions should have distinct answers. (If for some reason you think this is not the case, let your instructor know *after the exam* and do one of the following. If you think a multiple choice question has no listed correct answer, leave the line blank. If you are right you will get full credit. If you think a multiple choice question has more than one correct answer, X ONE of them: you will never get credit for a line with two or more X's.)

1. (a)	(\mathbf{b})	(\mathbf{c})	(\mathbf{d})	X
2. (a)	(\mathbf{b})	\bigotimes	(\mathbf{d})	(\mathbf{e})
3. (a)	(b)	(\mathbf{c})	Ŕ	(e)
4. (a)	(\mathbf{b})	(\mathbf{c})	(\mathbf{d})	\bowtie
5. X	(b)	$\begin{pmatrix} 2 \\ \mathbf{c} \end{pmatrix}$	(\mathbf{d})	(e)
6. (a)	(\mathbf{b})	(X	(\mathbf{d})	(\mathbf{e})
7.	(b)	(\mathbf{c})	(\mathbf{d})	(e)
8. (a)	(\mathbf{b})	\bigotimes	(\mathbf{d})	(\mathbf{e})

 	MC Total.
 	9.
 	10.
 	11.
 	12.
 	Total.

Multiple choice problems

1. (7 points) Let \mathcal{P}_1 denote the vector space of polynomials of degree at most 1, and let $T: \mathcal{P}_1 \to \mathcal{P}_1$ denote the linear transformation such that

$$T(1+x) = 1 - 2x$$
 and $T(2-3x) = 2 + x$.

What is the value of T(3+2x)?

(a)
$$4x - 3$$
 (b) $2x - 4$ (c) $-x + 6$ (d) $-3x + 5$ (e) $3 - 5x$
If $3 + 22c = \alpha(1 + \alpha) + b(2 - 3x)$ (*)
How $T(3 + 22) = \alpha T(1 + \alpha) + b T(2 - 3\alpha)$
 $= \alpha(1 - 2x) + b(2 + \alpha).$
By CF), $\alpha + 2b = 3$, so $5b = 1$, $b = \frac{1}{5}$, $\alpha = 3 - 2b = \frac{13}{5}$,
 $T(3 + 2x) = \frac{13}{5}(1 - 2x) + \frac{1}{5}(2 + \alpha) = 3 - 5x$

2. (7 points) Which of the following is NOT ALWAYS a vector space?

- (a) The range of a linear transformation.
- (b) The null space of a matrix.
- (c) The set of solutions in \mathbb{R}^n of a system of linear equations.
- (d) The span of a set of vectors in a vector space.

(e) The kernel of a linear transformation.

(e) The kernel of a linear transformation. Only the set of solutions of a <u>homogeneous</u> system of linear equations is always a subspace. For example, the set of solutions of the system (of one equation) 2n=1 is $n=\frac{1}{2}$, which is not a subspace of R.

3. (7 points) Let A and B be 3×3 matrices such that det(A) = 5 and det(B) = 2. What is the value of $det(5A^{-1}B^2A^T)$, where A^T denotes the transpose of A?

(a) 25 (b) 20 (c) 100 (d) 500 (e) 50

$$dot(5A^{-1}B^{2}A^{T}) = 5^{3} \cdot det(A)^{-1} det(B)^{2} det(A^{T})$$

 $= 5^{3} \cdot 5^{-1} \cdot 2^{2} \cdot 5$
 $= 500 \quad since \ det(A^{T}) = det(A) = 5$

4. (7 points) Consider the matrix

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -2 & 2 \end{bmatrix}.$$

What is the determinant of A?

- 5. (7 points) Let \mathcal{P}_3 denote the vector space of polynomials of degree at most 3. Which of the following statements is true?
 - I. Any linearly independent set of four vectors in \mathcal{P}_3 spans \mathcal{P}_3 .
 - II. There is a basis of \mathcal{P}_3 with three vectors.
 - III. \mathcal{P}_3 can be spanned by five distinct vectors.

(a) I and III only (b) II only (c) I, II and III (d) I only (e) III only dim D3=4, so any L-I. set of far vectors in C3 159 basis of D3 and so spansong. So I is true Since dim P3=4, any basis of P3 has 4 voctors; Il is false. 21,2,2,2,2,1+23 is a set of 5 distinct vectors which span oz, so It is true.

6. (7 points) Let $M_{2,2}$ denote the vector space of 2×2 matrices and let $S: M_{2,2} \to M_{2,2}$ be the linear transformation such that $S(A) = A - A^T$ for each 2×2 -matrix A, where A^T denotes the transpose of A. What are the rank and nullity of S?

(a) rank
$$S = 3$$
 and nullity $S = 1$ (b) rank $S = 3$ and nullity $S = 3$ (c) rank $S = 1$ and nullity $S = 3$
(d) rank $S = 2$ and nullity $S = 2$ (e) rank $S = 1$ and nullity $S = 1$
FOR $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $S(A) = A - A^{T} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & c \\ b & d \end{bmatrix}$
 $= \begin{bmatrix} 0 & b - c \\ -(b - 0) & 0 \end{bmatrix}$. So ker $S = 2 \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $b = c^{T}$
 $= 2 \begin{bmatrix} a & b \\ b & c \end{bmatrix}^{T}$ which has basis $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and dimension
3. So nullity $(S) = 3$, rank $(G) = \dim(M_{22}) - \operatorname{nullity}(S) = A - 3 = 1$
Alternatively, note range $(S) = 2 \begin{bmatrix} 0 & b - c \\ -b & 0 \end{bmatrix}^{T} = 2 \begin{bmatrix} 0 & e \\ 0 & 0 \end{bmatrix}^{T} \operatorname{cspan} 2 [\operatorname{cand}^{T}]^{T}$
has $\lfloor 0 \\ 0 \end{bmatrix}^{T} = 4 - 1 = 3$

7. (7 points) Suppose that for some real number s, the system of linear equations

$$\begin{cases} (s+2)x_1 + 2x_2 = 1\\ (3s+4)x_1 + (s+3)x_2 = 1 \end{cases}$$

has a unique solution for x_1 and x_2 . What is the value of x_2 in terms of s, according to Cramer's rule?

8. (7 points) Let \mathcal{P}_2 denote the vector space of polynomials of degree at most 2, and let

$$\mathcal{B} = \{1, 1 - x, (1 - x)^2\}$$

be a basis of \mathcal{P}_2 . Which polynomial p(x) has \mathcal{B} -coordinates

$$[p(x)]_{\mathcal{B}} = \begin{bmatrix} 3\\ -4\\ 1 \end{bmatrix}?$$
(a) $p(x) = x^2 - 4x$ (b) $p(x) = x^2 + 2x - 8$ (c) $p(x) = x^2 + 2x$ (d) $p(x) = x^2 - 2x + 8$
(e) $p(x) = x^2$
 $\mathcal{P}(\mathcal{A}) = \frac{2}{3} \cdot \frac{1}{3} - \frac{4}{3} \left(1 - \alpha\right) + \frac{1}{3} \left(\frac{\pi^2 - 2\pi + 1}{3}\right)$
 $= 2\frac{1}{3} \cdot \frac{1}{3} - \frac{4}{3} \left(1 - \alpha\right) + \frac{1}{3} \left(\frac{\pi^2 - 2\pi + 1}{3}\right)$

Partial credit problems

9. (11 points) Consider the vector space \mathcal{P}_2 of polynomials of degree at most 2, with standard basis $\mathcal{E} = \{1, x, x^2\}$. Define the polynomials

$$p_1(x) = 3 + x + 2x^2$$
, $p_2(x) = 2 + 3x + x^2$, $p_3(x) = 5 - 3x + 4x^2$.

(a) Write below the \mathcal{E} -coordinate vectors $\vec{v}_i = [p_i(x)]_{\mathcal{E}}$ for i = 1, 2, 3:

$$\vec{v}_{1} = \begin{bmatrix} 3 \\ 1 \\ 2 \\ \end{bmatrix}, \quad \vec{v}_{2} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ 1 \\ \end{bmatrix}, \quad \vec{v}_{3} = \begin{bmatrix} 5 \\ -3 \\ 4 \\ 4 \end{bmatrix}.$$

(b) Find all real numbers c such that $\vec{v}_1 = c\vec{v}_2 + (1-c)\vec{v}_3$.

$$\vec{v_1} = C \vec{v_2} + (1 - c) \vec{v_3} = C \vec{v_1} + \vec{v_3} - C \vec{v_3}$$

$$\vec{v_1} - \vec{v_3} = C (\vec{v_2} - \vec{v_3})$$

$$\begin{bmatrix} -2 \\ 4 \\ -2 \end{bmatrix} = C \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix} \quad \stackrel{i_{\Theta}}{=} \begin{cases} -3c = -2 \\ 6c = 4 \end{cases} \quad \text{so } c = \frac{2}{3}$$

(c) Use (b) to find all real numbers k such that $p_1(x) = kp_2(x) + (1-k)p_3(x)$. Explain your reasoning. Taking E-coordinates, $p_1(x) = kp_2(x) + (1-k)p_3(x)$. is equivalent to $Lp_1(x)]_{\mathcal{E}} = [k Lp_1(x)]_{\mathcal{E}} + (1-k)[p_3(x)]_{\mathcal{E}}$ i.e. $r_1^2 = [k V_2 + (1-k)V_3]_{\mathcal{E}}$. So the values of [k]satisfying the equation are the same as the values of c satisfying the equation in (b) i.e. $|c| = \frac{2}{3}$ 10. (11 points) Let \mathcal{P}_2 denote the vector space of polynomials of degree 2 or less. Consider the two bases of \mathcal{P}_2 : $\mathcal{B} = \{x^2 + 3, x - 4, 1\}$ and $\mathcal{C} = \{1 - x^2, x^2 + x, x^2\}.$

(a) Find the change of basis matrix $\underset{C \leftarrow B}{P}$ (recall that this is the matrix such that

$$[p(x)]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [p(x)]_{\mathcal{B}}$$

for all vectors p(x) in \mathcal{P}_2).

(b) Use your answer to (a) to find the C-coordinates of the polynomial p(x) in \mathcal{P}_2 with \mathcal{B} -coordinates

$$\begin{bmatrix} p(x) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 - 4 \\ 0 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 14 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 14 \\ -1 \\ 4 \end{bmatrix}$$

11. (11 points) Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & -s & -s \\ 1 & 1 & 0 \\ s & 1 & 1 \end{array} \right]$$

where s is a real number.

(a) Compute the determinant of A.

$$\begin{vmatrix} 1 & -S & -S \\ 1 & 1 & 0 \\ S & 1 & 1 \end{vmatrix} \xrightarrow{R_2 \to R_2 + SR_3} \begin{vmatrix} 1 + S^2 & 0 & 0 \\ 1 & 1 & 0 \\ -S & 1 & 1 \end{vmatrix}$$
$$= C_1 + S^2 \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1 \cdot C_1 + S^2 = 1 + S^2$$

Cofactor expansion along R1

(c) If the matrix A is invertible, what is the entry $(A^{-1})_{13}$ in the first row and third column of A^{-1} .

$$(A^{-1})_{13} = \frac{1}{\det A} \cdot C_{31} = \frac{1}{s^2 + 1} \cdot (+1) \cdot \begin{vmatrix} -s & -s \\ 1 & 0 \end{vmatrix} = \frac{s}{s^2 + 1}$$

12. (11 points) Let \mathcal{P}_2 denote the vector space of polynomials of degree at most 2, and $T: \mathcal{P}_2 \to \mathbb{R}^2$ be the linear transformation given by

$$T(p(x)) = \begin{bmatrix} p(0) \\ p(2) \end{bmatrix}$$

for p(x) in \mathcal{P}_2 (you do not have to explain why T is a linear transformation). (a) Write down the matrix $\begin{bmatrix} T \\ \mathcal{E} \leftarrow \mathcal{B} \end{bmatrix}$ of T with respect to the standard bases

$$\mathcal{B} = \{1, x, x^2\} \text{ of } \mathcal{P}_2 \text{ and } \mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \text{ of } \mathbb{R}^2.$$

$$\begin{bmatrix} \mathsf{T} \\ \mathsf{F} \end{bmatrix} \stackrel{\sim}{=} \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{E}} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix}_{\mathsf{T} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \mathsf{T} \\ \mathsf{T} \end{bmatrix} = \begin{bmatrix}$$

(b) Find a basis for the range of T.

$$A \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} CRREF).$$

Columns 1,2 are pivot columns of A, so corresponding
columns $\begin{bmatrix} 1 & 0 \\ 1 & 2 & 2 \end{bmatrix}$ are a basis of col(A). These are
the e-coordinate vectors of the basis $\begin{bmatrix} 1 \\ 1 & 2 & 2 \end{bmatrix}$ of the
range of T.