Name:

Instructor:

Exam 3, Math 20580 April 18, 2024

- The Honor Code is in affect for this examination. All work is to be your own.
- Please turn off and stow all cellphones and electronic devices.
- Calculators are **not** allowed.

|--|

- Be sure that your name and your instructor's name and your section number are on the front page of your exam.
- There are 12 problems, 8 are multiple choice and 4 are partial credit.
- Be sure that you have all 8 pages of this exam.
- Multiple choice questions should have distinct answers. (If for some reason you think this is not the case, let your instructor know *after the exam* and do one of the following. If you think a multiple choice question has no listed correct answer, leave the line blank. If you are right you will get full credit. If you think a multiple choice question has more than one correct answer, X ONE of them: you will never get credit for a line with two or more X's.)

Pleas	e mark you an	swers with an \mathbf{X}	, not a circle.		
1.	(a)	(b)	×	(d)	(e)
2.	>	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	A
4	(a)	(b)	A	(d)	(e)
5	X	(b)	2 (c)	(d)	(e)
6.	(a)	\bigotimes	(c)	(d)	(e)
7.	(a)	(b)	(c) 3	X	(e)
8.	(a)	(b)	X	(d)	(e)

MC Total.	
9.	
10	
11.	
12.	
Total.	

Laurence Taylor

Henry Chimal-Dzul

Michael Gekhtman

Matthew Dyer

Han Lu

Han Lu

01

02

03

04

05

06

8:20-9:15

9:25-10:15

10:30-11:20

11:30-12:20

12:50-1:40

2:00-2:50

131 DBRT

140 DBRT

140 DBRT

138 DBRT

127 HH

127 HH

Multiple choice problems

1. (6 points) Let y(t) be the solution of the initial value problem

$$\begin{cases} y'(t) = y^2(y-2)(y-4), \\ y(1) = 3. \end{cases}$$

Which of the following is true?

(a)
$$\lim_{t \to +\infty} y(t) = 4$$
 and $\lim_{t \to -\infty} y(t) = 0$
(b) $\lim_{t \to +\infty} y(t) = 0$ and $\lim_{t \to -\infty} y(t) = 2$
(c) $\lim_{t \to +\infty} y(t) = 2$ and $\lim_{t \to -\infty} y(t) = 0$
(d) $\lim_{t \to +\infty} y(t) = 4$ and $\lim_{t \to -\infty} y(t) = 2$
(e) $\lim_{t \to +\infty} y(t) = 2$ and $\lim_{t \to -\infty} y(t) = 0$

2. (6 points) The vector $\vec{v} = \begin{bmatrix} 1\\ 2i \end{bmatrix}$ is a complex eigenvector of a matrix $\begin{bmatrix} 2 & a\\ -4 & 2 \end{bmatrix}$ where *a* is an unknown real number. What is the value of *a*? (Hint: First find the corresponding eigenvalue.)

$$\begin{array}{c} \swarrow 1 & (b) -1 & (c) 2 & (d) -2 & (e) 0 \\ \hline \begin{bmatrix} 2 & Q \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2i \end{bmatrix} = \mathcal{D} \begin{bmatrix} 1 \\ 2i \end{bmatrix} \\ 2i \end{bmatrix} \\ \begin{array}{c} 2 + 2i Q = \mathcal{D} \\ -4 + 4i = 2i \mathcal{D} \\ \mathcal{D} = (-i) (-2 + 2i) = 2 + 2i \\ \mathcal{D} \\ \mathcal{D} = (-i) (-2 + 2i) = 2 + 2i \\ \end{array} \\ \begin{array}{c} \Im \\ \mathcal{D} = (-i) (-2 + 2i) = 2 + 2i \\ \mathcal{D} \\ \mathcal{D} = (-i) (-2 + 2i) = 2 + 2i \\ \mathcal{D} \\ \mathcal{D} = (-i) (-2 + 2i) = 2 + 2i \\ \end{array}$$

3. (6 points) Which of the following vectors is an eigenvector with eigenvalue -3 of the matrix

$$A = \begin{bmatrix} 4 & 5 & 3 \\ 1 & -1 & 3 \\ 3 & 0 & -6 \end{bmatrix}?$$
(a) $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix}$ (c) $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\swarrow \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$

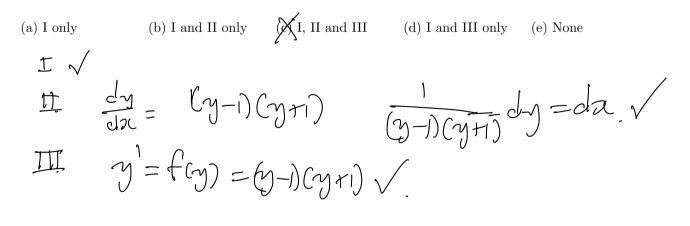
$$A = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 $\begin{bmatrix} -6 \\ -6 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix}$ $\begin{bmatrix} 12 \\ -6 \\ -6 \end{bmatrix}$ $\begin{bmatrix} 3 \\ -6 \\ -6 \end{bmatrix}$ $\begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix}$

4. (6 points) Which of the following statements about the differential equation

$$y' = (y-1)(y+1)$$

are true?

- I. The equation is an ordinary differential equation.
- II. The equation is separable.
- III. The equation is autonomous.



5. (6 points) What is the least squares error of the least squares solution of the equation

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}? \quad A_{\overline{A}}^{-1} = \vec{b}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} \quad A^{T}b = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(A^{T}A) \hat{a}^{T} = A^{T} \hat{b}^{T} = \vec{O} \qquad \hat{a}^{T} = (A^{T}A)^{-1} (A^{T}b) = \vec{O}^{T} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

$$A \hat{a}^{T} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad L.s. \text{ error} = |[A \hat{a}^{T} - b]| = |[b] \hat{b}|| = |2.$$

6. (6 points) Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$. Which of the following is the matrix R in the QR-decomposition of A? (a) $\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{2} \end{bmatrix}$ $A \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} \end{bmatrix}$ (c) $\begin{bmatrix} \sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{2} \end{bmatrix}$ (d) $\begin{bmatrix} \sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix}$ (e) $\begin{bmatrix} 1/\sqrt{2} & \sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix}$ G.S. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ to get $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\$ 7. (6 points) Which of the following is the general solution of the equation y' + 4y = 0?

(a)
$$y = Ce^{4x}$$
 (b) $y = C(e^{4x} - e^{-4x})$ (c) $y = e^{4x} + C$
 $\frac{dy}{dx} + 4y = 0$ $\frac{1}{y} dy = -4 dx$
 $\int \frac{1}{y} dy = \int -4 dx$ $\ln |y| = -4x + c$
 $ly| = e^{-4x + c} = e^{c} e^{-4x}$
 $y = (\pm e^{c})e^{-4x} = Ce^{-4x}$

8. (6 points) Find the projection of the vector $\vec{v} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$ on the subspace W of \mathbb{R}^3 spanned by the vectors $\vec{\sigma} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \vec{b}$. Note, $\vec{\sigma} \cdot \vec{b} = \mathcal{O}$ (a) $\begin{bmatrix} 2\\ 0\\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} 0\\ -2\\ 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0\\ 2\\ 0 \end{bmatrix}$ (d) $\begin{bmatrix} -1\\ 1\\ -1 \end{bmatrix}$ (e) $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ $\vec{V} \cdot \vec{\sigma} = \vec{\sigma} + \vec{V} \cdot \vec{b} = \vec{b} = -\frac{4}{6} \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ $= \begin{bmatrix} 0\\ 2\\ 0 \end{bmatrix}$

Partial credit problems

9. (13 points)

(a) Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 5 & 0 & -3 \\ -6 & -1 & 3 \\ 6 & 0 & -4 \end{bmatrix}.$$

$$det(A - DI) = \begin{bmatrix} 5 - D & 0 & -3 \\ -6 & -1 - D & 3 \\ 6 & 0 & -4 - D \end{bmatrix} = (-D) \begin{bmatrix} 5 - D & -3 \\ -3 & -3 \\ 6 & -4 - D \end{bmatrix}$$

$$= -(D + I) \begin{bmatrix} (5 - D)(-4 - D) - (-3) & 6 \end{bmatrix}$$

$$= -(D + I) \begin{bmatrix} (5 - D)(-4 - D) - (-3) & 6 \end{bmatrix}$$

$$= -(D + I) \begin{bmatrix} D^{2} - D - 2 \end{bmatrix} = -(D + I) (D + I) (D - 2)$$

$$Roots: -I_{3} - I_{3} - 2 \quad ave the eigen values.$$

(b) The matrix

$$B = \begin{bmatrix} -4 & 6 & 2 \\ 0 & 2 & 0 \\ -3 & 3 & 3 \end{bmatrix}$$

has eigenvalues 2 and -3. Find a basis of \mathbb{R}^3 consisting of eigenvectors for B.

$$\begin{array}{l} B-2I = \left[\begin{array}{c} -6 & 62 \\ 0 & 0 & 0 \\ -3 & 3 & 1 \end{array} \right] = \left[\begin{array}{c} 1 & -1 & -1/3 \\ 0 & 0 & 0 \end{array} \right] RREF. \\ \alpha_1 - \alpha_2 - \frac{1}{3}\alpha_3 = 0 & \alpha_1 \\ \alpha_2 = 5 \\ \alpha_3 = 5 \\ \alpha_4 - 2\alpha_3 = 0 \\ \alpha_4 - 2\alpha_4 = 0 \\ \alpha_4 - 2\alpha_4$$

(c) Diagonalize B. That is, find a diagonal matrix D and an invertible matrix P such that $B = PDP^{-1}$. (You do NOT have to check that $B = PDP^{-1}$.)

$$P = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix} \circ D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

10. (13 points) Consider the basis of \mathbb{R}^3 consisting of the vectors $\vec{x}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\vec{x}_2 = \begin{bmatrix} 3\\1\\-1 \end{bmatrix}$ and $\vec{x}_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$.

(a) Apply the Gram-Schmidt process to $\vec{x}_1, \vec{x}_2, \vec{x}_3$ to obtain an orthogonal basis $\vec{v}_1, \vec{v}_2, \vec{v}_3$ of \mathbb{R}^3 with

$$\vec{v}_{1} = \vec{x}_{1}, \quad \vec{v}_{2} = \vec{x}_{2} - \frac{\vec{x}_{1} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$$
$$\vec{v}_{3} = \vec{x}_{3} - \frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} - \frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \quad \vec{v}_{2}$$
$$= \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - \frac{4}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{0}{8} \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \begin{bmatrix} -1/3 \\ 2/3 \\ -1/3 \end{bmatrix}$$

(b) Normalize the orthogonal basis you found in (a) to find an orthonormal basis $\vec{u}_1, \vec{u}_2, \vec{u}_3$ of \mathbb{R}^3 with $\vec{u}_1 = \frac{1}{\sqrt{3}}\vec{x}_1$. $\vec{v}_1 = \frac{1}{\sqrt{3}}\vec{v}_1$. $\|\vec{v}_1\| = \sqrt{3}$, $\|\vec{v}_2\| = \sqrt{8} = 2\sqrt{2}$, $\|\vec{v}_3\| = \frac{1}{3}\sqrt{6}$. $\vec{v}_1 = \left(\frac{1}{\sqrt{3}}\right)$, $\vec{v}_2 = \left(\frac{1}{\sqrt{3}}\right)$, $\vec{v}_3 = \left(\frac{-1}{\sqrt{6}}\right)$

11. (13 points)

(a) Find the solution of the initial value problem

$$\begin{cases} \frac{dy}{dx} + 4xy^2 = 0\\ y(1) = 1. \end{cases}$$

$$\begin{cases} \frac{dy}{dx} + 4xy^2 = 0\\ 4x dx = -y^2 dy \end{cases}$$

$$\begin{cases} 4x dx = -y^2 dy \\ y^{-1} = 2x^2 + C. \end{cases}$$

$$Mhen \quad y=1, \quad x=1, \quad so \quad 1^{-1} = 2 \cdot 1^2 + C, \quad C=-3 \end{cases}$$

$$y' = 2x^2 - 3 \quad and \quad y(x) = \frac{1}{2x^2 - 3}.$$

(b) Find the maximal interval on which the solution in (a) is defined.

y(a) is undefined if
$$2a^2-3=0$$
 is $a=\pm\sqrt{3}^2$,
The maximal interval can't contain either of these
points but must contain the initial ou-value
 $a=1$, so it is
 $-\sqrt{3}^2 cally \sqrt{3}^2$ i.e. $(-\sqrt{3}^2,\sqrt{3}^2)$

12. (13 points) Let A and B be constants.(a) If

$$y(x) = x + A\sin x + B\cos x,$$

calculate y'(x) and y''(x).

$$y'(a) = 1 + A \cos \alpha - B \sin \alpha$$

 $y''(a) = -A \sin \alpha - B \cos \alpha$.

(b) Use your answer to (a) to check that

$$y(x) = x + A\sin x + B\cos x$$

is a solution of the differential equation y'' + y = x.

$$y'' + y = (-Asin a - Bcosa) + (\alpha + Asin a + Bcosa)$$

= α

(c) Find A and B if $y(x) = x + A \sin x + B \cos x$ is the solution of the initial value problem

$$\begin{cases} y'' + y = x, \\ y(0) = 1, \\ y'(0) = 0. \end{cases}$$

$$1 = y(0) = 0 + AsinO + Bcoro 7 B = 1$$

 $O = y'(0) = 1 + Acoro - BsinO 7 A = -1$