Math 20580	
Practice Midterm 1	
February 12, 2015	

Name:_	SAI	ut	700	5	
Instructor:_			, -		
Section:_					

Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

- 1. **a** b c d e
- 2. a b c d e
- 3. a b c d
- 4. a b d e
- 5. a b d e
- 6. **a** b c d e
- 7. a b d e
- 8. a b c d

Part I: Multiple choice questions (7 points each)

Consider the linear system

$$2x_1 + 3x_2 - 2x_3 = 1$$
$$x_1 + 4x_2 = 5$$

Which of the following (x_1, x_2, x_3) is a solution?

(b)
$$(2/5, 3/5, 1)$$

(c)
$$(7/5, 3/5, 1)$$

(d)
$$(4/5, -3/5, 1)$$

$$(1405)$$
 $\sim (1405)$ $\sim (0-5-2-9)$

$$50 -5x_2 = 2x_3 - 9$$

$$x_1 + 4x_2 = 5$$

So
$$-5x_2 = 2x_3 - 9$$
 $= 2x_3 + 6e$. Setting $= 2x_3 = 1$ gives $= x_1 + 4x_2 = 5$ $= 5 - 28 = -36$.

- 2. For which constants t do the vectors $\begin{bmatrix} 1 \\ 0 \\ t \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}$ span all of \mathbb{R}^3 ?
 - (a) t = 1 only
- (b) all $t \neq 1$ (c) t = -1/5 only (d) all $t \neq -1/5$

$$-\frac{1}{8} \left(\begin{array}{ccc} 2 & 1 \\ 0 & 1 & \frac{2}{5} \\ 8 & -8 & \frac{1}{5} \end{array} \right)$$

So span if matrix eqn.

1 2 1

2 1

3 span if matrix eqn.

always consistant,

ie.
$$t-3+16=t+15=0$$

ie. $t-3+16=t+15=0$

	umn in the matrix belon of the previous ones		from the left wh	nich is a linear	1 0	7 >
		$\begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}$	000	121	
(a) $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	(b) $\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$ (c) $\begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}$	$ \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} $	(e) $\begin{bmatrix} 1\\2\\-1\\3 \end{bmatrix}$	60	0-1-	1)
->/1010 611 0102	$\begin{pmatrix} 2 \\ 2 \\ 1 \\ -1 \\ 0 \\ 3 \end{pmatrix}$	> 1 0 0 1 0 0	[3] 1 0 1 Z 0 1 1 0	2 1 -1 of only a	1010 0112 0010 last colu	2 1 +2 1
4. Is the linear	r transformation corre	sponding to th	e matrix below	one-to-one or onto	0?	,- 101
		$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$				
¥7 1 1 1	e-to-one and onto not one-to-one (e but not onto to-one nor onto			

5. Find the determinant of the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 8 & 2 & 9 \\ 0 & 3 & 0 & 4 \\ -1 & 10 & 20 & 30 \end{bmatrix}$$

(a) 2 (b) 4 (c)
$$-4$$
 (d) -2 (e) 0

$$det A = -det \begin{vmatrix} -1 & 10 & 20 & 30 \\ 0 & 8 & 2 & 9 \\ 0 & 3 & 0 & 9 \end{vmatrix} = det \begin{vmatrix} -1 & 10 & 20 & 30 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 2 \end{vmatrix} = -det \begin{vmatrix} -1 & 10 & 20 & 30 \\ 0 & 8 & 2 & 9 \end{vmatrix}$$

$$= det \begin{vmatrix} -1 & 10 & 20 & 30 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 2 & -7 \end{vmatrix} = -det \begin{vmatrix} -1 & 10 & 20 & 30 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & -2 \end{vmatrix}$$

6. Which of the following matrices are invertible?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 4 & 1 \\ 2 & 5 & 2 \\ 3 & 6 & 3 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 10 & 20 \\ 0 & 0 & 9 \end{bmatrix}$$

- (a) only D (b) they are all invertible (c) C and D only
- (d) B and C only (e) only C
- A not spaare

has row all O so not onto

C has linearly dependent columns (first and)

has det = 90 so invertible

7. If B is the matrix below, and $C = (B^T)^5$, compute $\det(C)$.

$$B = \begin{bmatrix} 0 & 6 & 2 \\ 2 & 8 & 7 \\ 0 & 2 & 1 \end{bmatrix}$$

- (a) 0 (b)
 - (b) 2^{10} (c) -2^{10}
- (d) 6^5
- (e) -6^5

$$\det C = \det(B^{T})^{5} = (\det B)^{5}$$

$$B \rightarrow \begin{cases} 287 \\ 02.1 \\ 062 \end{cases} \rightarrow \begin{cases} 287 \\ 021 \\ 60-1 \end{cases}$$
 So det $B = -4$

$$(-4)^{5} = -4^{5} = -2!^{0}$$

8. Compute the dimension of the Null-space of the matrices below.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

 $(\dim \text{Nul}(A), \dim \text{Nul}(B), \dim \text{Nul}(C)) =$

- (a) (0, 0, 2)
- (b) (2, 2, 2)
- (c) (1, 0, 3)
- (d) (0, 1, 1)
- (e) (2, 1, 1)

din of Nal = # columns without pirots

$$\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 3 & 5 \\ 6 & -2 & -4 \end{pmatrix}$$

So don Nal(C) = 1

Part II: Partial credit questions (11 points each). Show your work.

9. Find a solution to the linear system

$$x_1 + x_3 = 1$$

 $2x_1 + 2x_3 + x_4 = 1$
 $x_1 + x_2 + 2x_3 = 2$
 $2x_2 + x_3 + x_4 = 1$

Augmented matrix is
$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 1 \\
2 & 0 & 2 & 1 & 1 & 1 \\
1 & 1 & 2 & 0 & 1 & 2 \\
0 & 2 & 1 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 2 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 2 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 2 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & -1 & 1 & -1 \\
0 & 0 & -1 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{matrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{matrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{matrix}$$

$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{matrix}$$

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 \\ 3 & 1 & 0 & -1 \end{bmatrix}$$

(a) A gives a linear transformation $T_A: \mathbb{R}^p \to \mathbb{R}^q$. What are the numbers p and q?

p=4, q=3

(b) Find a nonzero vector x in \mathbb{R}^p which is a solution of the homogeneous equation Ax = 0 (or explain why there are none).

 $\begin{pmatrix}
1 & 1 & 2 & 1 \\
2 & 0 & 1 & 1 \\
3 & 1 & 0 & -1
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & -2 & -3 & -1 \\
0 & -2 & -6 & -4
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & -2 & -6 & -4
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & -2 & -6 & -4
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & 3 & 2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 &$

(c) Find a vector b in \mathbb{R}^q which does not lie in the image of T_A (or explain why there are none).

The echelon form has no rows all zero.
Therefore Top is onto and there are no bs.

11. Find the inverse of A, where

$$A = \begin{bmatrix} 2 & -1 & 4 \\ -2 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\begin{pmatrix}
2 & -1 & 4 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 & 1 & 0 \\
-2 & 0 & 1 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & -1 & 4 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 & -4 & -10 \\
0 & 0 & 1 & 0 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 2
\end{pmatrix}$$

$$\begin{cases} averze & is \\ -1 & 4 & 10 \\ 0 & 1 & 2 \end{cases}$$

12. Consider the matrix A below.

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 4 & 2 & 1 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

(a) Find a basis for the column space Col(A).

1 + 1 + 2 + 1 See pirots in 1st three columns so a basis is $\left(\frac{0}{0}, \left(\frac{2}{0}, \left(\frac{2}{0}, \left(\frac{2}{0}, \left(\frac{2}{0}\right), \left(\frac{2}{3}\right)\right)\right)\right)$.

(b) Let v be the last column of A. Find the coordinates of v relative to the basis found in part (a).

Solvery the linear system $x_3 = \frac{1}{3}$, $x_2 = 0$, $x_1 = \frac{1}{3}$.

So $\begin{bmatrix} 0 \\ 1 \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} 1/3 \\ 0 \\ 1/3 \end{pmatrix}$.