M20580 L.A. and D.E. Quiz 5

1. Find the determinant of the following 4×4 matrix by expanding along the third row:

$$
\left[\begin{array}{cccc}
0 & 2 & -1 & 1 \\
4 & 3 & 1 & 1 \\
0 & 2 & 0 & 0 \\
3 & -1 & 1 & 0
\end{array}\right]
$$

Solution: Performing a Laplace expansion on the third row we see that our 4×4 determinant is equal to $-2 \times \operatorname{det}\left(\left[\begin{array}{ccc}0 & -1 & 1 \\ 4 & 1 & 1 \\ 3 & 1 & 0\end{array}\right]\right)=(-2)(-2)=4$.
2. Use Cramer's rule to solve the system

$$
\left[\begin{array}{cc}
1 & -1 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

(a) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2.5 \\ 0.5\end{array}\right]$
(b) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1.5 \\ 0.5\end{array}\right]$
(c) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}-1.5 \\ -0.5\end{array}\right]$

Solution: Answer choice (b) is correct.
The determinant of the matrix is 2 . Replacing the first column with the solution vector we obtain the matrix $\left[\begin{array}{cc}1 & -1 \\ -1 & 4\end{array}\right]$ which has determinant 3 . Hence $x_{1}=3 / 2$. Replacing the second column with the solution vector we obtain the matrix $\left[\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right]$ which has determinant 1 . Hence $x_{2}=1 / 2$.

