Math 20580 L.A. and D.E. Tutorial Quiz 6

1. Let $V=M_{2 \times 3}$ be the vector space of 2×3 matrices and consider the subspace

$$
W=\left\{\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]: a+b+c=0 \text { and } d=0\right\} .
$$

a.) Find a basis for W.
b.) What is the dimension of W ?

Solution: Substituting the relations $a=-b-c$ and $d=0$ into a typical element of $M_{2 \times 3}$, we see that a typical element of W is given by

$$
\left[\begin{array}{ccc}
-b-c & b & c \\
0 & e & f
\end{array}\right]=b\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+c\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]+e\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+f\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

We see that $W=\operatorname{span}\left\{\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$. Therefore, a basis for W is $\left\{\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$. Since there are four elements in this basis for W, then the dimension of W is 4 .
2. Consider the matrix $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$. Is $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ an eigenvector of A ? If so, what is its associated eigenvalue?
(a) Yes; 7
(b) Yes; -4
(c) x is not an eigenvector
(d) Yes; 0
(e) Yes; 4

Solution: Answer choice (e) is correct (x is an eigenvector corresponding to eigenvalue 4). We know that, if x is an eigenvector, it should satisfy the equation

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some number λ. Now, we observe that

$$
A \mathbf{x}=\left[\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
8
\end{array}\right]=4 \mathbf{x}
$$

so \mathbf{x} is an eigenvector of A corresponding to eigenvalue 4 .

