M20580 L.A. and D.E. Tutorial Quiz 7

1. Let A be 3×3 matrix. Suppose that A is diagonalizable and the eigenvalues of A are -1, 0, 1 with eigenvectors

$$v_{-1} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, v_0 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, v_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
respectively. Find A^8 .
Hint: Use $P = \begin{bmatrix} 0 & 1 & 1\\1 & 0 & 1\\1 & 1 & 0 \end{bmatrix}$ and $Q = P^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1\\1 & -1 & 1\\1 & 1 & -1 \end{bmatrix}$.

Solution: Since A is diagonalizable, then

$$A = P \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} P^{-1}$$

and

$$A^{8} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix}.$$

2. Let
$$W = \operatorname{span}\left\{ \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\4\\0 \end{bmatrix} \right\}$$
. Which of the following vectors is in W^{\perp} ?
(a) $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ (b) $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ (c) $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ (d) $\begin{bmatrix} -2\\0\\1 \end{bmatrix}$ (e) $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$

Solution: Since the vector is in W^{\perp} if and only if it is orthogonal to both	$\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 0\\4\\0 \end{bmatrix}$,
only (e) is possible.	L - _	J	ΓοΊ	