Math 20580 Tutorial Worksheet 11

1.

We will analyze the simple (or undamped) harmonic oscillator. By following these steps, we will verify that

$$x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$$

is the general solution to the homogeneous differential equation

$$\frac{d^2}{dt^2}x + \omega^2 x = 0$$

on the interval $(-\infty, \infty)$.

- i. First use calculus to verify that $\cos \omega t$ and $\sin \omega t$ both satisfy the 2nd-order differential equation.
- ii. Next use the Wronskian, $\det\begin{pmatrix}\cos\omega t & \sin\omega t \\ \frac{d}{dt}\cos\omega t & \frac{d}{dt}\sin\omega t\end{pmatrix}$, to verify that these two solutions are linearly independent on the whole interval.
- iii. Lastly, use the superposition principle to write the general solution to the differential equation as a linear combination of the solutions.

a linear combination of the solutions.

$$\frac{d}{dt} \cos \omega t = -\omega \sin \omega t \qquad \frac{d}{dt} \sin \omega t = \omega \cos \omega t$$

$$\frac{d^2}{dt^2} \sin \omega t = -\omega^2 \sin \omega t \qquad \frac{d^2}{dt^2} \sin \omega t = 0$$

$$\frac{d^2}{dt^2} (\cos \omega t + \omega^2 \cos \omega t) = -\omega^2 \cos \omega t + \omega^2 \cos \omega t = 0$$
(i)
$$\det \left((\cos \omega t + \cos \omega t) + \cos \omega t \right) = \omega (\cos^2 \omega t + \cos^2 \omega t)$$

$$= \omega (\cos^2 \omega t + \sin^2 \omega t)$$

$$= \omega (\cos^2 \omega t + \sin^2 \omega t)$$

$$= \omega (\cos^2 \omega t + \sin^2 \omega t)$$

= w o I = 0, for all tell so cosut and shut are largerly independent

(iii) Superpositor principle: General solution is

2.

Find particular solutions to the inhomogeneous differential equations by inspection.

1.
$$y'' + 2y = 10$$

2.
$$y'' + 2y = -4x$$

3.
$$y'' + 2y = 10 - 4x$$

Check
$$y' = 0 \quad \text{so } y'' + 2y = 0 + 2c = 10$$

$$y'' = 0 \quad \Rightarrow c = 5$$

$$\Rightarrow y = 5 \text{ is particular}$$

$$\text{soly tree}$$

Guess Check

$$2) y = C \times y' = C \times y'' + 2y = 0 + 2C \times = -4X$$

$$y'' = 0 \times y = -2X$$

$$\Rightarrow y = -2X$$

$$\Rightarrow y = -2X$$

$$\Rightarrow y = -2X$$

3.

We can use reduction of order to find general solutions for inhomogeneous or homogeneous 2nd-order linear differential equations, provided one solution to the associated homogeneous equation is already known. We will use this to analyze a critically damped harmonic oscillator. That is, we consider the differential equation,

$$x'' + 2x' + x = 0.$$

where one solution x_1 is already known, and we follow the steps to find the general solution $c_1x_1 + c_2x_2$, by first assuming the solution x_2 is of the form $x_2 = ux_1$ for an unknown function u.

- i Verify that $x_1 = e^{-t}$ solves the homogeneous equation x'' + 2x' + x = 0.
- ii Let $x_2 = ux_1$ for an unknown function u(t), differentiate x_2 (twice) and substitute x_2, x_2' , and x_2'' into the original differential equation to obtain a new differential equation for u.
- iii Let $w = \frac{du}{dt}$ and apply separation of variables to find w.
- iv Since u' = w, we can apply separation of variables one more time to find u.
- v Remember that $x_2 = ux_1$ to find x_2 . Remember that the general solution is given by linear combinations of x_1 and x_2 .
- vi What is $\lim_{t\to\infty} x(t)$?

$$\frac{d^2}{dt^2}e^{-t} + 2\frac{d}{dt}e^{-t} + e^{-t} = e^{-t} + 2(-e^{-t}) + e^{-t} = 0$$

11)
$$X_2 = ue^{t}$$
, $X_2' = u'e^{t} - ue^{t} = (u'-u)e^{t}$
 $X_2'' = (u''-u')e^{t} - (u'-u)e^{t}$
 $= (u''-2u'+u)e^{t}$

$$0 = x_2'' + 2x_2' + x_2 = (u'' - 2u' + u)e^{-t} + 2(u' - u)e^{-t} + ue^{-t}$$

$$= (u'' - 2u' + u + 2u' - 2u + u)e^{-t}$$

$$\Rightarrow u'' = 0 \quad \text{since } e^{\dagger} \neq 0$$

(iii) let
$$w=u'$$
, then $w'=0$, so $w=c_1$, $c_1 \in \mathbb{R}$

$$V)$$
 $X_2 = UX_1 = (c_1 + c_2)e^{\dagger} = c_1 + e^{\dagger} + c_2 e^{\dagger}$

V)
$$X_2 = U X_1 = (c_1 t + c_2)e^{t} = c_1 t e^{t} + c_2 e^{t}$$

 $X = c_1 t e^{t} + c_2 e^{t}$ is general solution, since $X_1 = e^{t}$ already appears in X_2
 $X = c_1 t e^{t} + c_2 e^{t} = 0$

4.

Use the auxiliary equation to solve the homogeneous constant-coefficient linear ODE with boundary values:

$$y'' - 10y' + 25y = 0$$
$$y(0) = 0$$
$$y(1) = 0.$$

Recall that we find the auxiliary equation by replacing the functions $y^{(n)}$ with the variables s^n , and solving the resulting polynomial equation for s, assuming that our general solution will look like $y = e^{sx}$. Note that some case-by-case analysis is usually required to obtain the general solution from the list of

roots.

auxiliary equation:
$$S^2 - 10 S + 25 = 0$$
 $S^2 - 10 S + 25 = (S - 5)^2 = 0$

So we have real repeated roots $S = 5$, $S = 5$

So one solution is $y_1 = e^{5X}$ and we need reduction of order (or memorizing patterns and lucky guesses) to find tector.

Let $y_2 = uy_1 = ue^{5X}$, ten $y_2' = u^2e^{5X} + 5ue^{5X}$
 $y_2'' = (u'' + 5u')e^{5X} + 5(u' + 5u)e^{5X}$
 $= (u'' + 10u' + 25u)e^{5X}$

Make

 $0 = y_2'' - 10y_2' + 25y_2$
 $= (u''' + 10u' + 25u - 10u' - 50u + 25u)e^{5X}$

$$0 = y_z'' - loy_z + 25 y_z$$

$$= (u'' + lou' + 25 u)e^{5x} - lo(u' + 5u)e^{5x} + 25 ue^{5x}$$

$$= (u'' + lou' + 25 u - lou' - 50u + 25u)e^{5x}$$

$$= (u'') e^{5x}, \quad \text{Since } e^{5x} \neq 0, \text{ we save } u'' = 0$$

Now by integrating, $U = C_1 + C_2$

So uz = Citest + Czest and general solution 25 just 4 = atest + czest

$$0=y(0)=0+Cz \Rightarrow Cz=0$$

 $0=y(1)=C_1e^{5t} \Rightarrow C_1=0$

so only solution to BUP is 4=0