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Math 20580 Tutorial
Worksheet 11

We will analyze the simple (or undamped) harmonic oscillator. By following these steps, we will verify
that
2(t) = ¢ cos{wt) + ¢ sinf{wt)

is the general solution to the homogeneous differential equation

d2 .
&75.1: +wir =0

on the interval (—o0, o0).
i. First use calculus to verify that coswt and sinwt both satisfy the 2nd-order differential equation.

C e . . cos wt sin wt . ) .
ii. Next use the Wronskian, det { , qd - , to verify that these two solutions are linearly
=7 Coswi =7 sinwt

independent on the whole interval.
iii. Lastly, use the superposition principle to write the general solution to the differential equation as

a linear combination of the solutions.
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Find particular solutions to the inhomogeneous differential equations by inspection.
1. y" 4 2y = 10
2.y 4+ 2y = —dx

3.y +2y =10 —4a
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3.
We can use reduction of order to find general solutions for inhomogeneous or homogeneous 2nd-order
linear differential equations, provided one solution to the associated homogeneous equation is already
known. We will use this to analyze a critically damped harmonic oscillator. That is, we consider the
differential equation,
2 2+ =0,
where one solution x is already known, and we follow the steps to find the general solution cyz; + caxs,
by first assuming the solution as is of the form zo = ua; for an unknown function u.
i Verify that 7 = e ™% solves the homogeneous equation z” + 2z’ -+ 2 = 0.
ii Let 29 = uwaxy for an unknown function wu(t), differentiate zo (twice) and substitute zq, 25, and zj
into the original differential equation to obtain a new differential equation for w.
iii Let w = %% and apply separation of variables to find w.
iv Since u/ = w, we can apply separation of variables one more time to find w.
v Remember that zo = wwx; to find z9. Remember that the general solution is given by linear
combinations of z; and x4,
vi What is limy,o 2(t)7
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Use the auxiliary equation to solve the homogeneous constant-coefficient linear ODE with boundary
values:
Yy’ — 10y £25y =0
y(0) = 0
y(1) =0.

Recall that we find the auxiliary equation by replacing the functions y¥ with the variables s7, and

J l J o /j ?
solving the resulting polynomial equation for s, assuming that our general solution will look like y = ¢5%.
Note that some case-by-case analysis is usually required to obtain the general solution from the list of
roots.
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