Math 20580 Tutorial Worksheet 5

- 1. Show that the following sets (with operations) are subspaces of the specified vector spaces
 - $\mathcal{P}_2 = \{p(x) = a + bx + cx^2 \mid a, b, c \in \mathbb{R}\} \subset Fun(\mathbb{R})$, the set of polynomials with degree less than or equal to 2, and the usual addition and scalar multiplication, as a subset of the vector space of real-valued functions.
 - $\{A \mid A^T = -A\} \subset Mat_n$, the set of anti-symmetric $n \times n$ matrices with the usual addition and scalar multiplication, as a subset of the vector space of $n \times n$ real matrices.

 $(a_1 + b_1 \times + c_1 \times^2) + (a_2 + b_2 \times + c_2 \times^2)$ $= (a_1 + a_2) + (b_1 + b_2) \times + (c_1 + c_2) \times^2$ $k(a + bx + cx^{2}) = (ka) + (kb)x + (kc)x^{2}$ Let A, B & Math st. AT = -A, BT = -B $(A+B)^{T} = A^{T} + B^{T}$ = -A - Rassum = (A+B)s línear (kA)' = kA'-kA

2. Let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be the linear transformation $T(p(x)) = x \frac{d}{dx}(p(x))$. Describe ker T, range T. (Hint: consider $T(1), T(x), T(x^2)$ individually, and use linearity.) $T(1) = x \frac{d}{dx}(1) = 0$ $T(x) = x \stackrel{d}{\rightarrow} (x) = x \cdot | = x$ $T(x^{z}) = x \frac{d}{dx}(x^{z}) = x \cdot (zx) = 2x^{2}$ So, $T(a+bx+cx^2) = T(a)+bT(x)+cT(a^2)$ $= hx + 2Cx^{2}$ $KerT = \{p(x) = a + bx + cx^2 | T(p(x)) = o\}$ $= \{ p(x) = a \mid a \in \mathbb{R} \}$ there : ssome $range T = \{ P(x) = a + bx + cx^2 | q(x) = d + ex + fx \}$ and T(q(x))=p(x)= $\{p(x) = bx + 2<x^2 | b, c \in \mathbb{R} \}$ $= \{p(x) = bx + cx^2 | b, c \in \mathbb{R}\}$

3. Let
$$T: \operatorname{Mat}_{2} \to \mathbb{R}$$
 be the linear transformation defined in standard coordinates by $T(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = a+d$.
Describe ker $T_{range} T$.

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0, T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0, T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0, T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & b \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c \\ 0 & d \end{bmatrix}) = 0,$$

$$T(\begin{bmatrix} c & c$$

- 4. The standard basis for \mathcal{P}_2 is $\mathcal{E} = \{1, x, x^2\}$, and we have another basis, given by $\mathcal{B} = \{1, x 1, (x 1)^2\}$. Let $p(x) = 2 - x + 3x^2 \in \mathcal{P}_2$. Express p(x) in terms of the basis \mathcal{B} by following these steps:
 - 1. Write the change of basis matrix $P_{\mathcal{E}\leftarrow\mathcal{B}}$. First identify the standard basis of \mathcal{P}_2 with the standard basis of \mathbb{R}^3 , $[1]_{\mathcal{E}} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $[x]_{\mathcal{E}} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$, $[x^2]_{\mathcal{E}} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$, then write each basis vector from \mathcal{B} in these standard coordinates, and concatenate them to form a 3×3 matrix.
 - 2. Compute $(P_{\mathcal{E}\leftarrow\mathcal{B}} \mid [p(x)]_{\mathcal{E}}) \xrightarrow{RREF} (I_3 \mid [p(x)]_{\mathcal{B}})$ or compute $(P_{\mathcal{E}\leftarrow\mathcal{B}})^{-1}[p(x)]_{\mathcal{E}}$ to find the coordinate vector $[p(x)]_{\mathcal{B}}$ in \mathcal{B} -coordinates.
 - 3. Use your answer to step 2 to rewrite p(x) as a linear combination of the elements of \mathcal{B} .

Remark: Observe that you have just computed the Taylor polynomial of degree 2 about a = 1 for p(x), without taking any derivatives. Similarly, you could compute Taylor polynomials of degree n about any number a, using the basis $\{1, x - a, ..., (x - a)^n\}$.

$$\begin{split} \left(\right) & \left[1 \right]_{\mathcal{E}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_{1} & \left[\times -1 \right]_{\mathcal{E}} = \left[\times \right]_{\mathcal{E}} - \left[1 \right]_{\mathcal{E}} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ & \left[(\times -1)^{2} \right]_{\mathcal{E}} = \left[\times^{2} - 2 \times +1 \right]_{\mathcal{E}} \\ & = \left[\times^{2} \right]_{\mathcal{E}} - 2 \left[\times \right]_{\mathcal{E}} + \left[1 \right]_{\mathcal{E}} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B}} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{B} \\ & \text{So } P_{\mathcal{E} \mathcal{L} - \mathcal{$$

5. Show that the linear transformation $T: \mathcal{P}_2 \to \mathcal{P}_2$ defined by T(p(x)) = p(1-2x) is an isomorphism.

Since domain T = codomain T and dim (domainT)= dim (kerT)+d:m(rangeT) and Tislinear, it is enough to that T:seither 1-1 or onto, to show it:s both (i.e. an isomorph:sm). (b/c dim(P2)<00) Toshow it: s I-1, we can show that kerT= 0. Suppose PUN= at bxtcx2 and T(p(x)) = O. $T(p\omega) = P(1-2x)$ $= a + b(1 - 2x) + c(1 - 2x)^{2}$ $= a+b-2bx+c-4cx+4cx^2$ $= (a+b+c) + (-2b-4c)x + 4cx^{2}$ =0abc a+b+c = 0-2b-4c = 0 (=) (| | | | 0 0 -2-4 | 0 0 0 4 | 0 4c = 0 $\frac{\mathsf{RREF}}{\rightarrow} \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array} \right)$ So 47: 14e solution is a=b=c=o, which means Ker T = { p(x) = 03 = 0