Math 20580 Tutorial
Worksheet 5

1. Show that the following sets (with operations) are subspaces of the specified vector spaces

- $\mathcal{P}_{2}=\left\{p(x)=a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\} \subset \operatorname{Fun}(\mathbb{R})$, the set of polynomials with degree less than or equal to 2 , and the usual addition and scalar multiplication, as a subset of the vector space of real-valued functions.
- $\left\{A \mid A^{T}=-A\right\} \subset$ Mat $_{n}$, the set of anti-symmetric $n \times n$ matrices with the usual addition and scalar multiplication, as a subset of the vector space of $n \times n$ real matrices.

$$
\begin{aligned}
& \left(a_{1}+b_{1} x+c_{1} x^{2}\right)+\left(a_{2}+b_{2} x+c_{2} x^{2}\right) \\
& =\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) x+\left(c_{1}+c_{2}\right) x^{2}
\end{aligned}
$$ $k\left(a+b x+c x^{2}\right)=(k a)+(k b) x+(k c) x^{2}$

$$
\begin{aligned}
(k A)^{\top} & =k A^{\top},-^{\top} \text { is linear } \\
& =-k A
\end{aligned}
$$

2. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the linear transformation $T(p(x))=x \frac{d}{d x}(p(x))$.

Describe jer T, range T.
(Hint: consider $T(1), T(x), T\left(x^{2}\right)$ individually, and use linearity.)

$$
\begin{aligned}
& T(1)=x \frac{d}{d x}(1)=0 \\
& T(x)=x \frac{d}{d x}(x)=x \cdot 1=x \\
& T\left(x^{2}\right)=x \frac{d}{d x}\left(x^{2}\right)=x \cdot(2 x)=2 x^{2}
\end{aligned}
$$

so, $T\left(a+b x+c x^{2}\right)=T(a)+b T(x)+c T\left(x^{2}\right)$

$$
=b x+2 c x^{2}
$$

$$
\operatorname{ker} T=\left\{p(x)=a+b x+c x^{2} \mid T(p(x))=0\right\}
$$

$$
=\{p(x)=a \mid a \in \mathbb{R}\}
$$

$$
\left.\begin{array}{rlrl}
\text { range } T & =\left\{p(x)=a+b x+c x^{2} \left\lvert\, \begin{array}{ll}
\text { there :s some } \\
\text { q(x) }=d+e x+f x^{2}
\end{array}\right.\right\} \\
& \text { and } T(q(x))=p(x)
\end{array}\right\}
$$

$$
\text { Note } \begin{aligned}
\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\text { range } T) & =1+2=3 \\
& =\operatorname{dim}\left(\rho_{2}\right)
\end{aligned}
$$

3. Let $T: \mathrm{Mat}_{2} \rightarrow \mathbb{R}$ be the linear transformation defined in standard coordinates by $\left.T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+d$.

Describe $\operatorname{ker} T$, range T.

$$
\begin{aligned}
& T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=1, T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=0, \\
& T\left(\left[\begin{array}{ll}
0 & 0 \\
i & 0
\end{array}\right]\right)=0, T\left(\left[\begin{array}{l}
0 \\
0 \\
i
\end{array}\right]\right)=1 \\
& T\left(a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
0
\end{array}\right]+c\left[\begin{array}{ll}
0 \\
0 & 0
\end{array}\right]+d\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=a+d \\
& \operatorname{Ker} T=\left\{\left[\begin{array}{c}
a b \\
c
\end{array}\right] \left\lvert\, T\left(\left[\begin{array}{c}
a b \\
c
\end{array}\right]\right)=0\right.\right\} \\
& =\left\{\left.\left[\begin{array}{ll}
a b \\
c \\
d
\end{array}\right] \right\rvert\, a+d=0\right\} \\
& =\left\{\left.\left[\begin{array}{l}
a b \\
c-a
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{k \in \mathbb{R} \left\lvert\, \begin{array}{c}
\text { there:s a }\left[\begin{array}{c}
a b \\
\text { set. } \\
\text { s. }
\end{array}\right]+d=K
\end{array}\right.\right\} \\
& =\mathbb{R} \text {, since } T\left(\left[\begin{array}{ll}
k 0 \\
0 & 0
\end{array}\right]\right)=K
\end{aligned}
$$

for and

Note $\operatorname{dim}($ kep $T)+d!m(\operatorname{rarge} T)=3+1$

$$
=4=\operatorname{din}\left(M_{a} t_{2 \times 2}\right)
$$

4. The standard basis for \mathcal{P}_{2} is $\mathcal{E}=\left\{1, x, x^{2}\right\}$, and we have another basis, given by $\mathcal{B}=\left\{1, x-1,(x-1)^{2}\right\}$. Let $p(x)=2-x+3 x^{2} \in \mathcal{P}_{2}$. Express $p(x)$ in terms of the basis \mathcal{B} by following these steps:
5. Write the change of basis matrix $P_{\mathcal{E} \leftarrow \mathcal{B}}$. First identify the standard basis of \mathcal{P}_{2} with the standard basis of $\mathbb{R}^{3},[1]_{\mathcal{E}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),[x]_{\mathcal{E}}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left[x^{2}\right]_{\mathcal{E}}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, then write each basis vector from \mathcal{B} in these standard coordinates, and concatenate them to form a 3×3 matrix.
6. Compute $\left(P_{\mathcal{E} \leftarrow \mathcal{B}} \mid[p(x)]_{\mathcal{E}}\right) \xrightarrow{\text { RREF }}\left(I_{3} \mid[p(x)]_{\mathcal{B}}\right)$ or compute $\left(P_{\mathcal{E} \leftarrow \mathcal{B}}\right)^{-1}[p(x)]_{\mathcal{E}}$ to find the coordinate vector $[p(x)]_{\mathcal{B}}$ in \mathcal{B}-coordinates.
7. Use your answer to step 2 to rewrite $p(x)$ as a linear combination of the elements of \mathcal{B}.

Remark: Observe that you have just computed the Taylor polynomial of degree 2 about $a=1$ for $p(x)$, without taking any derivatives. Similarly, you could compute Taylor polynomials of degree n about any number a, using the basis $\left\{1, x-a, \ldots,(x-a)^{n}\right\}$.

$$
\begin{aligned}
& \text { 1) }[1]_{\varepsilon}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),[x-1]_{\varepsilon}=[x]_{\varepsilon}-[1]_{\varepsilon}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \\
& {\left[(x-1)^{2}\right]_{\varepsilon}=\left[x^{2}-2 x+1\right]_{\varepsilon}} \\
& =\left[x^{2}\right]_{\varepsilon}-2[x]_{\varepsilon}+[1]_{\varepsilon}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \\
& \text { So } P_{\varepsilon \in-B}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right) \\
& \text { 2) }\left(\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 1 & 1 & R_{1} \\
0 & 0 & 1 & R_{1}+R_{2} \leftrightarrow R_{1}
\end{array} \xrightarrow{1}\left(\begin{array}{ccc|ccc|c}
1 & -1 & 1 & 1 & 1 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & R_{1}+R_{3} \leftrightarrow R_{3} & 1 & 0
\end{array}\right)\right. \\
& \left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 6 & 0
\end{array}\right), ~ P_{B \leftarrow \varepsilon}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) \\
& {[P(x)]_{\varepsilon}=\left[2-x+3 x^{2}\right]_{\varepsilon}=2[1]_{\varepsilon}-[x]_{\Sigma}+3\left[x^{2}\right]_{\varepsilon}=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)} \\
& {[p(x)]_{B}=P_{B \in \varepsilon}[p(x)]_{\varepsilon}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 2
\end{array}\right)\binom{2}{3}=\left(\begin{array}{c}
2-1+3 \\
-1+6 \\
3
\end{array}\right)=\left(\begin{array}{l}
3 \\
5 \\
5
\end{array}\right)} \\
& \text { 3) } 4+5(x-1)+3(x-1)^{2}=p(x)
\end{aligned}
$$

5. Show that the linear transformation $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ defined by $T(p(x))=p(1-2 x)$ is an isomorphism.

Since domain $T=\operatorname{codomain} T$ and $\operatorname{dim}(\operatorname{domain} T)=\operatorname{din}($ kerr T)din(rarge $T)$ and T is linear, it is enough to that T is either $1-1$ or onto, toshowit:s both (ie. an isomorphism) . (b/c $\left.\operatorname{dim}\left(p_{2}\right)<\infty\right)$
Toshou it :s $(-1$, we can show that $\operatorname{ker} T=0$.
Suppose $p(x)=a+b x+c x^{2}$ and

$$
\begin{array}{rl}
T(P(x))=0 . \\
T(P(x)) & =P(1-2 x) \\
& =a+b(1-2 x)+c(1-2 x)^{2} \\
& =a+b-2 b x+c-4 c x+4 c x^{2} \\
& =(a+b+c)+(-2 b-4 c) x+4 c x^{2} \\
=0 & a \\
a+b+c=0 \\
-2 b-4 c=0 & \Leftrightarrow\left(\begin{array}{ccc|c}
1 & 1 & c & 0 \\
0 & -2 & -4 & 0 \\
0 & 0 & 4 & 0
\end{array}\right) \\
4 c=0 & \\
& \xrightarrow{\text { PREF }}\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{array}
$$

so unique solution is

$$
\begin{aligned}
& a=b=c=0, \text { which means } \\
& \operatorname{ker} T=\{p(x)=0\}=0
\end{aligned}
$$

