M20580 L.A. and D.E. Worksheet 6

1. Let $T: \mathcal{P}^{2} \rightarrow \mathcal{P}^{2}$ be the linear transformation on the space of degree two polynomials defined by

$$
T(p(x))=p(x+3)
$$

Let $\mathcal{E}=\left\{1, x, x^{2}\right\}$ be the standard basis for \mathcal{P}^{2}. Let, $p(x)$ be the vector $2-3 x+2 x^{2}$ in \mathcal{P}^{2}.
(a) Apply the transformation T to the vector $p(x)$ to get $T(p(x))$.
(b) Write $p(x)$ in terms of the basis \mathcal{E} to get $[p(x)]_{\mathcal{E}}$.
(c) Find the matrix of the linear transformation T with respect to the basis $\mathcal{E},[T]_{\mathcal{E} \leftarrow \mathcal{E}}$.
(d) Compute $[T(p(x))]_{\mathcal{E}}$ by the matrix multiplication $[T]_{\mathcal{E} \leftarrow \mathcal{E}}[p(x)]_{\mathcal{E}}$. Use this to recover $T(p(x))$. Check your answer matches part (a).

Solution:

(a)

$$
\begin{aligned}
T(p(x)) & =\left(2-3(x+3)+2(x+3)^{2}\right) \\
& =2-3 x-9+2 x^{2}+12 x+18 \\
& =11+9 x+2 x^{2}
\end{aligned}
$$

(b) $[p(x)]_{\mathcal{E}}=\left[\begin{array}{c}2 \\ -3 \\ 2\end{array}\right]$.
(c)
$[T]_{\mathcal{E} \leftarrow \mathcal{E}}=\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & 1 & 6 \\ 0 & 0 & 9\end{array}\right]$
(d)
$[T]_{\mathcal{E} \leftarrow \mathcal{E}}[p(x)]_{\mathcal{E}}=\left[\begin{array}{lll}1 & 3 & 9 \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 \\ -3 \\ 2\end{array}\right]=\left[\begin{array}{c}11 \\ 9 \\ 2\end{array}\right]$.
2. Compute the determinants using cofactor expansion along any row or column that seems convenient.
(a) $\left[\begin{array}{lll}1 & 0 & 3 \\ 5 & 1 & 1 \\ 0 & 1 & 3\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 1 \\ 3 & -2 & 1\end{array}\right]$
(c) $\left[\begin{array}{cccc}2 & 0 & 3 & -1 \\ 1 & 0 & 2 & 2 \\ 0 & -1 & 1 & 4 \\ 2 & 0 & 1 & -3\end{array}\right]$

Solution:

(a) Using cofactor expansion across the first row we get

$$
1((1)(3)-(1)(1))-0((5)(3)-(0)(1))+3((5)(1)-(0)(1))=2+0+15=17
$$

(b) Using cofactor expansion across the second row we get
$-2((1)(1)-(-1)(-2))+0((1)(1)-(-1)(-3))-1((1)(-2)-(3)(1))=2+0+5=7$
(c) Using cofactor expansion down the second column we get

$$
-(-1) \times \operatorname{det}\left(\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & 2 & 2 \\
2 & 1 & -3
\end{array}\right]\right)=
$$

$2((2)(-3)-(1)(2))-3((1)(-3)-(2)(2))+(-1)((1)(1)-(2)(2))=-16+21+1=6$
3. Use properties of determinants to evaluate the given determinant by inspection. Explain your reasoning.
(a) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 3 & 0 & -2 \\ 4 & 4 & 4\end{array}\right]$
(b) $\left[\begin{array}{ccc}3 & 1 & 0 \\ 0 & -2 & 5 \\ 0 & 0 & 4\end{array}\right]$
(c) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Solution:

(a) The determinant is 0 as the third row is a multiple of the first row.
(b) The determinant of an upper triangular matrix is the product of the diagonal entries, in this case $(3)(-2)(4)=-24$
(c) Swapping two rows or columns has the effect of multiplying the determinant by -1 . In this example, swaping the second and third column results in the identity matrix which has determinant 1 , so the original matrix of part (c), has determinant -1 .
4. Use Cramer's rule to solve the linear system

$$
\begin{aligned}
x+y-z & =1 \\
x+y+z & =2 \\
x-y \quad & =3
\end{aligned}
$$

Solution: The associated matrix is $\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$ which has determinant 4 and the associated solution vector is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ Replacing the first column with the solution vector we obtain the matrix $\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 1 & 1 \\ 3 & -1 & 0\end{array}\right]$ which has determinant 9 . So $x=9 / 4$.
Replacing the second column with the solution vector we obtain the matrix $\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right]$ which has determinant -3 . So $y=-3 / 4$.

Replacing the third column with the solution vector we obtain the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & -1 & 3\end{array}\right]$ which has determinant 2 . So $z=2 / 4$.
5. Let A and B be $n \times n$ matrices with $\operatorname{det} A=3$ and $\operatorname{det} B=-2$. Find the indicated determinants.
(a) $\operatorname{det}(A B)$
(b) $\operatorname{det}\left(A^{2}\right)$
(c) $\operatorname{det}\left(B^{-1} A\right)$
(d) $\operatorname{det}(2 A)$
(e) $\operatorname{det}\left(3 B^{T}\right)$

Solution:

(a) $\operatorname{det}(A B)=\operatorname{det}(A) \mathrm{B}=(3)(-2)=-6$
(b) $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A A)=\operatorname{det}(A) \operatorname{det}(A)=3^{2}=9$
(c) $\operatorname{det}\left(B^{-1} A\right)=\operatorname{det}\left(B^{-1}\right) \operatorname{det}(A)=\frac{1}{\operatorname{det}(B)} \operatorname{det}(A)=\frac{1}{-2}(3)=-3 / 2$.
(d) $\operatorname{det}(2 A)=2 \operatorname{det}(A)=6$
(e) $\operatorname{det}\left(3 B^{T}\right)=3 \operatorname{det}\left(B^{T}\right)=3 \operatorname{det}(B)=3(-2)=-6$.

