Math 20580 L.A. and D.E. Tutorial Worksheet 7

1. Let T be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2} defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 2 x_{3}-x_{1}\right) .
$$

(a) What is the matrix of T with respect to the standard bases for \mathbb{R}^{3} and \mathbb{R}^{2}.
(b) If $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and $\mathcal{C}=\left\{\beta_{1}, \beta_{2}\right\}$, where

$$
\alpha_{1}=(1,0,-1), \quad \alpha_{2}=(1,1,1), \quad \alpha_{3}=(1,0,0), \quad \beta_{1}=(0,1), \quad \beta_{2}=(1,0)
$$

what is the matrix of $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$?

Solution:

(a) Since $T(1,0,0)=(1,-1), T(0,1,0)=(1,0), T(0,0,1)=(0,2)$, then the matrix of T is $\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & 0 & 2\end{array}\right]$.
(b) First, $T(1,0,-1)=(1,-3)=-3 \cdot(0,1)+1 \cdot(1,0)$. Next, $T(1,1,1)=(2,1)$ $=1 \cdot(0,1)+2 \cdot(1,0)$. Lastly, $T(1,0,0)=(1,-1)=-1(0,1)+1(1,0)$. So, $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ is $\left[\begin{array}{ccc}-3 & 1 & -1 \\ 1 & 2 & 1\end{array}\right]$.
2. Determine which of the following are true or false, and justify your answer. Let A and B both be $n \times n$ matrices.
(a) If A and B are similar, then they have the same eigenvalues.
(b) If A and B are similar, then they have the same eigenvectors.
(c) If A and B have the same characteristic polynomial, then they are similar.
(d) If \vec{v} is an eigenvector for both A and B, then it is an eigenvector for $A B$.
(e) If A has 0 as an eigenvalue, then $\operatorname{det} A=0$.
(f) If A is invertible then it is diagonalizable.

Solution:

(a) True: Let $B=P A P^{-1}$. Then

$$
B-\lambda I=P A P^{-1}-\lambda I=P A P^{-1}-P(\lambda I) P^{-1}=P(A-\lambda I) P^{-1}
$$

Finding the determinant of the left and right side gives:

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}(P) \operatorname{det}(A-\lambda I) \operatorname{det}\left(P^{-1}\right) \\
& =\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

So A and B have the same characteristic polynomial, hence the same eigenvalues.
(b) False: Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$, and let $P=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. Then D and $P D P^{-1}=$ $\frac{1}{2}\left[\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right]$ are similar, and in particular have the same eigenvalues. However, D has $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as an eigenvector, while $P D P^{-1}$ does not.
(c) False: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ have the same characteristic polynomial, $(\lambda-1)^{2}$. However, they are not similar: if they were similar they would have to have the same geometric multiplicity for $\lambda=1$, but 1 has geometric multiplicity 2 for A and 1 for B.
(d) True: Let v be a λ-eigenvector for A, and a λ^{\prime}-eigenvector for B. Then $(A B) v=$ $A(B v)=A\left(\lambda^{\prime} v\right)=\lambda^{\prime}(A v)=\lambda^{\prime} \lambda v$, so v is a $\lambda^{\prime} \lambda$-eigenvector for $A B$.
(e) True: Let v be a nonzero 0-eigenvalue for A. Then $A v=0 v=0$, so the system $A x=\overrightarrow{0}$ has a nontrivial solution, so A is not invertible, so $\operatorname{det} A=0$.
(f) False: Consider the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. There is only one eigenvalue $\lambda=1$, with algebraic multiplicity 2 and geometric multiplicity 1 . Since the geometric multiplicity is less than the algebraic multiplicity, this matrix is not diagonalizable.
3. Let $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$.
(a) Find an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
(b) What is A^{2024} ?

Solution:

(a) - First, we find all eigenvalues of A :

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 4 \\
3 & 2-\lambda
\end{array}\right]=\lambda^{2}-3 \lambda-10=(\lambda+2)(\lambda-5),
$$

which implies that the eigenvalues are $\lambda=-2$ and $\lambda=5$. Since the eigenvalues of A are distinct, A is diagonalizable.

- Next, we find eigenvectors corresponding to each eigenvalue:
- For $\lambda=-2$:

$$
\left(A+2 I_{2}\right) \mathbf{x}=0 \Longleftrightarrow\left[\begin{array}{ll}
3 & 4 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
$$

and hence

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{c}
4 \\
-3
\end{array}\right], t \in \mathbb{R}
$$

- For $\lambda=5$: Using the same method, the eigenvectors are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right], t \in \mathbb{R} .
$$

- According to the theory of diagonalization, the following matrices

$$
P=\left[\begin{array}{cc}
4 & 1 \\
-3 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
-2 & 0 \\
0 & 5
\end{array}\right]
$$

satisfies $A=P D P^{-1}$.
(b) Using that $A=P D P^{-1}$, we can simplify:

$$
\begin{aligned}
A^{2024} & =\left(P D P^{-1}\right)^{2024}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \ldots\left(P D P^{-1}\right) \quad(2024 \text { times }) \\
& =P D\left(P^{-1} P\right) D\left(P^{-1} P\right) D \ldots\left(P^{-1} P\right) D P^{-1} \\
& =P D^{2024} P^{-1}
\end{aligned}
$$

Let's compute P^{-1} and D^{2024} :

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
4 & 1 \\
-3 & 1
\end{array}\right] \Longrightarrow P^{-1}=\frac{1}{7}\left[\begin{array}{cc}
1 & -1 \\
3 & 4
\end{array}\right] \\
& D=\left[\begin{array}{cc}
-2 & 0 \\
0 & 5
\end{array}\right] \Longrightarrow D^{2024}=\left[\begin{array}{cc}
(-2)^{2024} & 0 \\
0 & 5^{2024}
\end{array}\right] .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
A^{2024} & =P D^{2024} P^{-1} \\
& =\left[\begin{array}{cc}
4 & 1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
(-2)^{2024} & 0 \\
0 & 5^{2024}
\end{array}\right] \frac{1}{7}\left[\begin{array}{cc}
1 & -1 \\
3 & 4
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{cc}
(3) 5^{100}+(4) 2^{2024} & 4 \cdot 5^{2024}-(4) 2^{2024} \\
(3) 5^{2024}-(3) 2^{2024} & 3 \cdot 2^{2024}+(4) 5^{2024}
\end{array}\right]
\end{aligned}
$$

4. Let $A=\left[\begin{array}{ccc}0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5\end{array}\right]$.
(a) Determine all the eigenvalues of A.
(b) For each eigenvalue λ of A, find the eigenspace E_{λ}.
(c) Find a basis for \mathbb{R}^{3} consisting of eigenvectors of A.
(d) Determine an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Solution:

(a) We have

$$
\operatorname{det}\left(A-\lambda I_{3}\right)=-(\lambda-1)(\lambda-2)(\lambda-3)=0
$$

The eigenvalues are $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=3$.
(b) Recall that a λ-eigenvector is an element of the kernel of $A-\lambda I$.

We have that
$A-\lambda_{1} I=\left[\begin{array}{ccc}-1 & -2 & -3 \\ -1 & 0 & -1 \\ 2 & 2 & 4\end{array}\right] \quad A-\lambda_{2} I=\left[\begin{array}{ccc}-2 & -2 & -3 \\ -1 & -1 & -1 \\ 2 & 2 & 3\end{array}\right] \quad A-\lambda_{3} I=\left[\begin{array}{ccc}-3 & -2 & -3 \\ -1 & -2 & -1 \\ 2 & 2 & 2\end{array}\right]$
The eigenspaces E_{λ} of A will be the null spaces $A-\lambda I$. We find these using row reduction on the homogeneous systems $[A-\lambda I \mid \overrightarrow{0}]$.
For $\lambda_{1}=1$, we have $E_{1}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$.
For $\lambda_{2}=2$, we have $E_{2}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right\}$.
For $\lambda_{3}=3$, we have $E_{3}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$.
(c) A basis for \mathbb{R}^{3} consisting of eigenvectors of A is

$$
\left\{\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

(d) The matrices P and D we need to find are

$$
P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
-1 & 0 & -1
\end{array}\right], \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

5. Eigenvalues and eigenvectors only make sense for square matrices. Fortunately, even if
A is a nonsquare matrix, $A A^{T}$ and $A^{T} A$ will be square. Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1 \\ 2 & -2\end{array}\right]$.
(a) Find the characteristic polynomial and eigenvalues of $A A^{T}$.
(b) Find the characteristic polynomial and eigenvalues of $A^{T} A$.
(c) What do you notice about the eigenvalues of the two square matrices?

Solution:

(a) $A A^{T}=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & -4 \\ 0 & -4 & 8\end{array}\right]$. Using Laplace expansion along the top row, we find that the characteristic polynomial of $A A^{T}$ is $\operatorname{det}\left(A A^{T}-\lambda I\right)=(2-\lambda)((2-\lambda)(8-$ $\lambda)-16)=(2-\lambda)\left(\lambda^{2}-10 \lambda\right)=(2-\lambda)(\lambda)(\lambda-10)$. The eigenvalues of $A A^{T}$ are the roots of the characteristic polynomial, namely $\lambda=0,2,10$.
(b) $A^{T} A=\left[\begin{array}{cc}6 & -4 \\ -4 & 6\end{array}\right]$. The characteristic polynomial of $A^{T} A$ is $\operatorname{det}\left(A^{T} A-\lambda I\right)=$ $(6-\lambda)(6-\lambda)-16=\lambda^{2}-12 \lambda+20=(\lambda-2)(\lambda-10)$. The eigenvalues of $A^{T} A$ are the roots of the characteristic polynomial, namely $\lambda=2,10$.
(c) Each eigenvalue of $A^{T} A$ is also an eigenvalue of $A A^{T}$, but not all eigenvalues of $A A^{T}$ is an eigenvalue of $A^{T} A$.

