M20580 L.A. and D.E. Tutorial Worksheet 8

1. Find all eigenvalues and a eigenvector for each eigenvalue of

$$
A=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

Solution: The characteristic equation is

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-2 \lambda+5
$$

Then the eigenvalues are

$$
\lambda=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i .
$$

The REF of $A-(1+2 i) I$ is

$$
\left[\begin{array}{ll}
i & 1 \\
0 & 0
\end{array}\right] .
$$

Thus the eigenvalue \mathbf{v}_{1} associated with $\lambda_{1}=1+2 i$ is $\left[\begin{array}{l}i \\ 1\end{array}\right]$ and the eigenvalue \mathbf{v}_{2} associated with $\lambda_{2}=1-2 i=\overline{\lambda_{1}}$ is $\left[\begin{array}{c}-i \\ 1\end{array}\right]=\overline{\mathbf{v}}_{1}$.
2. Determine if the given vectors form an orthogonal set

$$
\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
-2 \\
7 / 2
\end{array}\right] .
$$

Solution: Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be the given vectors respectively. Then we have

$$
\begin{aligned}
& \mathbf{v}_{1} \cdot \mathbf{v}_{2}=-3+2+1=0 \\
& \mathbf{v}_{1} \cdot \mathbf{v}_{3}=-3 / 2-2+7 / 2=0 \\
& \mathbf{v}_{2} \cdot \mathbf{v}_{3}=1 / 2-4+7 / 2=0
\end{aligned}
$$

Then they form an orthogonal set.
3. Determine if the given vectors form an orthogonal basis for \mathbb{R}^{2}

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-6 \\
9
\end{array}\right] .
$$

Solution:

(1) Proving directly: Clearly, they form an orthogonal set. We only need to check if they are linearly independent. That is

$$
\begin{aligned}
{\left[\begin{array}{cc}
3 & -6 \\
2 & 9
\end{array}\right] } & \sim\left[\begin{array}{cc}
1 & -2 \\
2 & 9
\end{array}\right] \\
& \sim\left[\begin{array}{cc}
1 & -2 \\
0 & 13
\end{array}\right] .
\end{aligned}
$$

(2) Using Theorem 5.1 in Poole: If $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ is an orthogonal set of nonzero vector in \mathbb{R}^{n}, then these vectors are linearly independent. Since our vectors are nonzero and form an orthogonal set, they are also linearly independent. Thus they form an orthogonal basis for \mathbb{R}^{2}.
4. Find the orthogonal complement W^{\perp} of W in \mathbb{R}^{3} where

$$
W=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: 2 x+y=z, y+z=0\right\} .
$$

Hint: $(\operatorname{null} A)^{\perp}=\operatorname{col} A^{T}$ and $(\operatorname{col} A)^{\perp}=\operatorname{null} A^{T}$.

Solution: Note that $W=\operatorname{null}\left\{\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]\right\}$. Let $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]$. Then $W^{\perp}=$ $\operatorname{col} A^{T}$. We have that

$$
A^{T}=\left[\begin{array}{cc}
2 & 0 \\
1 & 1 \\
-1 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Thus $W^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.
5. Let

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

(a) Find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{u}$

Solution: $\mathbf{u} \cdot \mathbf{v}=1-2+0=-1=\mathbf{v} \cdot \mathbf{u}$.
(b) Find $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Solution:

$$
\begin{aligned}
& \operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{-1}{2} \mathbf{u} \\
& \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}=\frac{-1}{14} \mathbf{v}
\end{aligned}
$$

6. Find the orthogonal projection of $\mathbf{v}=\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$ onto the subspace $W=\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ in \mathbb{R}^{3}, where $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$. Find the distance from \mathbf{v} to W.

Solution: Note that $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0$, then \mathbf{u}_{1} and \mathbf{u}_{2} form an orthogonal basis of W. Thus,

$$
\begin{gathered}
\operatorname{proj}_{W}(\mathbf{v})=\frac{(1,2,-3) \cdot(1,0,1)}{\|(1,0,1)\|^{2}}(1,0,1)+\frac{(1,2,-3) \cdot(-1,2,1)}{\|(-1,2,1)\|^{2}}(-1,2,1) \\
\operatorname{proj}_{W}(\mathbf{v})=(-1,0,-1) \\
\operatorname{perp}_{W}(\mathbf{v})=v-\operatorname{proj}_{W}(\mathbf{v})=(2,2,-2) .
\end{gathered}
$$

Then distance from \mathbf{v} to W is $\left\|\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v})\right\|=2 \sqrt{3}$.
7. Apply the Gram-Schmidt process to the vectors $(0,1,1),(-2,0,-2)$ and $(-2,0,-1)$ to obtain an orthonormal basis.

Solution: Let $\mathbf{v}_{1}=(0,1,1)$. Then

$$
\mathbf{v}_{2}=(-2,0,-2)-\frac{(-2,0,-2) \cdot(0,1,1)}{\|(0,1,1)\|^{2}}(0,1,1)=(-2,1,-1)
$$

and

$$
\begin{aligned}
\mathbf{v}_{3} & =(-2,0,-1)-\left(\frac{(-2,0,-1) \cdot(0,1,1)}{\|(0,1,1)\|^{2}}(0,1,1)+\frac{(-2,0,-1) \cdot(-2,1,-1)}{\|(-2,1,-1)\|^{2}}(-2,1,-1)\right) \\
& =(-1 / 3,-1 / 3,1 / 3)
\end{aligned}
$$

To get orthonormal basis, we simply normalize the above vector, i.e.

$$
\begin{aligned}
& \mathbf{u}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{\mathbf{1}}\right\|}=(0,1 / \sqrt{2}, 1 / \sqrt{2}) \\
& \mathbf{u}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=(-2 / \sqrt{6}, 1 / \sqrt{6},-1 / \sqrt{6}) \\
& \mathbf{u}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=(-1 / \sqrt{3},-1 \sqrt{3}, 1 \sqrt{3}) .
\end{aligned}
$$

