Name:	
Section #:	

Exam 2, Math 20580 March 6, 2025

- The Honor Code is in affect for this examination. All work is to be your own.
- Please turn off and put away all cellphones and electronic devices.
- Calculators are **not** allowed. 8:20-9:10 Matthew Dyer Matthew Dyer Jeffrey Diller 9:25-10:15 10:30-11:20 127 HH 136 DBRT 03 • The exam lasts for one hour and 15 minutes. Han Lu Sudipta Gosh Sudipta Gosh Claudia Polini 11:30-12:20 12:50-1:40 114 PASQ 140 DBRT 05 • Be sure that your name and your instructor's name and 2:00-2:50 3:30-4:20 140 DBRT 140 DBRT your section number are on the front page of your exam.
- There are 12 problems: 8 are multiple choice and 4 are partial credit.
- Be sure that you have all 8 pages of this exam.
- Each multiple choice question is worth 6 points. Your score will be the sum of the best 7 scores on the multiple choice plus your score on questions 9–12.
- Make sure you have correctly marked your multiple choice answers by the time the exam ends. No credit will be given for incorrectly marked answers.

Pleas	e mark you	answers with an	X, not a circle		
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)

MC Total.	
9.	
10	
11.	
12.	
Total.	

1. (6 points) Which of the following is a vector space?

I.
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x, y, z \text{ in } \mathbb{R} \text{ and } x + y + z = 1 \right\}$$
.

II.
$$\left\{ \begin{bmatrix} 0 \\ x \\ y \end{bmatrix} \middle| x, y \text{ in } \mathbb{R} \text{ and } y = x \text{ or } y = -x \right\}.$$

III.
$$\left\{ \left[\begin{array}{c} t \\ t+s \\ s-t \end{array} \right] \middle| s,t \text{ in } \mathbb{R} \right\}.$$

IV.
$$\left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} \middle| s, t \text{ in } \mathbb{R} \text{ and } t \geq 0 \right\}$$
.

- (a) III and IV.
- (b) IV only.
- (c) II, III and IV.
- (d) I and III.
- (e) III only.

- **2.** (6 points) Let $M_{2,2}$ denote the set of all 2×2 matrices, and let S be the subspace of $M_{2,2}$ consisting of all matrices A satisfying $A + A^T = 0$. What is the dimension of S?
 - (a) 2
- (b) 3
- (c) 1
- (d) 0
- (e) 4

3. (6 points) Let \mathcal{P}_2 denote the vector space of polynomials of degree at most 2, and let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be a linear transformation such that

$$T(1+x) = x$$
, $T(x+x^2) = x^2$ and $T(x^2+1) = 1$.

- What is the value of $T(2 + 2x + 2x^2)$?
- (a) $1 + x + x^2$ (b) 2
- (c) $4x + x^2$ (d) $4 + 4x + 4x^2$ (e) $x + x^2$

- **4.** (6 points) Let \mathcal{P}_3 denote the vector space of polynomials of degree at most 3. Let $T: \mathbb{R}^3 \to \mathcal{P}_3$ be a linear transformation. Which of the following statements is always correct?
 - I. T can not be one-to-one.
 - II. T can not be onto.
 - III. If T is one-to-one, then the dimension of range(T) is 3.
 - IV. rank(T) + nullity(T) = 4.
 - (a) II, III and IV.
- (b) II and IV.
- (c) I only.
- (d) III only.
- (e) II and III.

- **5.** (6 points) Let A, B and C be 2×2 matrices such that $\det(A) = 3$, $\det(B) = \sqrt{2}$ and C is invertible. What is the value of $\det(3C^{-1}AB^2C^T)$, where C^T denotes the transpose of C?
 - (a) 108
- (b) 18
- (c) 54
- (d) 27
- (e) 6

- 6. (6 points) Let \mathcal{P}_1 denote the vector space of polynomials of degree at most 1. Consider the two bases $\mathcal{E} = \{1, x\}$ and $\mathcal{B} = \{1 - 2x, -1 + x\}$ of \mathcal{P}_1 . Which of the following is the first row of the change of basis matrix $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P}$ from \mathcal{E} to \mathcal{B} ?
 - (a) $[-1 \ -2]$ (b) $[-2 \ -1]$ (c) $[1 \ 1]$ (d) $[-1 \ -1]$ (e) $[1 \ -2]$

7.	(6 points)	Find	the area	of the	parallelogram	with	vertices	(0,0).	(6,7).	(4,5)	and	(10, 1)	2).

- (a) 3
- (b) 1
- (c) 4
- (d) 2
- (e) 5

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 9 \end{array} \right].$$

What is the determinant of A?

- (a) 0
- (b) -4
- (c) 4
- (d) 3
- (e) -3

9. (15 points) Consider the bases of \mathcal{P}_2 given by

$$\mathcal{B} = \{4 + 3x + x^2, 1 + x - 2x^2, 1 - x^2\} \quad \text{and} \quad \mathcal{C} = \{1 + x, 1 + x^2, 1 - x^2\}.$$

(a) Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{C} .

(b) Suppose that p(x) is a polynomial in \mathcal{P}_2 with $[p(x)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$. What is $[p(x)]_{\mathcal{C}}$?

(c) What is p(x) in (b)?

10. (14 points) Consider the matrix

$$A = \left[\begin{array}{rrr} s & -1 & 0 \\ -1 & s & -1 \\ 0 & -2 & s \end{array} \right]$$

where s is a real number.

(a) Compute the determinant of A.

(b) For which values of s is the matrix A invertible?

(c) If the matrix A is invertible, give a formula for $\det(A^{-1})$ in terms of s.

11. (15 points) Let \mathcal{P}_3 denote the vector space of polynomials of degree at most 3, and $T: \mathcal{P}_3 \to \mathbb{R}^2$ be the linear transformation given by

$$T(p(x)) = \left[\begin{array}{c} p(-1) \\ p(1) \end{array} \right]$$

for p(x) in \mathcal{P}_2 (you do not have to explain why T is a linear transformation).

(a) Write down the matrix [T] of T with respect to the standard bases

$$\mathcal{B} = \{1, x, x^2, x^3\} \text{ of } \mathcal{P}_3 \quad \text{and} \quad \mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \text{ of } \mathbb{R}^2.$$

(b) Find a basis for the range of T.

(c) Find a basis for the kernel of T. Make sure to write each element of your basis as a polynomial.

12. (14 points) Consider the system of equations

$$\begin{cases} sx_1 - 3x_2 = 2\\ 3x_1 - sx_2 = 3 \end{cases}$$

where s is a number.

(a) For values of s for which the system has a unique solution, USE CRAMER'S RULE to find the solution, giving explicit formulas for x_1 and x_2 in terms of s.

(b) For which values of s does the system have a unique solution?