Name:

Section #:

Exam 2, Math 20580 March 6, 2025

- The Honor Code is in affect for this examination. All work is to be your own.
- Please turn off and put away all cellphones and electronic devices.
- Calculators are **not** allowed.

٠	The exam lasts for one he	n one hour and	nour and 15 minutes.	03	Jeffr
		l one nour and		04	Han

• Be sure that your name and your instructor's name and your section number are on the front page of your exam.

• There are 12 problems:	8 are multiple choice and 4 are partial credit.	

- Be sure that you have all 8 pages of this exam.
- Each multiple choice question is worth 6 points. Your score will be the sum of the best 7 scores on the multiple choice plus your score on questions 9–12.
- Make sure you have correctly marked your multiple choice answers by the time the exam ends. No credit will be given for incorrectly marked answers.

Pleas	e mark you	answers with ar	\mathbf{X} , not a circle	·.	
1.	(a)	(b)	(c)	(d)	Ĭ
2.	(a)	(b)	\bigotimes	(d)	(e)
3.	×	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)))))
5.	(a)	(b)		(d)	(e)
6.	(a)	(b)	(c)	X	(e)
7.	(a)	(b)	(c)	X	(e)
8.	(a)	X	(c)	(d)	(e)

MC Total.	
9.	
10	
11.	
12.	
Total.	

01	Matthew Dyer	8:20-9:10	127 HH
02	Matthew Dyer	9:25-10:15	127 HH
03	Jeffrey Diller	10:30-11:20	136 DBRT
04	Han Lu	11:30-12:20	114 PASQ
05	Sudipta Gosh	12:50-1:40	140 DBRT
06	Sudipta Gosh	2:00-2:50	140 DBRT
07	Claudia Polini	3:30-4:20	140 DBRT

1. (6 points) Which of the following is a vector space?

I.
$$\begin{cases} \begin{bmatrix} x \\ y \\ z \end{bmatrix} | x, y, z \text{ in } \mathbb{R} \text{ and } x + y + z = 1 \end{cases}$$
II.
$$\begin{cases} \begin{bmatrix} 0 \\ x \\ y \end{bmatrix} | x, y \text{ in } \mathbb{R} \text{ and } y = x \text{ or } y = -x \end{cases}$$
III.
$$\begin{cases} \begin{bmatrix} t \\ t+s \\ s-t \end{bmatrix} | s, t \text{ in } \mathbb{R} \end{cases}$$
IV.
$$\begin{cases} \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} | s, t \text{ in } \mathbb{R} \text{ and } t \ge 0 \end{cases}$$
(a) III and IV. (b) IV only. (c) II, III and IV. (d) I and III. (e) III only.
(f) III Obassin + Countoins \overline{O}^7
X II Countains $\begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix} = t \text{ is } t \text{ of } t \text{ of$

2. (6 points) Let $M_{2,2}$ denote the set of all 2×2 matrices, and let S be the subspace of $M_{2,2}$ consisting of all matrices A satisfying $A + A^T = 0$. What is the dimension of S?

(a) 2 (b) 3 (c) 1 (d) 0 (e) 4

$$A = \begin{bmatrix} a & b \\ C & d \end{bmatrix} A + A^{T} = \begin{bmatrix} a & b \\ C & d \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 2a & b+c \\ b+c & 2d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
when $a = d = 0$ and $b+c = 0$ is $c = -b$.
S consists of matrices $\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$, $S = spon(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix})$
 $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is a basis for S, $dim S = 1$

3. (6 points) Let \mathcal{P}_2 denote the vector space of polynomials of degree at most 2, and let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be a linear transformation such that

 $T(1+x)=x, \quad T(x+x^2)=x^2 \quad \text{ and } \quad T(x^2+1)=1.$ What is the value of $T(2+2x+2x^2)?$

(a)
$$1 + x + x^2$$
 (b) 2 (c) $4x + x^2$ (d) $4 + 4x^2$ (e) $x + x^2$
 $2 + 2x + 2x^2 = (1 + x) + (x + x^2) + (x^2 + 1)$. (x)
 $50 \quad T(2 + 2x + 2x^2) = T(1 + x) + T(x + x^2) + T(x^2 + 1)$
 $= x + x^2 + 1$

- 4. (6 points) Let \mathcal{P}_3 denote the vector space of polynomials of degree at most 3. Let $T: \mathbb{R}^3 \to \mathcal{P}_3$ be a linear transformation. Which of the following statements is always correct?
 - I. T can not be one-to-one.
 II. T can not be onto.
 - III. If T is one-to-one, then the dimension of $\operatorname{range}(T)$ is 3.
 - IV. $\operatorname{rank}(T) + \operatorname{nullity}(T) = 4.$

5. (6 points) Let A, B and C be 2×2 matrices such that $\det(A) = 3$, $\det(B) = \sqrt{2}$ and C is invertible. What is the value of $\det(3C^{-1}AB^2C^T)$, where C^T denotes the transpose of C?

(a) 108 (b) 18 (c) 54 (d) 27 (e) 6
det
$$(3 C^{-1} A B^{2} C^{T}) = 3^{2}$$
. $det(c)^{-1} det(A) det(B)^{2}$, $det(C)^{2}$
= 9 $det(A) det(B)^{2}$ since $det(C) = det(CC^{T})$,
= 9 $\cdot 3 \cdot \sqrt{2^{2}} = 54$.

6. (6 points) Let \mathcal{P}_1 denote the vector space of polynomials of degree at most 1. Consider the two bases $\mathcal{E} = \{1, x\}$ and $\mathcal{B} = \{1 - 2x, -1 + x\}$ of \mathcal{P}_1 . Which of the following is the first row of the change of basis matrix $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P}$ from \mathcal{E} to \mathcal{B} ?

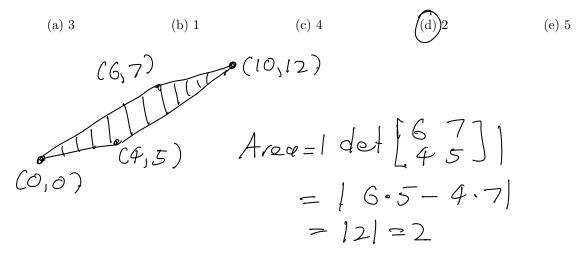
(a)
$$[-1 -2]$$
 (b) $[-2 -1]$ (c) $[1 1]$ (d) $[-1 -1]$ (e) $[1 -2]$

$$P = \left[\left[1 - 2x \right]_{\mathcal{C}} \left[-1 + x \right]_{\mathcal{C}} \right] = \left[-2 \quad 1 \right]$$

$$P = \left[-2 \quad 1 \right]$$

$$P = \left[\left[1 - 2x \right]_{\mathcal{C}} \left[-1 + x \right]_{\mathcal{C}} \right] = \left[-2 \quad 1 \right]$$

7. (6 points) Find the area of the parallelogram with vertices (0,0), (6,7), (4,5) and (10,12).



8. (6 points) Consider the matrix

4

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 9 \end{array} \right].$$

What is the determinant of A?

(a) 0 (b)
$$-4$$
 (c) 4 (d) 3 (e) -3
det $\begin{vmatrix} 123 \\ 258 \\ 258 \\ 7 \end{vmatrix} = det \begin{vmatrix} 123 \\ 012 \\ 020 \\ 1 \end{vmatrix} = det \begin{vmatrix} 122 \\ 012 \\ 012 \\ 00-4 \end{vmatrix} = 101 \cdot (-4) = -4$
 $R2 - 7R2 - 2R1$
 $R3 - 7R3 - 2R3$
 $R3 - 7R3 - 3R3$

9. (15 points) Consider the bases of \mathcal{P}_2 given by

$$LP(A)B = \begin{bmatrix} P & LP(A) \end{bmatrix} = \begin{bmatrix} P & I \\ L & -I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ -I \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -$$

(c) What is p(x) in (b)?

$$p(a) = 1 \cdot (24 + 3) + 1 \cdot (1 + 2) + 1 \cdot (1 + 2) + 2 \cdot (1 - 2^{2}) + 2 \cdot (1 - 2^{2}$$

10. (14 points) Consider the matrix

$$A = \left[\begin{array}{rrrr} s & -1 & 0 \\ -1 & s & -1 \\ 0 & -2 & s \end{array} \right]$$

where s is a real number.

(a) Compute the determinant of A.
Cofactor expansion along row 1:

$$det A = 5 | 5 - 1 | - (-1) | -1 - 1 | +0 | -1 5 | -2 5 | -2 5 | -1 - 1 | +0 | -1 5 | 0 -2 | = 5 (5^2 - 2) - 5$$

 $= 5 (5^2 - 2) - 5$
 $= 5 (5^2 - 3)$

A is invertible unless
$$s(s^2-3) = 0$$

ie for all 5 except $s=0$ and $s=\pm\sqrt{3}$.

(c) If the matrix A is invertible, give a formula for $det(A^{-1})$ in terms of s.

$$det(A^{-1}) = \frac{1}{detA} = \frac{1}{S(S^2-3)}$$
 if A^{-1} exists.

6

11. (15 points) Let \mathcal{P}_3 denote the vector space of polynomials of degree at most 3, and $T: \mathcal{P}_3 \to \mathbb{R}^2$ be the linear transformation given by

$$T(p(x)) = \begin{bmatrix} p(-1) \\ p(1) \end{bmatrix}$$

for p(x) in \mathcal{P}_2 (you do not have to explain why T is a linear transformation).

(a) Write down the matrix $[T]_{\mathcal{E}\leftarrow\mathcal{B}}$ of T with respect to the standard bases

$$\mathcal{B} = \{1, x, x^2, x^3\} \text{ of } \mathcal{P}_3 \text{ and } \mathcal{E} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \text{ of } \mathbb{R}^2.$$

$$\begin{bmatrix} T \\ T \end{bmatrix} = \begin{bmatrix} T \\ T \\ T \end{bmatrix}_{e} \begin{bmatrix} T \\ T \end{bmatrix}_{e} \begin{bmatrix} T \\ T \\ T \end{bmatrix}_{e} \begin{bmatrix} T \\ T \end{bmatrix}_{e} \begin{bmatrix} T \\ T \\ T \end{bmatrix}_{e} \begin{bmatrix} T \\ T \end{bmatrix}_{e}$$

(b) Find a basis for the range of T.

(c) Find a basis for the kernel of T. Make sure to write each element of your basis as a polynomial.

Null space of A is solution space of
$$\sum_{a_1}^{a_1} = \begin{bmatrix} -s \\ -t \\ s \end{bmatrix} = \begin{bmatrix} -i \\ -t \\ s \end{bmatrix} = \begin{bmatrix} -i \\ 0 \\ -i \end{bmatrix} + \begin{bmatrix} 0 \\ -i \\ 0 \end{bmatrix}$$
. The vectors $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -i \\ -i \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -i \\ -i \\ 0 \end{bmatrix}$.
ove a basis of null (A), and the coordinate vectors
with respect to B of a basis
 $2a^2 - 1$, $a^3 - a^2$ of ker(T).

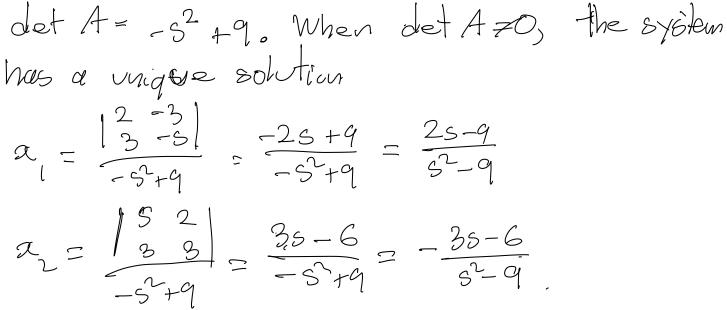
12. (14 points) Consider the system of equations

$$\begin{cases} sx_1 - 3x_2 = 2\\ 3x_1 - sx_2 = 3 \end{cases}$$

where s is a number.

(a) For values of s for which the system has a unique solution, USE CRAMER'S RULE to find the solution, giving explicit formulas for x_1 and x_2 in terms of s.

$$\begin{vmatrix} s & -3 \\ 3 & -5 \end{vmatrix} \begin{vmatrix} 2_{1} \\ a_{2} \end{vmatrix} = \begin{vmatrix} 2 \\ 3 \\ 3 \end{vmatrix}$$



. 1

(b) For which values of s does the system have a unique solution?

There is a variable solution when
$$-3+970$$
 ie when $s \neq \pm 3$.