
MATH 20580

LINEAR ALGEBRA: TERMINOLOGY AND BASIC FACTS

Abstract. The following is intended as a helpful summary and some further comments
concerning the linear algebra we’ve been learning. It’s meant to complement and reinforce
lecture and homework but not certainly not replace them. If you see anything suspicious,
ask about it—there are likely some typos.

1. Basic definitions and statements

1.1. Vectors in Rn.

Definition 1.1. A linear combination of vectors v1, . . . vk ∈ Rn is a vector v of the form

v = c1v1 + · · ·+ ckvk,

where c1, . . . , ck ∈ R are scalars.

Definition 1.2. The span of v1, . . . ,vk ∈ Rn is the set Span(v1, . . . ,vk) of all linear combi-
nations of v1, . . . ,vk.

Definition 1.3. We say that v1, . . . ,vk ∈ Rn are linearly independent if

c1v1 + · · ·+ ckvk = 0

only when the coefficients all vanish, i.e. when c1 = · · · = ck = 0.

Definition 1.4. A subspace is a set of vectors S ⊂ Rn such that

• 0 ∈ S;
• if v and w are vectors in S, then v +w is also a vector in S.
• if v is a vector in S and c ∈ R is a scalar, then cv is also a vector in S.

We call the set {0} ⊂ Rn containing only the zero vector the trivial subspace of Rn.

Definition 1.5. A basis for a subspace S ⊂ Rn is a collection of vectors v1, . . . ,vk ∈ S that
is linearly independent and that spans S.

Theorem 1.6. Any non-trivial subspace S ⊂ Rn has a basis. Any two bases for S have the
same number of vectors.

Definition 1.7. The dimension of a non-trivial subspace S ⊂ Rn is the number of vectors
in a basis for S.

By common convention, the dimension of the trivial subspace {0} is said to be 0.
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1.2. Matrices and Linear Transformations.

Definition 1.8. Let A be an m× n matrix.

• The column space of A is the span ColA ⊂ Rm of the columns of A.
• The row space of A is the span RowA ⊂ Rn of the rows of A.
• The null space of A is the set NulA ⊂ Rn of solutions x of the homogeneous linear
system Ax = 0.

The rank of A is the dimension of of ColA, and the nullity of A is the dimension of the null
space of A.

Theorem 1.9 (Rank Theorem). For any matrix A, the row and column spaces of A have
the same dimension, and they are related to the dimension of the null space of A by

rank(A) + nullity(A) = # of columns of A.

Replacing A with AT just turns rows into columns and vice versa. So we have

Corollary 1.10. A and AT have the same rank.

Definition 1.11. A linear transformation is a function T : Rn → Rm that ‘commutes with
scalar multiplication and vector addition’. That is,

• for any vector v ∈ Rn and any scalar c ∈ R, we have T (cv) = cT (v);
• for any vectors v,w ∈ Rm, we have T (v +w) = T (v) + T (w).

Example 1.12. If A is anm×nmatrix, then the function TA : Rn → Rm given by TA(v) = Av
is a linear transformation. We will call TA the ‘matrix transformation associated to A’.

In some sense (at least in the present context), this is the only example of a linear trans-
formation.

Theorem 1.13. Every linear transformation T : Rn → Rm is a matrix transformation.
In fact, if e1, . . . , en are the standard unit vectors in Rn, then the matrix for T is given
column-wise by

A = [T (e1) . . . T (en)].
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2. Many ways of saying the same thing: linear systems

We have several different ways to present a linear system. Consider for instance the
following system of two equations in three unknowns:

2x1 + 3x2 − x3 = −1

x1 − x2 + 10x3 = 0.

We can cut out all the excess symbols and write it as an augmented matrix[
2 3 −1 −1
1 −1 10 0

]
.

Or we can make it all about linear combinations of vectors

x1

[
2
1

]
+ x2

[
3
−1

]
+ x3

[
−1
10

]
=

[
−1
0

]
.

Or we can state it as a matrix equation

[
2 3 −1
1 −1 10

] x1

x2

x3

 =

[
−1
0

]
.

Or last of all, defining T : R3 → R2 to be the matrix transformation T (x) =

[
2 3 −1
1 −1 10

] x1

x2

x3

 ,

we can recast the linear system as a functional equation

T (x) =

[
−1
0

]
.

These are all valid ways of saying the same thing but with different emphases. For instance,
asking whether the linear system has a solution amounts to asking whether the vector on
the right side of the vector equation lies in the span of the vectors on the left. And this
is the same as asking, in the functional equation, whether the vector on the right is in the
range of the linear transformation T . It’s a bit of a challenge to keep all this stuff straight
at first, but it really helps going forward.

Here’s a recap of the above in general terms: let A be an m× n matrix with jth column
aj ∈ Rm and ij entry aij ∈ R; let x = (x1, . . . , xn) ∈ Rn and b = (b1, . . . , vm) ∈ Rm be
vectors; and let T : Rn → Rm be the linear transformation T (x) = Ax. Then the following
equations all say exactly the same thing.

m equations in n unknowns.:

a11x1 + a12x2+ . . . a1nxn = b1.
a21x2 + a22x2+ . . . a2nxn = b2.

...
...

am1x2 + am2x2+ . . . amnxn = bm.
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augmented matrix: 
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm


vector equation:

x1a1 + x2a2 + · · ·+ xnan = b.

matrix/vector equation:
Ax = b.

linear transformation equation:

T (x) = b.

2.1. General solutions of linear systems. The distributive law for matrix/vector mul-
tiplication gives us a nice fact about solutions of linear systems. Namely, a given a linear
system Ax = b might have zero, one or infinitely many solutions, but if x = x0 and x = x1

are both solutions, then

A(x0 − x1) = Ax0 − Ax1 = b− b = 0.

So any two solutions of the given system differ by a vector in NulA, i.e. by a solution of
the associated homogeneous system Ax = 0. Likewise, if x = x0 solves Ax = b and x = x1

solves the associated homogeneous system Ax = 0, then x = x0 + x1 also solves Ax = b.

Proposition 2.1. Suppose that Ax = b has a (particular) solution x = x0. Then another
vector x solves Ax = b if and only if

x = x0 + xh

where xh is a vector in the nullspace of A. In particular, if NulA is trivial, then there is
either zero or one solution of Ax = b. And if NulA is not trivial, then there are either zero
or infinitely many solutions of Ax = b.

More concretely perhaps, when we use Gaussian elimination to solve a linear system, we
arrive at a general solution (if any) expressed as the sum of a fixed vector and an arbitrary
linear combination of vectors associated to free variables. The fixed vector is the particular
soltuion x = x0 (what you get if you set all free variables equal to 0), and the remaining
linear combination gives the general form for a vector xh in the nullspace of A.

3. Many different ways of saying the same thing: the invertible matrix
theorem

Thinking about linear systems from various points of view leads to various ways of saying
the same thing in different terms about a matrix. Let A be an m× n matrix. Suppose that
A is row equivalent to the matrix Ared, which is in reduced echelon form. The following
statements are all equivalent to saying that A has rank n.

• Every column of Ared has a pivot.
• There are no free variables associated to Ared.
• If b ∈ Rn is a constant vector, then the linear system Ax = b has no more than one
solution.
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• The homogeneous linear system Ax = 0 has only the trivial solution x = 0.
• The columns of A are linearly independent.
• The columns of A form a basis for ColA.
• The nullspace of A is trivial, i.e. NulA = {0}.
• The nullity of A is 0.

The point is not to memorize that these statements are equivalent but rather to understand
why, in light of things we’ve done in class, so that you can move back and forth more easily
among them.

Here is a different list of statements, all equivalent to saying that A has rank m.

• Every row of Ared has a pivot.
• If b ∈ Rn is a constant vector, then the linear system Ax = b is consistent; i.e. it
has at least one solution.

• The columns of A span Rn.
• The rows of A (and of Ared) are linearly independent.
• The rows of A (and of Ared) form a basis for RowA

Now if A is a square matrix, of size n× n, then one can merge the two lists into an uber-
list (once you set m = n in the second list) whose statements are all equivalent to saying
that A has rank n. We can even pad the list out further when A is square, tacking on the
statements:

• Ared is the n× n identity matrix.
• A is invertible.

Hence the tendency of books to refer to equivalence of all these statements as The invertible
matrix theorem.
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4. Independent subsets, spanning subsets and bases for subspaces

A fundamental fact in linear algebra is that linearly independent sets of vectors in a given
subspace are never larger than sets of vectors that span the subspace. To put it more
precisely:

Theorem 4.1. Suppose that S ⊂ Rn is a subspace. If w1, . . . ,wk ∈ S are linearly indepen-
dent and v1, . . .vℓ ∈ Rn span S. Then ℓ ≥ k.

Proof. Since v1, . . . ,vℓ span S, we can express any vector w ∈ S as a linear combination

w = c1v1 + . . . cℓvℓ = V a

where V = [v1 . . .vℓ] is the n× ℓ matrix whose columns are v1, . . . ,vℓ and a = (c1, . . . , cℓ) ∈
Rℓ is the vector of coefficients in the combination. Applying this to each of the vectors
w1, . . . ,wk, we get coefficient vectors a1, . . . , ak ∈ Rℓ such that V a1 = w1, . . . , V ak = wk.
If we let A = [a1 . . . ak] be the ℓ × k matrix with columns aj and W = [w1 . . .wk] be the
n× k matrix with columns wj, then we can write this very concisely as a matrix equation.

V A = W.

Editorial comment: this is an excellent example of why matrix notation is so great.
Because w1, . . . ,wk are linearly independent, we have

c1w1 + . . . ckwk = 0

only if c1 = · · · = ck = 0. Letting x = (c1, . . . , ck) ∈ Rk, we can rephrase this by saying that
the only solution of the matrix equation

Wx = 0.

is the trivial solution x = 0. Editorial comment: see previous editorial comment.
Putting everything together, we notice that if x ∈ Rk satisfies Ax = 0, then

Wx = (V A)x = V (Ax) = V 0 = 0.

So x must equal 0. That is, the only solution of Ax = 0 is x = 0. So when we row reduce
A, we’ll end up with no free variables, i.e. we’ll have a pivot in every column. Since there
is at most one pivot in each row, this means A has at least as many rows as columns. But
remember: A is an ℓ× k matrix. So ℓ ≥ k. □

This fundamental fact has (at least) two important consequences.

Corollary 4.2. Any two bases for a subspace S ⊂ Rn contain the same number of vectors.

Proof. Suppose W = {w1, . . . ,wk} and V = {v1, . . . vℓ} are both bases for S. Then W ⊂ S
is independent and V spans S, so ℓ ≥ k. But also W spans S and V ⊂ S is independent. So
k ≥ ℓ. Comining the two inequalities, we get k = ℓ. □

Corollary 4.3. Any non-trivial subspace S ⊂ Rn has a basis.

Proof. Let W = {w1, . . . ,wk} ⊂ S be a linearly independent subset such that the number k
is as large as possible. Note that since W ⊂ Rn and dimRn = n, we must have k ≤ n. Also
note that since S is non-trivial, there’s at least one non-zero vector w ∈ S. Thus {w} ⊂ S
is an independent set, so we must have k ≥ 1.
I claim now that since k is maximal, W spans S. To see this, let v ∈ S be any given vector.

If v = wj for some j, then certainly v ∈ SpanW . Otherwise, the set V = {w1, . . . ,wk,v}
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has k + 1 vectors in it and cannot be linearly independent (it’s too big!). So there’s a linear
combination

cv + c1w1 + . . . ckwk = 0

in which not all of the coefficients c, c1, . . . , ck vanish. If c = 0, then I also have

c1w1 + · · ·+ ckwk = 0,

in which case c1 = · · · = ck = 0, because w1, . . . ,wk are independent. So instead, I must
have c ̸= 0, which allows me to solve for v:

v = −c1
c
w1 − · · · − ck

c
wk.

This means that v ∈ SpanW . So W spans S and must be a basis. □

Let us remark that what’s implicit in the argument here are some alternative ways to
recognize a basis.

Corollary 4.4. If S ⊂ Rn is a non-trivial subspace and W = {w1, . . . ,wk} ⊂ S is a maximal
linearly independent subset, then W is a basis for S. Alternatively if V = {v1, . . . ,vℓ} ⊂ S
is a minimal spanning set for S, then V is a basis for S.
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