Math 20580 (L.A. and D.E.) Tutorial Worksheet 3

1. Which of the following transformations from \mathbb{R}^2 to \mathbb{R}^2 are linear?

(a)
$$T\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix};$$

(b) $T\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix};$
(c) $T\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}x+y\\x-y\end{bmatrix};$
(d) $T\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}|x|\\|y|\end{bmatrix}.$

Solution:

(a) T is linear since
$$T\left(\begin{bmatrix} x_1\\y_1\end{bmatrix} + \begin{bmatrix} x_2\\y_2\end{bmatrix}\right) = \begin{bmatrix} 0\\0\end{bmatrix} = T\begin{bmatrix} x_1\\y_1\end{bmatrix} + T\begin{bmatrix} x_2\\y_2\end{bmatrix}$$
, and
 $T\left(c\begin{bmatrix} x\\y\end{bmatrix}\right) = \begin{bmatrix} 0\\0\end{bmatrix} = cT\begin{bmatrix} x\\y\end{bmatrix};$
(b) T is not linear since $0 \cdot T\begin{bmatrix} 0\\0\end{bmatrix} = \begin{bmatrix} 0\\0\end{bmatrix} \neq \begin{bmatrix} 1\\1\end{bmatrix} = T\left(0 \cdot \begin{bmatrix} 0\\0\end{bmatrix}\right);$
(c) T is linear since $T\left(\begin{bmatrix} x_1\\y_1\end{bmatrix} + \begin{bmatrix} x_2\\y_2\end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 + y_1 + y_2\\x_1 + x_2 - y_1 - y_2\end{bmatrix} = T\begin{bmatrix} x_1\\y_1\end{bmatrix} + T\begin{bmatrix} x_2\\y_2\end{bmatrix},$
and $T\left(c\begin{bmatrix} x\\y\end{bmatrix}\right) = \begin{bmatrix} cx + cy\\cx - cy\end{bmatrix} = cT\begin{bmatrix} x\\y\end{bmatrix};$
(d) T is not linear since $T\left(\begin{bmatrix} 1\\1\end{bmatrix} + \begin{bmatrix} -1\\-1\end{bmatrix}\right) = \begin{bmatrix} 0\\0\end{bmatrix} \neq \begin{bmatrix} 2\\2\end{bmatrix} = T\begin{bmatrix} 1\\1\end{bmatrix} + T\begin{bmatrix} -1\\-1\end{bmatrix}.$

2. Which of the following sets of vectors in \mathbb{R}^3 are linearly independent?

(a)	$\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\};$
(b)	$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\};$
(c)	$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$

Solution:				
(a) is not linearly independent since $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has a free variable;				
(b) is linearly independent since				
$\begin{bmatrix} 1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$				
does not have a free variable;				
(c) is not linearly independent since				
$\begin{bmatrix} 1 & 4 & 7 & & 0 \\ 2 & 5 & 8 & & 0 \\ 3 & 6 & 9 & & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 7 & & 0 \\ 0 & -3 & -6 & & 0 \\ 0 & -3 & -6 & & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 7 & & 0 \\ 0 & -3 & -6 & & 0 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$				
has a free variable.				

- 3. Which of the following sets of vectors $\alpha = (a_1, a_2, a_n)$ in \mathbb{R}^3 are subspaces of \mathbb{R}^3 ?
 - (a) The set of all α such that $a_1 \ge 0$;
 - (b) The set of all α such that $a_1 + 3a_2 = a_3$;
 - (c) The set of all α such that $a_2 = a_1^2$.

Solution:

- (a) is not a subspace of \mathbb{R}^3 since (1, 0, 0) is in the subset but $(-1) \cdot (1, 0, 0) = (-1, 0, 0)$ is not.
- (b) is a subspace of \mathbb{R}^3 since for (a_1, a_2, a_3) and (b_1, b_2, b_3) in the subset, we have

$$ca_3 + b_3 = c(a_1 + 3a_2) + (b_1 + 3b_2) = (ca_1 + b_1) + 3(ca_2 + b_2)$$

and thus $c(a_1, a_2, a_3) + (b_1, b_2, b_3)$ is in the subset.

(c) is not a subspace of \mathbb{R}^3 since (1, 1, 0) is in the subset but $2 \cdot (1, 1, 0) = (2, 2, 0)$ is not.

4. Given the matrix
$$A = \begin{bmatrix} 1 & -1 & -2 & 3 \\ -1 & 1 & 1 & 2 \\ 0 & 0 & -2 & 10 \end{bmatrix}$$
, find a basis for Row(A), Col(A) and Null(A).

Hint: The first step is to find a row echelon form of A. Then, the non-zero rows will form a basis of Row(A), and pivots will indicate which columns of A form a basis of Col(A) (but we do not pick columns of a REF of A for a basis of Col(A)). For Null(A), augment A by zero and solve the resulting system.

Solution: Note that

$$\begin{bmatrix} 1 & -1 & -2 & 3 \\ -1 & 1 & 1 & 2 \\ 0 & 0 & -2 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & 3 \\ 0 & 0 & -1 & 5 \\ 0 & 0 & -2 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & 3 \\ 0 & 0 & -1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

We can choose a basis for Row(A) to be $\{\begin{bmatrix} 1 & -1 & -2 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & 5 \end{bmatrix}\}$. A basis for Col(A) can be chosen as the first and the third columns of A:

ſ	1		$\begin{bmatrix} -2 \end{bmatrix}$	
ł	-1	,	1	} .
l	0		-2	J

For the null space, augment a row echelon form of A by zero and consider

ſ	1	-1	-2	3	0	
	0	0	-1	5	0	
	0	0	$-2 \\ -1 \\ 0$	0	0	

The free variables are x_2 and x_4 , and a basis for Null(A) can be chosen as

ſ	1		7)		
	1		0			
Ì	0	,	5		{	•
	0		1			
``						