Math 20580 (L.A. and D.E.) Tutorial Worksheet 5

- 1. Determine whether the following sets are subspaces of the respective vector spaces.
 - (a) $U = \{A \in M_{2 \times 2}(\mathbb{R}) : A^T = -A\} \subseteq M_{2 \times 2}(\mathbb{R})$ the set of 2×2 antisymmetric matrices with real entries.

Solution: Yes.

- $0^T = 0 = -0$, then $0 \in U$.
- Suppose $A, B \in U$. Then $A^T = -A$ and $B^T = -B$. Therefore,

$$(A+B)^{T} = A^{T} + B^{T} = (-A) + (-B) = -(A+B).$$

Thus, $A + B \in U$.

• Let $c \in \mathbb{R}$ and $A \in U$. We have $A^T = -A$ and so

$$(cA)^T = c(A^T) = c(-A) = -(cA).$$

Then, $cA \in U$.

Hence, U is a subspace of $M_{2\times 2}(\mathbb{R})$.

(b) $V = \{p(x) \in \mathcal{P}_2 : p(1) = 2\} \subseteq \mathcal{P}_2.$

Solution: No. Observe that the zero polynomial is not in V because $0(1) = 0 \cdot (1)^2 + 0 \cdot 1 + 0 = 0 \neq 2.$ (c) $W = \{ p(x) \in \mathcal{P}_2 : p(1) = 0 \} \subseteq \mathcal{P}_2.$

Solution: Yes.

- The zero polynomial is $0(x) = 0x^2 + 0x + 0$. Observe $0(1) = 0 \cdot (1)^2 + 0 \cdot 1 + 0 = 0$, then $0 \in W$.
- Suppose $p(x), q(x) \in W$. Then p(1) = 0 and q(1) = 0. We have,

$$(p+q)(1) = p(1) + q(1) = 0 + 0 = 0.$$

Thus, $(p+q)(x) \in W$.

• Let $c \in \mathbb{R}$ and $p(x) \in W$. We have p(1) = 0 and so

$$(cp)(1) = c \cdot p(1) = c \cdot 0 = 0.$$

Then, $(cp)(x) \in W$.

Hence, W is a subspace of \mathcal{P}_2 .

2. Let $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ be the linear transformation defined in standard coordinates by

$$T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = a + d$$

a) Find a basis for Ker(T).

Solution: Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{Ker}(T)$. Then $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 0$, that is, a + d = 0. Thus, d = -a. Therefore, $\operatorname{Ker}(T) = \left\{ \begin{bmatrix} a & b \\ c & -a \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$ Thus, a basis for $\operatorname{Ker}(T)$ is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$

b) Is range $(T) = \mathbb{R}$?

Solution: Yes.

By definition, we know that range $(T) \subseteq \mathbb{R}$. On the other hand, let k be any real number. Observe that $\begin{bmatrix} k & 0 \\ 0 & 0 \end{bmatrix} \in M_{2 \times 2}(\mathbb{R})$ and $T\left(\begin{bmatrix} k & 0 \\ 0 & 0 \end{bmatrix} \right) = k + 0 = k$ then $\mathbb{R} \subseteq \operatorname{range}(T)$.

3. Consider the linear transformation T: defined by

$$T(ax^2 + bx + c) = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

a) Find a linear transformation $S : \mathbb{R}^3 \to \mathcal{P}_2$ such that $T \circ S = \text{Id}$ and $S \circ T = \text{Id}$.

Solution: Define S as

$$S\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right) = ax^2 + bx + c.$$

Observe that

$$T \circ S\left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = T\left(S\left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) \right) = T(ax^2 + bx + c) = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

then $T \circ S =$ Id. Furthermore,

$$S \circ T(ax^2 + bx + c) = S(T(ax^2 + bx + c)) = S\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right) = ax^2 + bx + c$$
so $S \circ T = \text{Id.}$

b) Are T and S isomorphisms?

Solution: Yes, because they are inverses of each other.

4. Consider the map $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ defined by

$$T(f(x)) = f'(x)$$

and the map $S: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ defined by

$$S(f(x)) = f'(x) + 1.$$

(a) Is T a linear transformation?

Solution: Yes.

Let $c \in \mathbb{R}$, $p(x) = a_0 + a_1 x + a_2 x^2$ and $q(x) = b_0 + b_1 x + b_2 x^2$ in $\mathcal{P}_2(\mathbb{R})$. We have $T(cp(x) + q(x)) = T((ca_0 + b_0) + (ca_1 + b_1)x + (ca_2 + b_2)x^2)$ $= (ca_1 + b_1) + 2(ca_2 + b_2)x$ $= c(a_1 + 2a_2x) + (b_1 + 2b_2x)$ $= c \cdot p'(x) + q'(x)$ $= c \cdot T(p(x)) + T(q(x)).$

(b) Is S a linear transformation?

Solution: No.

Observe that $S(2 \cdot x) = S(2x) = 2 + 1 = 3$ but $2 \cdot S(x) = 2 \cdot (1+1) = 2 \cdot (2) = 4$. Then, $S(2x) \neq 2S(x)$.

(c) Compute the matrix representation of T and S, if they are linear, relative to the standard bases of $\mathcal{P}_2(\mathbb{R})$ and $\mathcal{P}_1(\mathbb{R})$.

Solution: Recall that the standard bases of $\mathcal{P}_2(\mathbb{R})$ and $\mathcal{P}_1(\mathbb{R})$ are $\{1, x, x^2\}$ and $\{1, x\}$ respectively. Since S is a not a linear transformation, we will compute the matrix representation only for T. Observe that T(1) = 0, so $[T(1)] = \begin{bmatrix} 0\\0 \end{bmatrix}$. Moreover, T(x) = 1, so $[T(x)] = \begin{bmatrix} 1\\0 \end{bmatrix}$. Finally, $T(x^2) = 2x$, so $[T(x^2)] = \begin{bmatrix} 0\\2 \end{bmatrix}$. Therefore, $[T] = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 2 \end{bmatrix}$.