1. In \mathbb{R}^{4}, find the distance of the vector \mathbf{y} to the subspace W spanned by the orthogonal vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3}, where

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
3 \\
-1
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{r}
1 \\
1 \\
0 \\
-1
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{r}
-1 \\
3 \\
3 \\
4
\end{array}\right]
$$

(a) $\sqrt{15}$
(b) $\sqrt{12}$
(c) $\sqrt{14}$
(d) $\sqrt{11}$
(e) $\sqrt{17}$

Solution. Observe that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal basis for W. Therefore, the orthogonal projection of the vector \mathbf{y} on to W is

$$
\widehat{\mathbf{y}}=\operatorname{proj}_{\mathbf{w}} \mathbf{y}=\frac{\mathbf{y} \bullet \mathbf{x}_{1}}{\mathbf{x}_{1} \bullet \mathbf{x}_{1}} \mathbf{x}_{1}+\frac{\mathbf{y} \bullet \mathbf{x}_{2}}{\mathbf{x}_{2} \bullet \mathbf{x}_{2}} \mathbf{x}_{2}+\frac{\mathbf{y} \bullet \mathbf{x}_{3}}{\mathbf{x}_{3} \bullet \mathbf{x}_{3}} \mathbf{x}_{3}=\frac{6}{3}\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]+\frac{10}{15}\left[\begin{array}{r}
-2 \\
1 \\
3 \\
-1
\end{array}\right]+\frac{-2}{3}\left[\begin{array}{r}
1 \\
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
4 \\
2
\end{array}\right] .
$$

Since,

$$
\mathbf{y}-\widehat{\mathbf{y}}=\left[\begin{array}{r}
-1 \\
3 \\
3 \\
4
\end{array}\right]-\left[\begin{array}{l}
0 \\
0 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
-1 \\
3 \\
-1 \\
2
\end{array}\right]
$$

we have that the distance of the vector \mathbf{y} to the subspace W is equal to

$$
\|\mathbf{y}-\widehat{\mathbf{y}}\|=\sqrt{(-1)^{2}+3^{2}+(-1)^{2}+2^{2}}=\sqrt{15}
$$

2. Find a least squares solution to the system

$$
\left[\begin{array}{rrr}
1 & -1 & -5 \\
6 & 1 & 0 \\
1 & -5 & 1 \\
4 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
9
\end{array}\right] .
$$

Note that the columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ of the coefficient matrix A form an orthogonal basis for $\operatorname{Col} A$.
(a) $\left[\begin{array}{r}2 / 3 \\ 0 \\ 1 / 3\end{array}\right]$
(b) $\left[\begin{array}{r}-2 / 3 \\ 0 \\ 1 / 3\end{array}\right]$
(c) $\left[\begin{array}{l}2 / 3 \\ 5 / 3 \\ 1 / 3\end{array}\right]$
(d) $\left[\begin{array}{r}2 / 3 \\ -5 / 3 \\ -1 / 3\end{array}\right]$
(e) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Solution. Since the columns $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ of the coefficient matrix A form an orthogonal basis for $W=\operatorname{Col} A$, we have that the orthogonal projection of the vector \mathbf{b} (the right-hand side of the system) on to W is

$$
\widehat{\mathbf{b}}=\operatorname{proj}_{\mathbf{W}} \mathbf{b}=\frac{\mathbf{b} \bullet \mathbf{a}_{1}}{\mathbf{a}_{1} \bullet \mathbf{a}_{1}} \mathbf{a}_{1}+\frac{\mathbf{b} \bullet \mathbf{a}_{2}}{\mathbf{a}_{2} \bullet \mathbf{a}_{2}} \mathbf{a}_{2}+\frac{\mathbf{b} \bullet \mathbf{a}_{3}}{\mathbf{a}_{3} \bullet \mathbf{a}_{3}} \mathbf{a}_{3}=\frac{36}{54} \mathbf{a}_{1}+0 \cdot \mathbf{a}_{2}+\frac{9}{27} \mathbf{a}_{3}=A\left[\begin{array}{r}
2 / 3 \\
0 \\
1 / 3
\end{array}\right] .
$$

Therefore $\widehat{\mathbf{x}}=\left[\begin{array}{r}2 / 3 \\ 0 \\ 1 / 3\end{array}\right]$ is a least squares solution to the given system.
3. Figure 1 shows the direction field for the differential equation $\frac{d y}{d t}=f(y)$, where $f(y)$ is a polynomial of third degree.

Figure 1
Which of the following statements is false?
(a) The solution with initial value $y(0)=7.9$ is increasing and becomes equal to 8 in finite time.
(b) The equilibrium solutions of this differential equations are $y=8, y=2$ and $y=0$.
(c) $y=8$ and $y=0$ are asymtotically stable solutions.
(d) $y=2$ is an unstable solution.
(e) The solution with initial value $y(0)=1.9$ is decreasing and going to zero as t goes to infinity.

Solution. Looking at this direction field we see that all statements are true, except the statement:"The solution with initial value $y(0)=7.9$ is increasing and becomes equal to 8 in finite time." In fact, the solution with initial value $y(0)=7.9$ can not meet the equilibrium solution $y(t)=8$ at some time $t_{0}>0$ because then we would have two solutions to the equation $\frac{d y}{d t}=f(y)$ with initial data $y\left(t_{0}\right)=8$, contradicting the basic theorem about existence and uniqueness of solution when $f(y)$ is continuously differentiable (see textbok).
4. Which of the follow differential equations has the direction field shown in Figure 1 above?
(a) $\frac{d y}{d t}=-y\left(1-\frac{y}{2}\right)\left(1-\frac{y}{8}\right)$
(b) $\frac{d y}{d t}=(2-y)(y-8)(y-4) \quad$ (c) $\frac{d y}{d t}=-(2-y)^{2}(8-y)$
(d) $\frac{d y}{d t}=y\left(1-\frac{y}{2}\right)\left(1-\frac{y}{8}\right)$
(e) $\frac{d y}{d t}=(2-y)^{2}(8-y)$

Solution. Looking at the direction field in Figure 1, we see that only the differential equation $\frac{d y}{d t}=-y(1-0.5 y)(1-0.125 y)$ has the equilibrium solutions $y=0,2,8$ and the slopes of the arrows are consistent with the sign of the function $f(y)=-y(1-0.5 y)(1-0.125 y)$
5. A tank, with a capacity of 1000 gallons, initially contains 100 gallons of brine with a concentration of 0.2 lb salt per gallon. A solution containing 0.4 lb of salt per gallon is pumped into the tank at the rate of $5 \mathrm{gal} / \mathrm{min}$, and the well-stirred mixture flows out of the tank at the rate of $2 \mathrm{gal} / \mathrm{min}$. Write the initial value problem (i.e. a differential equation and an initial condition) needed to find the amount $S(t)$ of salt in the tank at any time t (before the tank is full). DO NOT SOLVE.
(a) $\frac{d S}{d t}+\frac{2}{100+3 t} S=2, \quad S(0)=20$.
(b) $\frac{d S}{d t}+\frac{1}{100+2 t} S=2, \quad S(0)=20$.
(c) $\frac{d S}{d t}+\frac{2}{100+5 t} S=2, \quad S(0)=20$.
(d) $\frac{d S}{d t}+\frac{2}{100} S=2, \quad S(0)=20$.
(e) $\frac{d S}{d t}+\frac{2}{100-3 t} S=2, \quad S(0)=100$.

Solution. The quantity $S(t)$ satisfies the differential equation

$$
\frac{d S}{d t}=5 \cdot(0.4)-2 \cdot \frac{S(t)}{100+(5-2) t} \text { or } \frac{d S}{d t}+\frac{2}{100+3 t} S=2 \text {. }
$$

We also have $S(0)=20$.
6. If $y(x)$ is the solution to the differential equation $x y^{\prime}+5 y=x^{2}, x>0$, such that $\lim _{x \rightarrow 0} y(x)=0$, then compute $y(14)$.
(a) 28
(b) 17
(c) 5
(d) 14
(e) $\frac{1}{14}$

Solution. First, we write the DE in the form: $y^{\prime}+\frac{5}{x} y=x$. Then, we compute the integrating factor $\mu(x)=e^{\int \frac{5}{x} d x}=e^{5 \ln x}=x^{5}$. Now, multiplying the last DE by x^{5} we obtain $\left(x^{5} y\right)^{\prime}=x^{6}$. Furthermore, integrating it we obtain $x^{5} y=\frac{1}{7} x^{7}+c$ or $y=\frac{1}{7} x^{2}+\frac{c}{x^{5}}$. Finally, using the condition $\lim _{x \rightarrow 0} y(x)=0$ we get $c=0$ and therefore $y=\frac{1}{7} x^{2}$. This gives $y(14)=28$.
7. For what values of r is $y(t)=e^{r t}$ a solution to $y^{\prime \prime}-3 y^{\prime}-10 y=0$?
(a) $r=5$ or $r=-2$
(b) $r=5$ or $r=2$
(c) $r=2$ or $r=-3$
(d) $r=-3$ only
(e) $r=-3$ or $r=2$

Solution. If $y=e^{r t}$, then $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$. Substituting into the ODE $y^{\prime \prime}-3 y^{\prime}-$ $10 y=0$ gives $r^{2} e^{r t}-3 r e^{r t}-10 e^{r t}=0$ i.e. $\left(r^{2}-3 r-10\right) e^{r t}=0$. So we get a solution $e^{r t}$ when $r^{2}-3 r-10=0$ i.e. $(r-5)(r+2)=0$ i.e. $r=5$ or $r=-2$.
8. A rich donor gifts an amount A_{0} to ND for student scholarships. The ND investment office invests this amount in an account earning annual interest of 5% compounded continuously and makes withdrawals continuously at the rate of 10 million dollars per year, without the amount in the account changing (i.e. it is always equal to A_{0}). Find the initial amount A_{0}.
(a) 200 million dollars
(b) This is impossible.
(c) 100 million dollars
(d) 50 million dollars
(e) 500 million dollars

Solution. If we denote by $A(t)$ the amount (in millions of dollars) in the account at any time t, then it satisfies the differential equation

$$
\frac{d A}{d t}=0.05 A-10
$$

Since $\frac{d A}{d t}=0$ we must have $0.05 A-10=0$ or $A=\frac{10}{0.05}=200$ millon dolars.
9. Find the interval of existence of the solution to the following initial value problem:

$$
x \frac{d y}{d x}+(y+1)^{2}=0, x>0, \quad y(1)=4 .
$$

(a) $\left(e^{-0.2}, \infty\right)$
(b) $(0, \infty)$
(c) $(1, \infty)$
(d) $(\ln 4, \infty)$
(e) $(0.2, \infty)$

Solution. Separating variables first and then integrating gives

$$
\frac{d y}{(y+1)^{2}}=-\frac{d x}{x} \quad \text { or } \quad \int(y+1)^{-2} d y=-\int \frac{d x}{x} \quad \text { or } \frac{1}{y+1}=\ln x+c .
$$

Letting $x=1$ and $y=4$ we get $0.2=c$, which gives the solution

$$
y(x)=\frac{1}{\ln x+0.2}-1
$$

Now, we observe that the denominator in the solution formula becomes zero when $\ln x=-0.2$ or $x=e^{-0.2}$. Then, the solution becomes infinity (blows up). Thus, the existence interval of the solution to the given initial value problem is $\left(e^{-0.2}, \infty\right)$.
10. (11 pts) Apply the Gram-Schmidt process to find an orthogonal basis for the column space of the following matrix

$$
\left[\begin{array}{rrr}
3 & -7 & 8 \\
-1 & 5 & -2 \\
1 & 1 & 1 \\
3 & -5 & 1
\end{array}\right]
$$

You need not normalize your basis.

Solution. Denoting by $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ the three column vectors of the matrix and applying the Gram-Schmidt process we obtain the following orthogonal vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} :

$$
\mathbf{u}_{1}=\mathbf{x}_{1}=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
3
\end{array}\right], \quad \mathbf{u}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \bullet \mathbf{u}_{1}}{\mathbf{u}_{1} \bullet \mathbf{u}_{1}} \mathbf{u}_{1}=\left[\begin{array}{r}
-7 \\
5 \\
1 \\
-5
\end{array}\right]-\frac{-40}{20}\left[\begin{array}{r}
3 \\
-1 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{r}
-1 \\
3 \\
3 \\
1
\end{array}\right]
$$

and

$$
\mathbf{u}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \bullet \mathbf{u}_{1}}{\mathbf{u}_{1} \bullet \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{x}_{3} \bullet \mathbf{u}_{2}}{\mathbf{u}_{2} \bullet \mathbf{u}_{2}} \mathbf{u}_{2}=\left[\begin{array}{r}
8 \\
-2 \\
1 \\
1
\end{array}\right]-\frac{30}{20}\left[\begin{array}{r}
3 \\
-1 \\
1 \\
3
\end{array}\right]-\frac{-10}{20}\left[\begin{array}{r}
-1 \\
3 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
3 \\
1 \\
1 \\
-3
\end{array}\right] .
$$

11. (12 pts)
(1) Applying the fundamental ODE theorem for linear first order differential equations, one concludes that the following initial value problem

$$
\left(1+t^{4}\right) \frac{d y}{d t}+4 t^{3} y=6 t-2 t e^{-t^{2}}, y(0)=9
$$

has a unique solution for $-\infty<t<\infty$. Find this solution.
(2) While the initial value problem (1) has a unique solution, show that the following initial value problem

$$
\frac{d y}{d t}=y^{1 / 3}, y(0)=0
$$

has more than one solution by finding at least two of them.

Solution.

(1) The differential equation can be written as $\frac{d}{d t}\left[\left(1+t^{4}\right) y\right]=6 t-2 t e^{-t^{2}}$. Therefore, $\left(1+t^{4}\right) y=3 t^{2}+e^{-t^{2}}+c$ or $y(t)=\frac{3 t^{2}+e^{-t^{2}}+c}{1+t^{4}}$. Since $9=y(0)=1+c$ we obtain that $y(t)=\frac{3 t^{2}+e^{-t^{2}}+8}{1+t^{4}}$.
(2) First, we observe that $y_{1}=0$ is a solution. Then, separating variables gives $y^{-1 / 3} d y=$ $d t$. Furthermore, integrating we get $\frac{3}{2} y^{2 / 3} d y=t+c$. Letting $t=0$ and $y=0$ to this formula gives $c=0$. Finally, solving for y we obtain $y= \pm\left(\frac{2}{3} t\right)^{3 / 2}$, which gives the following two solutions

$$
y_{2}(t)=\left\{\begin{array}{cl}
\left(\frac{2}{3} t\right)^{3 / 2}, & t \geq 0, \\
0, & t<0,
\end{array} \quad \text { and } \quad y_{3}(t)=\left\{\begin{array}{cc}
-\left(\frac{2}{3} t\right)^{3 / 2}, & t \geq 0, \\
0, & t<0 .
\end{array}\right.\right.
$$

Thus, we found three! different solutions to the the initial value problem $\frac{d y}{d t}=y^{1 / 3}, y(0)=0$. In fact, it has infinitely many solutions (see textbook).
12. (14 pts) Assume that a region's population $p(t)$ (in billions) at any time t (in years) is modeled by the differential equation

$$
\frac{d p}{d t}=0.02 p(1-p)
$$

(1) Solve this differential equation with initial value $p(0)=p_{0}>0$ to find an explicit formula for $p(t)$.
(2) Use the formula in (1) to compute $\lim _{t \rightarrow \infty} p(t)$.
(3) Sketch the solution curves that correspond to the initial values $p(0)=0.25, p(0)=1$, and $p(0)=1.5$, clearly showing where they are increasing/decreasing.

Solution. (1) Separating variables we have $\frac{d p}{p(1-p)}=0.02 d t$. Then, writing $\frac{1}{p(1-p)}=$ $\frac{1}{p}+\frac{1}{1-p}$, and integrating gives $\ln |p|-\ln |1-p|=0.02 t+c \quad$ or $\ln \frac{|p|}{|1-p|}=0.02 t+c$ or $\frac{p}{1-p}= \pm e^{c} e^{0.02 t}$. Finally, letting $C= \pm e^{c}$ we get the following general solution in implicit form $\frac{p}{1-p}=C e^{0.02 t}$. Letting $p=p_{0}$ and $t=0$, this formula gives $\frac{p_{0}}{1-p_{0}}=C$. Substituting this C into the general solution we get the formula $\frac{p}{1-p}=\frac{p_{0}}{1-p_{0}} e^{0.02 t}$, which solved for p gives the desired solution to the given initial value problem

$$
p(t)=\frac{p_{0}}{p_{0}+\left(1-p_{0}\right) e^{-0.02 t}} .
$$

(2) From this formula in (1) we see that $\lim _{t \rightarrow \infty} p(t)=1$.
(3) The solution curve with $p(0)=1$ is the equilibrium solution $p=1$. Using the direction fields we see that the solution with $p(0)=1.5$ is decreasing towards the equilibrium solution $p=1$, while the solution with $p(0)=0.25$ is increasing towards the equilibrium solution $p=1$. Below, are the graphs of these solution curves and the direction field of our ODE.

