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ABSTRACT

To any reflection subgroup of a Coxeter system, we associate a canonical set of
Coxeter generators. A geometric criterion is given for a set of reflections to be
the canonical set of Coxeter generators of some reflection subgroup, and used
to classify the reflection subgroups of affine Weyl groups up to isomorphism.

A new proof is given of a theorem of A. Björner and M. Wachs stating that
the simplicial complex of an open Bruhat interval is a sphere. By associating a
reflection subgroup to a Bruhat interval, it is shown that the Kazhdan-Lusztig
polynomials Pv,w and Qv,w (!(w) − !(v) ≤ 4) depend only on the poset [v,w]
and have non-negative coefficients.

We describe a construction which produces, from very general data, mutually
inverse elements in the incidence algebra of a locally finite poset. We show
how this construction may be used to produce the polynomials Rx,y defined by
Kazhdan and Lusztig for elements x, y of a Coxeter system.

Four conjectural positivity properties of the structure constants of the generic
Hecke algebra of a Coxeter group are described. All four properties are proved
by elementary combinatorial arguments in the case of the Coxeter groups which
are free products of cyclic groups of order two.
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LIST OF SPECIAL NOTATIONS

IN; the natural numbers (including zero)

ZZ; the integers

Q; the rational numbers

IR; the real numbers

IR+; the non–negative real numbers
(m

n

)
; binomial coefficient

IN[q 1
2 , q−

1
2 ]; Laurent polynomials (in an indeterminate q

1
2 ); with non-negative

integral coefficients

M2×2(R); 2 × 2 matrices with entries in a (unital) ring R

At; transpose of a matrix A

E⊗R A, E⊗f A; the A-module obtained by tensoring the R-module E with the
ring A, A being regarded as an R-module via a homomorphism f : R −→ A (A,
R being commutative rings)

E∗; dual of a vector space E

〈 , 〉; pairing between a vector space and its dual

‖u‖2; (u | u) where (· | ·) is a symmetric bilinear form on a real vector space

min(A), max(A); the minimum (maximum) element of a subset A of a poset
(when it exists)

A \ B; the set difference of A and B

P(A); the power set of a set A

#A or #(A); the cardinality of the set A

〈A〉; the subgroup of a group G generated by a subset A of G

δx,y; the Kronecker delta
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⋃· ; the indicated union is of disjoint sets
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INTRODUCTION

For any Coxeter system (W, R), Kazhdan and Lusztig define in [KL1] a family
Pv,w(v, w ∈ W ) of polynomials. These Kazhdan-Lusztig polynomials have deep
connections with algebraic groups, and Lie algebras.

For example, if (W, R) is a crystallographic Coxeter system, then ([KL2], [H])
Pv,w is the Poincaré series of the stalk (at a point in the Bruhat cell correspond-
ing to v) of the cohomology sheaf of the intersection cohomology complex of the
Schubert variety corresponding to w (constructed from an infinite-dimensional
group associated to a Kac-Moody Lie algebra with (W, R) as Weyl group).

As another example, if (W, R) is a finite Weyl group, the values of the Kazhdan-
Lusztig polynomials at 1 are the multiplicities, as composition factors of Verma
modules, of certain irreducible highest-weight modules for the corresponding
semisimple complex Lie algebra ([BB],[BK]).

Finally, we mention that the Kazhdan-Lusztig polynomials are used to define the
(left,right and two-sided) cells of W and thus give rise to certain cell representa-
tions of the generic Hecke algebra of (W, R). In this way, the Kazhdan-Lusztig
polynomials enter the representation theory of algebraic groups ([L3]).

Despite these important applications, very little is known about Kazhdan-
Lusztig polynomials in general. The polynomials Pv,w are defined purely al-
gebraically, but certain properties (non-negativity of their coefficients, Property
A of cells) expected to hold for general Coxeter systems have been proved only
by exploiting interpretations of the Pv,w such as those described above (and
then only for crystallographic Coxeter systems).

The major part of this thesis has arisen from an attempt to obtain more detailed
information about the Kazhdan-Lusztig polynomials. In virtue of the above-
mentioned facts about the Pv,w, it is to be expected that a better understanding
of these polynomials in general would have important applications.
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Chapter 0 fixes notation concerning Coxeter groups and Hecke algebras, and
recalls the definition of Kazhdan-Lusztig polynomials.

Chapter 1 begins a study of reflection subgroups of Coxeter systems. It is shown
that any reflection subgroup of a Coxeter system has a canonical set of Coxeter
generators. The results are reformulated in terms of a labelled directed graph
naturally associated to a Coxeter system, and we give a characterisation of these
“Bruhat graphs” by properties of their “dihedral” subgraphs.

In Chapter 3, we require a slight extension of the usual geometric realisation
of a Coxeter system. The necessary properties are given at the beginning of
Chapter 2; we also observe that standard properties of the geometric realisation
continue to hold “generically”.

Chapter 3 gives a criterion for a set of reflections to be the canonical set of
generators of a reflection subgroup of a Coxeter system. The condition is that
the inner products of distinct elements from the corresponding set of positive
roots (in a goemetric realisation of the Coxeter system) should all lie in a certain
set. We describe an algorithm which, given a finite set of reflections, produces
the canonical generators of the group they generate.

In Chapter 4, the criterion of Chapter 3 is applied to classify reflection subgroups
of affine Weyl groups up to isomorphism as Coxeter groups. Subsequent chapters
are independent of the results of this chapter.

Chapter 5 contains a new proof of a theorem of A. Björner and M. Wachs ([BW])
stating that the simplicial complex associated to an open Bruhat interval is a
sphere; the proof is based on a natural decomposition of the simplicial complex
into cells. We then show that the reflection subgroup generated by the ratios
x−1y of elements x, y of a closed Bruhat interval is actually generated by the
ratios of the elements in some fixed maximal chain.

The first part of Chapter 6 describes a construction which produces, from general
data, mutually inverse elements in the incidence algebra of a locally finite poset.
Under an additional assumption, one obtains an element of the incidence algebra
satisfying the same identity

∑
y

Rx,yR̄y,z = δx,z as the polynomials Rx,y defined

by Kazhdan and Lusztig in [KL1], and one may define formal analogues of
the Kazhdan-Lusztig polynomials in this context. We show how this incidence
algebra construction applied to Bruhat order gives rise to the polynomials Rx,y;
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the data required for the construction is obtained from certain special total
orderings of the reflections of the Coxeter system.

In Chapter 7, we begin a study of properties of the structure constants of the
generic Hecke algebra of a Coxeter system. Four conjectural positivity properties
[P1]–[P4] of these structure constants are described:

[P1] C′
xTy ∈

∑

z

IN[q
1
2 , q−

1
2 ]Tz (x, y ∈ W )

[P2] T−1
x−1Ty ∈

∑

z

IN[q
1
2 , q−

1
2 ]Cz (x, y ∈ W )

[P3] C′
xC′

y ∈
∑

z

IN[q
1
2 , q−

1
2 ]C′

z (x, y ∈ W )

[P4] C′
xCy ∈

∑

z

IN[q
1
2 , q−

1
2 ]Cz (x, y ∈ W )

Conjectures [P1] and [P2] generalise the conjectured positivity of the Kazhdan-
Lusztig and inverse Kazhdan-Lusztig polynomials, and [P3] is known to hold
for crystallographic Coxeter systems. For finite Coxeter systems, [P1] and [P2]
are equivalent and [P3] and [P4] are equivalent.

The remainder of Chapter 7 is devoted to a number of special results concerning
the Kazhdan-Lusztig polynomials for arbitrary Coxeter systems. We give a
number of equivalent conditions for a Bruhat interval to be isomorphic to an
interval in a dihedral group. It is shown that the Kazhdan-Lusztig polynomials
Pv,w (!(w)− !(v) ≤ 4) depend only on the isomorphism type of the poset [v, w]
and have non-negative coefficients.

In the last chapters, we give elementary combinatorial proofs of [P1]–[P4] for
universal Coxeter systems. Our technique for showing that the Laurent polyno-
mials arising as structure constants have non-negative coefficients is to construct
sets whose cardinalities are these coefficients. The explicit definition of these
sets is quite intricate, particularly in the case of [P2].
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Chapter 0

PRELIMINARIES

This brief chapter fixes some notation and terminology concerning Coxeter
groups and Hecke algebras, and recalls the definition of Kazhdan-Lusztig poly-
nomials.

Let (W, R) be a Coxeter system. We say that (W, R) is crystallographic if for
all r, s ∈ R with r += s, the order nr,s of rs is either 2,3,4,6 or ∞; (W, R) will
be called a universal Coxeter system if nr,s = ∞ for all r, s ∈ R with r += s.
Thus, a universal Coxeter group is isomorphic to a free product of cyclic groups
of order 2.

The set
⋃

w∈W
wRw−1 of reflections of (W, R) will usually be denoted by T , and

the length function of (W, R) will be denoted by ! or !W . It will be convenient
to let N : W −→ P(T ) denote the function defined by N(w) = { t ∈ T | !(wt) <
!(w) (w ∈ W ) }; some properties of N are given in Chapter 1.

Let A be any commutative (associative, unital) ring and q be an element of A.
The Hecke algrebra Hq,A(W ) is the (associative, unital) A-algebra generated
by generators Tr(r ∈ R) subject to relations

T 2
r = (q − 1)Tr + q · 1

nr,s︷ ︸︸ ︷
(TrTsTr . . . ) =

nr,s︷ ︸︸ ︷
(TsTrTs . . . ) (r, s ∈ R, r += s, nr,s += ∞)

As an A-module, Hq,A(w) is free with A-basis {Tw}w∈W and the multiplication
is determined by

TrTw =
{

Trw (!(rw) > !(w))
qTrw + (q − 1)Tw (!(rw) < !(w)).
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We will generally be concerned with the case when A = ZZ[q 1
2 , q−

1
2 ] is the ring

of Laurent polynomials with integral coefficients in an indeterminate q
1
2 . For

w ∈ W , we then write εw = (−1)!(w), q
± 1

2
w = q±!(w)/2 and denote Hq,A(W )

simply by H(W ). Writing T̃w = q
− 1

2
w Tw, {T̃w}w∈W is an A-basis of H(W ) and

the multiplication is determined by

T̃rT̃w =
{

T̃rw (!(rw) > !(w))
T̃rw + (q 1

2 − q−
1
2 )T̃w (!(rw) < !(w)).

The elements {T̃w}w∈W of H(W ) are invertible, and we define R̃x,w ∈ A (x, w ∈
W ) by

T̃−1
w−1 =

∑

x∈W

R̃x,wT̃x.

In the notation of [KL1], R̃x,w = q
1
2
wq

− 1
2

x R̄x,w, where a -−→ ā is the ring involu-
tion of A determined by q

1
2 -−→ q−

1
2 . We have the recurrence formula ([KL1])

(0.1) R̃x,w =
{

R̃xr,wr (xr < x)
R̃xr,wr + αR̃x,wr (xr > x)

if r ∈ R and wr < w, where α = q−
1
2 − q

1
2 .

The ring involution a -−→ ā of A extends to a ring involution h -−→ h̄ of H(W )
defined by

∑
w∈W

awT̃w -−→
∑

w∈W
āwT̃−1

w−1 .

The following fundamental fact is proved in [KL1]:

Theorem For any w ∈ W , there exists a unique element

Cw ∈ T̃w +
∑

v<w

q
1
2 ZZ[q

1
2 ]T̃v such that C̄w = Cw.

The Kazhdan-Lusztig polynomials Py,w ∈ A are defined by

Cw =
∑

y∈W

εyεwq
1
2
wq−1

y P̄y,wTy (w ∈ W ).
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For any w ∈ W , let
C′

w =
∑

y∈W

q
− 1

2
w Py,wTy.

Then C′
w is the unique element of T̃w +

∑
v<w

q−
1
2 ZZ[q− 1

2 ]T̃v such that C̄′
w = C′

w.

Finally, we recall that the inverse Kazhdan-Lusztig polynomials Qx,y ∈ A (for
x and y in W ) may be defined by

Ty =
∑

x∈W

εxεyq
1
2
x Qx,yC

′
x.

Chapter 1

REFLECTION SUBGROUPS OF COXETER GROUPS

The main result of this chapter is that any reflection subgroup of a Coxeter
system has a canonical set of Coxeter generators (Theorem (1.8)).

The proof uses the function which maps an element of the Coxeter group to
the set of reflections in the positive roots made negative by that element (in
the standard geometric realisation ([De2])). However, we adopt an abstract
approach here and defer more geometric considerations to Chapter 3.

1.1 Let W be a group and R be a set of involutions generating W . Define the
corresponding length function !: W −→ IN by !(w) = min{n ∈ IN | w ∈ Rn }
(w ∈ W ). If w = r1 . . . rn (ri ∈ R, n = !(w)) then r1 . . . rn is called a reduced
expression for w.

The set T =
⋃

w∈W
wRw−1 is the set of reflections of W . The power set P(T ) of

T will be regarded as an abelian group with symmetric difference as addition:

A + B = (A ∪ B)\(A ∩ B) (A, B ∈ P(T )).

4



Note that there exists at most one function N : W −→ P(T ) satisfying (1.1.1)
and (1.1.2) below:

(1.1.1) N(r) = {r} (r ∈ R)

(1.1.2) N(xy) = y−1N(x)y + N(y) (x, y ∈ W ).

This is because the values of N are determined on R by (1.1.1) and then on
〈R〉 = W by the cocycle condition (1.1.2). The following two lemmas, which
are implicit in [Bo] (Ch.IV, no 1.4), show that such a function N can only exist
if (W, R) is a Coxeter system.

1.2 Lemma. Suppose that N : W −→ P(T ) satisfies (1.1.1) and (1.1.2). Then

(i) For any w ∈ W , #N(w) = !(w). If w = r1 . . . rn (ri ∈ R, n = !(w) ) then
N(w) = {t1, . . . , tn} where ti = rn . . . ri+1riri+1 . . . rn (i = 1, . . . , n).

(ii) For all t ∈ T, t ∈ N(t)

(iii) If w ∈ W , N(w) = { t ∈ T | !(wt) < !(w) }. For any t ∈ T , !(wt) += !(w).

Proof

(i) Suppose that w = r1 . . . rn where for i = 1, . . . , n ri ∈ R, and n = !(w). Let
ti = rn . . . ri+1riri+1 . . . rn. If ti = tj (i > j), then

w = r1 . . . rj−1rj+1 . . . rntj

= r1 . . . rj−1rj+1 . . . rnti

= r1 . . . rj−1rj+1 . . . ri−1ri+1 . . . rn ∈ Wn−2

contrary to !(w) = n. Hence the ti are all distinct. By repeated application of
(1.1.2),

N(w) = N(rn) + (rnN(rn−1)rn) + . . . + (rn . . . r2N(r1)r2 . . . rn)
= {tn} + {tn−1} + . . . + {t1}
= {t1, . . . , tn}

so #N(w) = n = !(w).

5



(ii) Let t ∈ T and write t = r1 . . . rn−1rnrn−1 . . . r1 with n minimal. Define
s1, . . . , s2n−1 ∈ R by

(s1, . . . , sn−1, sn, sn+1, . . . , s2n−1) = (r1, . . . , rn−1, rnrn−1, . . . , r1)

and let ti = s2n−1 . . . si+1sisi+1 . . . s2n−1 (i = 1, . . . , 2n − 1). If 1 ≤ i ≤ n, then

ttit = (r1 . . . rn . . . r1)(r1 . . . ri . . . r1)(r1 . . . rn . . . r1) = t2n−i

and so t2n−i = t if and only if ti = t. But ti += t for i ≤ n − 1 by the assumed
minimality of n. This shows that tj = t if and only if j = n (1 ≤ j ≤ 2n − 1).
As in (i), N(t) = {t2n−1} + . . . + {t1}, so t ∈ N(t) as claimed.

(iii) Write w = r1 . . . rn with n = !(w). Then N(w) = {t1, . . . , tn} where

ti = rn . . . ri+1riri+1 . . . rn (i = 1, . . . , n).
wti = r1 . . . ri−1ri+1 . . . rn ∈ Wn−1Now

and so !(wti) ≤ n − 1 < !(w). Hence if t ∈ N(w) then !(wt) < !(w).

Now suppose that t ∈ T and t /∈ N(w). Then t /∈ t−1N(w)t but t ∈ N(t),
so t ∈ t−1N(w)t + N(t) = N(wt). By what has just been proved, !(w) =
!( (wt)t) < !(wt).

1.3 Lemma. The following are equivalent:

(i) (W, R) is a Coxeter system

(ii) There exists a function N : W −→ P(T ) satisfying (1.1.1) and (1.1.2).

Proof The implication (i) implies (ii) is well-known, but can be proved as follows.
Suppose that (i) holds. By ([Bo] Ch IV , no 1.4) there is a representation of W
as a group of permutations of T×{1,−1} such that r(t, n) = (rtr, (−1)δr,tn) (t ∈
T, n ∈ {1,−1}, r ∈ R). For w ∈ W , let N(w) = { t ∈ T | w(t, n) = (wtw−1,−n)
for n = ±1 }. The above formula for r(t, n) shows that (1.1.1) holds and that
N(ry) = {y−1ry} + N(y) (r ∈ R, y ∈ W ); then (1.1.2) follows by induction on
!(x).

Now suppose that N : W −→ P(T ) satisfies (1.1.1) and (1.1.2). To prove (i),
it suffices to show that (W, R) satisfies the “exchange condition” (1.3.1) below
([Bo] Ch IV, no 1.6):
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(1.3.1) if w ∈ W, r ∈ R and !(wr) ≤ !(w), then for any reduced expression
w = r1 . . . rn, there exists i ∈ {1, . . . , n} such that ri . . . rn = ri+1 . . . rnr.

In fact, the “strong exchange condition” (1.3.2) holds:

(1.3.2) if ri ∈ R (i = 1, . . . , n), t ∈ T and !(r1 . . . rnt) ≤ !(r1 . . . rn) then there
exists i ∈ {1, . . . , n} such that ri . . . rn = ri+1 . . . rnt.

For let ti = rn . . . ri+1riri+1 . . . rn (i = 1, . . . , n). If !(r1 . . . rnt) ≤ !(r1 . . . rn),
then (1.2) (iii) implies that t ∈ N(r1 . . . rn). But by (1.1.1) and (1.1.2) we have
N(r1 . . . rn) = {tn} + . . . + {t1}. Hence t = ti for some i, and so ri . . . rn =
ri+1 . . . rnt as required.

In (1.4)–(1.27), (W, R) denotes a Coxeter system. We maintain the conventions
of (1.1) and let N : W −→ P(T ) be the function determined by (1.1.1) and
(1.1.2).

The following simple lemma will often prove useful; it is equivalent to ([Sp],
Prop. 1).

1.4 Lemma. Let t = r1 . . . r2n+1 ∈ T (ri ∈ R) with !(t) = 2n + 1. Then
t = r1 . . . rnrn+1rn . . . r1.

Proof Let x = rn . . . r1 and y = rn+2 . . . r2n+1. Then !(x) = !(y) = n < n + 1 =
!(rn+1x) = !(rn+1y) and rn+1yt = x. By (1.3.2), t = r2n+1 . . . ri . . . r2n+1 for
some i ∈ {n + 1, . . . , 2n + 1}, and so x = rn+1 . . . ri−1ri+1 . . . r2n+1. Since
!(x) = n, this is a reduced expression for x. Since !(rn+1x) > !(x), it follows
that i = n+1 and so x = y. Hence t = x−1rn+1y = x−1rn+1x as required.

Taking n ≥ 1 in (1.4) immediately gives the following

1.5 Corollary. If t ∈ T\R, there exists r ∈ R with !(rtr) = !(t) − 2.

1.6 For any subgroup W ′ of W , let

(1.6.1) S(W ′) = { t ∈ T | N(t) ∩ W ′ = {t} }.

7



Note that S(W ′) ⊆ W ′. If W ′ is a reflection subgroup of W , it will be shown in
(1.8) that S(W ′) is a set of Coxeter generators for W ′. The proof will use (1.3)
and the following

1.7 Lemma. Let W ′ be a subgroup of W .

(i) If r ∈ R \ W ′ then S(rW ′r) = rS(W ′)r.

(ii) If t ∈ W ′ ∩ T then there exists m ∈ IN and t0, . . . , tm ∈ S(W ′) such that
t = tm . . . t1t0t1 . . . tm.

(iii) For w ∈ W let N ′(w) = N(w)∩W ′. Then if x ∈ W and y ∈ W ′, N ′(xy) =
y−1N ′(x)y + N ′(y).

Proof

(i) Let t ∈ S(W ′). Then

N(rtr) ∩ rW ′r = ({rtrtr}+ rN(t)r + {r}) ∩ rW ′r

= r[({trt}+ N(t) + {r}) ∩ W ′]r
= r[N(t) ∩ W ′]r since r /∈ W ′ and trt /∈ tW ′t = W ′

= {rtr}

Hence rtr ∈ S(rW ′r). This proves that rS(W ′)r ⊆ S(rW ′r). But r ∈ R\rW ′r,
so also rS(rW ′r)r ⊆ S(W ′) and (i) is proved.

(ii) The proof will be by induction on !(t). If !(t) = 1, then t ∈ W ′ ∩ R so
N(t)∩W ′ = {t}∩W ′ = {t} and it is sufficient to take m = 0 and t0 = t ∈ S(W ′).

Suppose now that !(t) > 1 and that (ii) holds for all subgroups W ′′ of W and
reflections t′′ ∈ W ′′∩T with !(t′′) < !(t). By (1.5), there exists some r ∈ R such
that !(rtr) < !(t). Let W ′′ = rW ′r and t′′ = rtr. By the inductive assumption
there exist m ∈ IN and t0, . . . , tm ∈ S(W ′′) such that t′′ = tm . . . t1t0t1 . . . tm.
There are now two cases to consider.

Case 1. r ∈ W ′′

Then W ′ = rW ′′r = W ′′ and N(r)∩W ′′ = {r}∩W ′′ = {r}. Let tm+1 = r; then
ti ∈ S(W ′′) = S(W ′) (i = 0, 1, . . . , m+1) and t = rt′′r = rtm . . . t1t0t1 . . . tmr =
tm+1 . . . t1t0t1 . . . tm+1.

8



Case 2. r /∈ W ′′

Let t′i = rtir (i = 0, . . . , m). Then t′i ∈ rS(W ′′)r = S(rW ′′r) by (i) and
t = rt′′r = rtm . . . t1t0t1 . . . tmr = t′m . . . t′1t

′
0t

′
1 . . . t′m.

This completes the proof of (ii).

(iii) If x ∈ W and y ∈ W ′, then

N ′(xy) = [y−1N(x)y + N(y)] ∩ W ′

= (y−1N(x)y ∩ y−1W ′y) + (N(y) ∩ W ′) noting W ′ = y−1W ′y

= y−1(N(x) ∩ W ′)y + (N(y) ∩ W ′)

= y−1N ′(x)y + N ′(y)

as required.

Recall that a subgroup W ′ of W is said to be a reflection subgroup of W if it
is generated by the reflections it contains, i.e. if W ′ = 〈W ′ ∩ T 〉. We may now
prove the main result of this chapter.

1.8 Theorem. Let W ′ be a reflection subgroup of W ′, and set R′ = S(W ′).
Then

(i) (W ′, R′) is a Coxeter system

(ii) W ′ ∩ T =
⋃

w∈W ′
wR′w−1

(iii) For w ∈ W ′, N(w)∩W ′ = { t ∈ W ′∩T | !′(wt) < !′(w) } where !′: W ′ −→
IN is the length function of (W ′, R′).

Proof Let W ′′ = 〈R′〉 and T ′ =
⋃

w∈W ′′
wR′w−1. Since R′ ⊆ T ∩ W ′ it follows

that W ′′ ⊆ W ′ and T ′ ⊆ T ∩W ′. By (1.7) (ii), T ∩W ′ ⊆ T ′, hence T ′ = T ∩W ′

and so W ′ = 〈W ′ ∩ T 〉 = 〈T ′〉 ⊆ 〈R′〉 ⊆ W ′. This shows that W ′ = 〈R′〉 = W ′′

and also that (ii) holds, since T ∩ W ′ = T ′ =
⋃

w∈W ′
wR′w−1.
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Now T ′ ⊆ T and so P(T ′) is a subgroup of P(T ). Define N ′: W ′ −→ P(T ′)
by N ′(w) = N(w) ∩ W ′. For r′ ∈ R′ = S(W ′), we have N ′(r′) = {r′} by
definition of S(W ′). Also, if x′, y′ ∈ W ′, (1.7) (iii) implies that N ′(x′y′) =
y′−1N ′(x′)y′ + N ′(y′). Since R′ consists of involutions and W ′ = 〈R′〉, Lemma
(1.3) shows that (W ′, R′) is a Coxeter system, and Lemma (1.2) (iii) then proves
(iii).

If W ′ is a reflection subgroup of W , then R′ = S(W ′) will be called its set of
canonical generators and (W ′, R′) will be said to be a reflection subsystem of
(W, R); we then write (W ′, R′) ≤ (W, R).

Some simple properties of reflection subsystems are given below.

1.9 Corollary.

(i) Suppose that (W ′, R′) ≤ (W, R), and that W ′′ is a subgroup of W ′ and
R′′ ⊆ W ′′. Then (W ′′, R′′) ≤ (W ′, R′) if and only if (W ′′, R′′) ≤ (W, R).

(ii) If (W ′, R′) ≤ (W, R), (W ′′, R′′) ≤ (W, R) and W ′′ is conjugate to W ′ then
the Coxeter systems (W ′, R′) and (W ′′, R′′) are isomorphic.

Proof (i) Let T ′ = T ∩ W ′ and N ′(w) = N(w) ∩ W ′ (w ∈ W ). Note that
N(w) ∩ W ′′ = N ′(w) ∩ W ′′, for any w ∈ W .

Suppose firstly that (W ′′, R′′) ≤ (W, R). Then W ′′ = 〈W ′′ ∩ T 〉 = 〈W ′′ ∩ W ′ ∩
T 〉 = 〈W ′′ ∩T ′〉 and R′′ = { t ∈ T | N(t)∩W ′′ = {t} } = { t ∈ T | N ′(t)∩W ′′ =
{t} }, the last set being the set of canonical generators of W ′′ as a reflection
subgroup of (W ′, R′). Hence (W ′′, R′′) ≤ (W ′, R′).

Conversely, suppose that (W ′′, R′′) ≤ (W ′, R′). Then W ′′ = 〈W ′′ ∩ T ′〉 ⊆
〈W ′′ ∩ T 〉 ⊆ W ′′ so W ′′ = 〈W ′′ ∩ T 〉. Here R′′ = { t ∈ T | N ′(t)∩W ′′ = {t} } =
{ t ∈ T | N(t) ∩ W ′′ = {t} } = S(W ′) so (W ′′, R′′) ≤ (W, R).

(ii) It suffices to prove this when W ′ and W ′′ are conjugate by a simple reflec-
tion, say W ′ = rW ′′r with r ∈ R. If r ∈ W ′′ then W ′ = W ′′ and R′ = S(W ′) =
S(W ′′) = R′′, so (W ′, R′) = (W ′′, R′′). If r )∈ W ′′ then R′′ = rR′r by (1.7)(i);
the map x *−→ rxr is an isomorphism of groups W ′ −→ W ′′ which restricts to
a bijection R′ −→ R′′ i.e. an isomorphism of Coxeter systems.
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1.10 Remark. There is a standard partial order on W , the Bruhat order;
this will be discussed in Chapter 5. If (W ′, R′) ≤ (W, R), then the partial
order induced on W ′ as a subset of W is not generally the Bruhat order of
(W ′, R′). We now define a directed graph intimately related to the Bruhat order
of (W, R), and prove that the graph associated to any reflection subsystem is a
“full” subgraph of this graph.

1.11 Definition. The Bruhat graph Γ(W,R) is the directed graph with vertex
set W and edge set E(W,R) = { (x, y) ∈ W × W | x−1y ∈ T, !(x) < !(y) }.

For any subset X of W , there is a corresponding subgraph ΓX with vertex set
X and edge set E(W,R) ∩ (X × X).

1.12 Remark. There is a partial order ≤ on W such that x ≤ y if and only if
there exists a sequence x0, x1, . . . , xn of elements of W such that x0 = x, xn = y
and (xi−1, xi) ∈ E(W,R) for i = 1, . . . , n. This partial order is the Bruhat order.

1.13 Proposition. Suppose that (W ′, R′) ≤ (W, R). Then

(i) Γ(W ′,R′) = ΓW ′

(ii) Let xW ′ be any left coset of W ′ in W . Then xW ′ contains a unique
element x0 of minimal length. The map θ: W ′ −→ xW ′ defined by w '−→ x0w
is an isomorphism of directed graphs ΓW ′ −→ ΓxW ′ For all w ∈ W ′,

(1.13.1) N(w) ∩ W ′ = N(θ(w) ) ∩ W ′.

Proof Let !′ denote the length function on (W ′, R′) and define N ′(w) = N(w)∩
W ′ (w ∈ W ). Let T ′ = T ∩ W ′.

(i) Both Γ(W ′,R′) and ΓW ′ are directed graphs with vertex set W ′. Hence
it remains to check that they have the same edge set, i.e. that E(W ′,R′) =
E(W,R) ∩ (W ′ × W ′). Now E(W,R) ∩ (W ′ × W ′)

= { (x, y) ∈ W ′ × W ′ | x−1y ∈ T, !(x) ≤ !(y) }
= { (x, y) ∈ W ′ × W ′ | x−1y /∈ N(x), x−1y ∈ T ′ } by (1.2)(iii)

= { (x, y) ∈ W ′ × W ′ | x−1y /∈ N ′(x), x−1y ∈ T ′ }
= { (x, y) ∈ W ′ × W ′ | x−1y ∈ T ′, !′(x) ≤ !′(y) } by (1.8)(iii)
= E(W ′,R′) by definition, so (i) is proved.
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(ii) Choose some x0 ∈ xW ′ with !(x0) minimal. Then for any t ∈ T ′, !(x0t) ≥
!(x). This shows that N ′(x0) = N(x0) ∩W ′ =+0. It follows from (1.7) (iii) that
N ′(w) = N ′(θ(w) ) for all w ∈ W ′; hence (1.13.1) is proved. Now θ is certainly
a bijection; to prove that it is an isomorphism of directed graphs, it remains to
check that if y, z ∈ W ′, then (y, z) is an edge of ΓW ′ if and only if (θ(y), θ(z) )
is an edge of ΓxW ′ = Γx0W ′ . Fix y, z,∈ W ′.

Now (y, z) ∈ E(W,R) ∩ (W ′ ×W ′) if and only if y−1z ∈ T and !(y) ≤ !(z). This
holds if and only if y−1z ∈ T ′ and y−1z /∈ N ′(y) = N ′(θ(y) ) by (1.13.1). But
y−1z = (x0y)−1(x0z) = θ(y)−1θ(z), so we see that (y, z) ∈ E(W,R) ∩ (W ′ × W ′)
if and only if θ(y)−1θ(z) ∈ T ′ and θ(y)−1θ(z) /∈ N ′(θ(y) ) i.e., if and only if
θ(y)−1θ(z) ∈ T and !(θ(y) ) ≤ !(θ(z) ). This last condition is precisely the
condition that (θ(y), θ(z) ) be an edge of ΓxW ′ .

To complete the proof of (ii), it remains to check that !(x0) < !(x0w) for all
w ∈ W ′\{1}. Let w ∈ W ′\{1} and write w = r1 . . . rn (ri ∈ R′, n = !′(w) ).
Let wi = r1 . . . ri (i = 0, 1, . . . , n). Then for i = 1, . . . , n, (wi−1, wi) is an edge
of Γ(W ′,R′), hence an edge of ΓW ′ (by (i)) and, by what has just been proved,
(x0wi−1, x0wi) is an edge of ΓxW ′ . In particular, !(x0) = !(x0w0) < !(x0w1) <
. . . < !(x0wn) = !(x0w), so !(x0) < !(x0w).

1.14 Let J ⊆ R, WJ = 〈J〉 and W J = {w ∈ W | !(wr) ≥ !(w) for all r ∈ J .}.
Then (WJ , J) is a reflection subsystem of (W, R). For such parabolic reflection
subsystems, (1.13) is related to the following well-known facts ([De 1]).

(1.14.1) If w ∈ W , there exist unique x ∈ W J and y ∈ WJ with w = xy

(1.14.2) !(xy) = !(x) + !(y) for all x ∈ W J and y ∈ WJ .

We now give a number of simple facts concerning dihedral reflection subgroups
of (W, R). These facts are part of the basis of an algorithm, to be presented
in Chapter 3, for computing the canonical generators of a (finitely generated)
reflection subgroup.

1.15 Lemma. Let (W, R) be a Coxeter system and T =
⋃

w∈W
wRw−1. Sup-

pose that there exist t, t′ ∈ T (t += t′) with W = 〈t, t′〉.
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Then #(R) = 2.

Proof Let R′ = {t, t′}; then R′ consists of 2 involutions and generates W , so
(W, R′) is a Coxeter system ([Bo] Ch IV, no 1.2). Let !, !′ be the length functions
on (W, R) and (W, R′) respectively. Since !(t), !(t′) are odd, it follows that for
all w ∈ W, !(w) is odd if and only if !′(w) is odd. Now every element w ∈ W
with !′(w) odd is a conjugate of t or t′, and hence is conjugate to an element of
R (since t, t′ ∈ T ). This shows that T = {w ∈ W | !(w) is odd }.

Suppose that #(R) ≥ 3; let r, s, t ∈ R be distinct. Then !(rst) = 3, hence
rst ∈ T . But by (1.4) this implies that rst = rsr, contrary to t += r.

Hence #(R) ≤ 2. Since t, t′ ∈ T and t += t′, we must have #(R) ≥ 2.

By ([Bo] Ch IV, §1, Ex 8), the assumption that t, t′ ∈ T in the hypotheses of
(1.15) is essential.

1.16 Lemma. Let (W, R) be a Coxeter system, T =
⋃

w∈W
wRw−1 and t, t′ ∈

T with t += t′. Let W ′ = 〈t, t′〉.

Then S(W ′) ⊆
⋃

w∈W ′
w{t, t′}w−1 and #S(W ′) = 2.

Proof Let R′ = S(W ′) and !′ be the length function on the Coxeter system
(W ′, R′). Then t, t′ ∈ W ′ ∩ T =

⋃
w∈W ′

wR′w−1. By (1.15), #S(W ′) = 2.

Write S(W ′) = {t1, t2}. As in the proof of (1.15),
⋃

w∈W ′
wR′w−1 = {w ∈ W |

!′(w)is odd } =
⋃

w∈W ′
w{t, t′}w−1, and in particular, t1, t2 ∈

⋃
w∈W ′

w{t, t′}w−1.

1.17 Lemma. Let W ′ be a dihedral reflection subgroup of the Coxeter system
(W, R) (i.e.#S(W ′) = 2). Write S(W ′) = {t1, t2}. Then for any t, t′ ∈ W ′ ∩ T
with t′ += t and S(W ′) += {t, t′},

!(t1) + !(t2) < !(t) + !(t′) .

Proof Write R′ = S(W ′). Suppose without loss of generality that t /∈ {t1, t2}
and that t′ += t2. One may choose “paths” (x0, . . . , xn) (n ≥ 0, x0 = t1, xn =
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t′ , (xi−1, xi) ∈ E(W ′,R′) (i = 1, . . . , n) ) and (y0, . . . , ym) (m ≥ 1, y0 = t2, ym =
t, (yi−1, yi) ∈ E(W ′,R′) (i = 1, . . . , m) ) in Γ(W ′,R′) from t1 to t′, and from t2 to t
respectively (since (W ′, R′) is dihedral). By (1.13), (x0, . . . , xn) and (y0, . . . , ym)
are paths in Γ(W,R); hence !(x0) < . . . < !(xn) and !(y0) < . . . < !(ym).
Therefore, !(t1) ≤ !(t′) and, since m ≥ 1, !(t2) < !(t).

The remainder of this chapter is devoted to describing an edge-labelling of
the Bruhat graphs and giving a graph-theoretic characterisation of these edge-
labelled Bruhat graphs. First, though, we need some terminology concerning
edge-labelled directed graphs in general.

1.18 For any set ω and E ⊆ ω × ω, define Eα (α ∈ ω) by Eα = [({α}× ω) ∪
(ω × {α})] ∩ E.

We will say that Γ = (ω, E, S, f) is a directed graph edge-labelled by S (via f)
if ω is a set, E ⊆ ω×ω is an antisymmetric set of directed edges, and f : E −→ S
is a function into a set S such that for all α ∈ ω, f |Eα : Eα −→ S is a bijection.

Note that if these conditions are satisfied, then each connected component of
the underlying undirected graph may also be naturally regarded as a directed
graph edge-labelled by S. We will say that α ∈ ω is a source if (ω×{α})∩E = ∅.

For any S0 ⊆ S, we put ES0 = f−1(S0) and let fS0 : ES0 −→ S0 denote the
restriction of f to ES0 . Then Γ(S0) = (ω, ES0, S0, fS0) is a directed graph
edge-labelled by S0.

It will also be convenient to define S̄0 ⊆ S by S̄0 = { f(α, β) | (α, β) ∈ E; α, β
in the same connected component of Γ(S0) }.

Two different notions of isomorphism of edge-labelled directed graphs Γ =
(ω, E, S, f) and Γ′ = (ω′, E′, S′, f ′) will be required. Firstly, Γ and Γ′ will
be said to be strongly isomorphic if

(i) S = S′

and there exists a bijection θ: ω −→ ω′ such that

(ii) (α, β) ∈ E if and only if (θ(α), θ(β)) ∈ E′ (α, β ∈ ω)

(iii) f ′(θ(α), θ(β)) = f(α, β) ((α, β) ∈ E).
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Secondly, Γ and Γ′ will be said to be isomorphic if there exists a bijection
ρ: S′ −→ S such that Γ and (ω′, E′, S′, ρf ′) are strongly isomorphic.

1.19 For the remainder of this chapter, the Bruhat graph Γ(W,R) will be re-
garded as the edge-labelled directed graph

Γ(W,R) = (W, E(W,R), T, f)

where f : E(W,R) −→ T is defined by f(x, y) = x−1y ( (x, y) ∈ E(W,R)).

We now illustrate some of the notions of (1.18) with these edge-labelled Bruhat
graphs.

Firstly, for any T ′ ⊆ T , we have T̄ ′ = T ∩〈T ′〉. The vertex sets of the connected
components of Γ(W,R)(T ′) are the cosets x〈T ′〉 (x ∈ W ).

Suppose now that T ′ = W ′ ∩ T for some reflection subgroup W ′ of W , and
set R′ = S(W ′). Then the connected components of Γ(W,R)(T ′) are the graphs
ΓxW ′ associated to cosets xW ′, with labelling induced from Γ(W,R). Now if
(y, z) and (xy, xz) are both edges of Γ(W,R) they receive the same label y−1z.
It therefore follows from (1.13) that

(1.19.1) the connected components of Γ(W,R)(T ′) are pairwise strongly isomor-
phic, and the connected component containing 1 ∈ W is Γ(W ′,R′).

For later use, we mention now the simple

1.20 Lemma. If (x, y) ∈ E(W,R), r ∈ R and y += xr then (xr, yr) ∈ E(W,R).

Proof Suppose (x, y) ∈ E(W,R); let x−1y = t. Then t ∈ N(y), so rtr ∈ rN(y)r +
{r} = N(yr). Hence (yr(rtr), yr) = (xr, yr) ∈ E(W,R).

We now state a characterisation of edge-labelled Bruhat graphs; the result was
suggested by ([G], (4.1) ).

1.21 Theorem. Let Γ = (ω, E, L, f) be a connected edge-labelled directed
graph. Then Γ is isomorphic to Γ(W,R) for some Coxeter system (W, R) if and
only if (1.21.1)–(1.21.3) below hold:
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(1.21.1) Γ has a source 1

(1.21.2) For each x ∈ ω, the set {n ∈ IN | ∃(x0, . . . , xn) ∈ ωn+1 (xi−1, xi) ∈
E (i = 1, . . . , n), x0 = 1, xn = x } is bounded.

(1.21.3) For each s, t ∈ L (s += t) the connected components of Γ({s, t}) are
pairwise strongly isomorphic and each is isomorphic to the edge-labelled Bruhat
graph of some dihedral Coxeter system.

The proof of (1.21) will occupy the rest of the chapter.

1.22 Suppose that Γ is isomorphic to Γ(W,R); then we may assume Γ = Γ(W,R)

without loss of generality. Then (1.21.1) holds, and for x ∈ ω = W , the set in
(1.21.2) is bounded above by !(x). For s, t ∈ L with s += t, {s, t} = 〈s, t〉 ∩ T
and #S(〈s, t〉) = 2 by (1.16), so (1.21.3) follows from (1.19.1).

1.23 Henceforward, we assume that (1.21.1)–(1.21.3) hold. Without loss of
generality, replace Γ by an isomorphic edge-labelled directed graph so that if
(1, α) ∈ E, then f(1, α) = α ∈ L (this may be done since L = { f(1, α) | (1, α) ∈
E }).

For any s, t ∈ L with s += t, (1.21.3) implies that there exists {t1, t2} ⊆ {s, t}
uniquely determined by the conditions t1 += t2 and (x, ti) ∈ E ⇒ x = 1 (x a
vertex of the connected component of Γ({s, t}) containing 1); t1, t2 correspond
to the Coxeter generators, regarded as labels, of the edge-labelled Bruhat graphs
of a dihedral Coxeter system. Throughout the proof, t1 and t2 will be called
the special labels of Γ({s, t}).

Let Ē = { { x, y} | (x, y) ∈ E } be the edge set of the underlying undirected
graph of Γ; this undirected graph is edge-labelled by the function f̄ : Ē → L
defined by f̄({x, y}) = f(x, y) ( (x, y) ∈ E). If τ = (x0, . . . , xn) ∈ ωn+1 and
(xi−1, xi) ∈ E (respectively Ē) for each i = 1, . . . , n, then τ is said to be a path
(respectively, undirected path) from x0 to xn, of length n. Note that if τ is a
path, and x0 = 1, then xi += 1 for all i > 0 (by (1.21.2) ).

For any t ∈ L, let π(t) denote the unique permutation of ω such that the orbits
of π(t) are the sets {x, y} ∈ Ē such that f̄({x, y}) = t. We write the action
of π(t) as x -−→ xπ(t) i.e. on the right. According to our definition of an
edge-labelling
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(1.23.2) if t, t′ ∈ L, x ∈ ω and xπ(t) = xπ(t′), then t = t′.

Note that for s, t ∈ L, condition (iii) implies that

(1.23.3) there exists t′ ∈ {s, t} such that π(s)π(t)π(s) = π(t′), (this statement
being true for the dihedral Bruhat graphs).

For any t ∈ L, we define !′(t) to be the maximum of the set {n ∈ IN |
∃(x0, . . . , xn) ∈ ωn+1 (xi−1, xi) ∈ E (i = 1, . . . , n), x0 = 1, xn = t} (the
set is bounded by (1.21.2) and non-empty since (1, t) ∈ E). We now let
L′ = { t ∈ L | !′(t) = 1 }. The crucial step in the proof is the following

1.24 Lemma. If t ∈ L and !′(t) > 1, there exist t1, t2 ∈ L with !′(ti) <
!′(t) (i = 1, 2) and

π(t) =

2m+1︷ ︸︸ ︷
π(t1)π(t2)π(t1) . . .π(t1) for some m ∈ IN (m ≥ 1).

Proof By assumption, there is a path (x0, . . . , xn) with x0 = 1, xn = t and
n ≥ 2. Let t′ = f(xn−1, xn) (note t′ += t) and let t1, t2 be the special labels of
Γ({t, t′}). Since (xn−1, xn) ∈ E and (1, xn) ∈ E (1 += xn−1), we have t +∈ {t1, t2}.
Interchanging t1 and t2 if necessary, it follows from simple properties of the
dihedral groups that there exists a path (y0, . . . , y2m+1) (m ≥ 1) from 1 to t
with

f(yi−1, yi) =
{

t1 (i odd)
t2 (i even) (i = 1, . . . , 2m + 1).

Also there exists a path (z0, . . . , z2p+1) from 1 to t with f(z0, z1) = t2, and
p ≥ 1. Then y1 = t1 and z1 = t2, so it follows that !′(t) ≥ !′(t1) + 2m and
!′(t) ≥ !′(t2) + 2p. In particular, !′(t1) < !′(t) and !′(t2) < !′(t).

Further, 1

2m+1︷ ︸︸ ︷
π(t1)π(t2) . . .π(t1) = t = 1π(t) and so (1.23.2) and (1.23.3) imply

2m+1︷ ︸︸ ︷
π(t1)π(t2) . . .π(t1) = π(t).

The following result follows immediately by induction on !′(t).
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1.25 Corollary. If t ∈ L, then there exist r1, . . . , rm ∈ L′ (m ∈ IN, m ≥ 1)
such that π(t) = π(r1) . . .π(rm) . . .π(r1).

1.26 Note that π(t) (t ∈ L) is an involution. Let W = 〈π(t) | t ∈ L〉 and
R = { π(r) | r ∈ L′ }. Also, let T =

⋃
w∈W

wRw−1. By (1.23.3) and(1.25),

W = 〈R〉 and the map L → W given by t -−→ π(t) (t ∈ L) induces a bijection
ρ: L → T .

We make use of (1.3) to show that (W, R) is a Coxeter system.

Define a map N : W → P(T ) by

N(w) = { π(t) | t ∈ L, (1wπ(t), 1w) ∈ E } (w ∈ W ).

Let t ∈ L, r ∈ L′, w ∈ ω with t += r. We claim that

(1.26.1) if (wπ(t), w) ∈ E then (wπ(t)π(r), wπ(r) ) ∈ E.

To see this, note first that r is a special label of Γ({r, t}); for if r were not
a special label, there would exist x ∈ ω, x += 1 with (x, r) ∈ E. Letting
t′ = f(x, r), we could argue as in the proof of (1.24) that r was not a special
label of Γ({r, t′}) and so there would exist a path (1, x1, x2, r), contrary to
!′(r) = 1. Hence r is a special label of Γ({r, t}) and (1.26.1) follows by applying
(1.20) to the connected component of Γ({r, t}) containing x (making use of
(1.21.3)).

Note that the preceeding paragraph shows that

(1.26.2) N(π(r) ) = π(r) (r ∈ L′).

Regarding P(T ) as an abelian group under symmetric difference, (1.26.1) shows
that N(wπ(r) ) = π(r)N(w)π(r) + {π(r)} (r ∈ L′ , w ∈ W ). It follows by
induction on the length of !(y) of y in (W, R) that

(1.26.3) N(wy) = y−1N(w)y + N(y) (w, y ∈ W ) and so (W, R) is a Coxeter
system as claimed. Further,

(1.26.4) N(w) = { t ∈ T | !(wt) < !(w) }.
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1.27 To finish the proof, it will be shown that the map θ: W → ω given by
w -−→ 1w is a strong isomorphism Γ(W,R) → (ω, E, T, ρf).

Firstly, θ is injective since if (1)v = (1)w (v, w ∈ W ) then N(v) = N(w)
and so v = w. The assumption that Γ is connected gives the surjectivity of
θ as follows; if (x0, . . . , xn) is any undirected path with x0 = 1, then, letting
ti = f(xi−1, xi) (i = 1, . . . , n), we have xn = θ(π(t1) . . .π(tn)).

Now the edges of Γ(W,R) are the pairs (wπ(t), w) with !(wπ(t) ) < !(w) (w ∈
W, t ∈ L) and the edges of Γ are the (1wπ(t), 1w) with π(t) ∈ N(w) (w ∈
W, t ∈ L). Hence (x, y) ∈ E(W,R) if and only if (θ(x), θ(y) ) ∈ E. Moreover, if
(x, y) ∈ E(W,R), say (x, y) = (wπ(t), w), then

ρf(θx, θy) = ρf(1wπ(t), 1w)
= ρ(t) by definition of the permutation π(t)
= π(t)

= x−1y

which is the label (x, y) receives as an edge of E(W,R). Hence θ is a strong
isomorphism as claimed. This completes the proof of (1.21).

19



Chapter 2

“GENERIC” ROOT SYSTEMS

Chapter 3 contains a criterion for a set of reflections in a Coxeter system to be
the canonical set of generators of some reflection subgroup; the condition is that
the inner products of the corresponding positive roots in the standard geometric
realisation ([De2]) should lie in a certain set.

To determine this set, one needs to know precisely what inner products can
occur between simple roots in a geometric realisation of the Coxeter group if
the resulting root system is to partition into positive and negative roots as
usual. The question is answered by Lemma (2.4) which also summarises all the
properties of geometric realisations of Coxeter groups needed for Chapter 3.

As well as the root systems arising from these geometric realisations, one has,
in the case of crystallographic Coxeter systems, also the various systems of real
roots of corresponding Kac-Moody Lie algebras ([K]). It is of some interest to
see in what generality the standard properties of root systems hold. Thus, after
proving (2.4), we indicate how the usual arguments may be modified to prove
properties of “generic” root systems.

Many of these properties are proved by reducing to the rank two case, and we
begin with some 2 × 2-matrix computations.

2.1 Let A be a commutative IR-algebra, γ be an element of IR and q1/2, X be
units of A. Define A, B ∈ M2×2(A) by

A =




−1 2γq1/2X

0 q



 B =




q 0

2γq1/2X−1 −1



 .
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It follows by induction on n ∈ IN that

(2.1.1) B(AB)n =




qn+1p2n+1 −qn+ 1

2 p2nX

qn+ 1
2 p2n+2X−1 −qnp2n+1



 and

(2.1.2) (AB)n =
(

qnp2n+1 −qn− 1
2 p2nX

qn+ 1
2 p2nX−1 −qnp2n−1

)

where pn ∈ IR (n ∈ {−1} ∪ IN) are defined recursively by

(2.1.3) p−1 = −1, p0 = 0, pn+1 = 2γpn − pn−1 (n ∈ IN).

Now the solution of the recurrence equation (2.1.3) is

(2.1.4) pn =






n (γ = 1)

(−1)n+1n (γ = −1)

1

2
√

γ2−1

[(
γ +
√

γ2 − 1
)n

−
(
γ −
√

γ2 − 1
)n]

(|γ| > 1)

sin nθ
sin θ (cos θ = γ) (|γ| < 1).

Here are some properties of the pn and the matrices A, B. Part (i) of the lemma
is particularly important for our applications.

2.2 Lemma.

(i) Conditions (a) and (b) below are equivalent

(a) pnpn+1 ≥ 0 for all n ∈ IN

(b) γ ∈ { cos π
m | m ∈ IN, m ≥ 2 } ∪ [1,∞)

(ii) If γ ≥ 1 then for all n ∈ IN, pn+1 > pn ≥ 0 and pn+2
pn+1

> pn+3
pn+2

.

(iii) If γ = cos π
m (m ∈ IN, m ≥ 2) then

0 = p0 < p1 < . . . < p&m
2 ' = p&m+1

2 ', p&m+1
2 ' > . . . > pm−1 > pm = 0.
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Also p2
p1

> p3
p2

> . . . > pm

pm−1
= 0 and

m︷ ︸︸ ︷
(. . .BAB) =

m︷ ︸︸ ︷
(. . .ABA).

(iv) If q = 1, the matrix AB has order

{
n (γ = cos kπ

n (k, n ∈ IN, 0 < k < n, gcd(n, k) = 1))
∞ (otherwise).

Proof (i) Now p0 = 0, p1 = 1, p2 = 2γ. Assume that (a) holds. Then γ ≥ 0.
If 0 ≤ γ < 1, choose θ so that 0 < θ ≤ π

2 and cos θ = γ. Let m be the
largest integer such that 0 < θ < 2θ < . . . < mθ ≤ π. If mθ < π then
π < (m + 1)θ < 2π and hence pm = sin mθ

sin θ > 0, pm+1 = sin(m+1)θ
sin θ < 0 contrary

to (a). Hence mθ = π, m ≥ 2 and γ = cos θ = cos π
m . This shows that (a)

implies (b). Conversely, if (b) holds then it follows from (2.14) that (a) holds.

The first claim in (ii) holds by induction on n, noting that pn+2 − pn+1 =
pn+1−pn+(2γ−2)pn+1. The first claim in (iii) follows from (2.1.4). By induction
on n ∈ IN, one has p2

n − pn−1pn+1 = 1; the claims in (ii), (iii) concerning the
ratios pn+1

pn
follow readily from this. The remaining assertions of the lemma

follow from (2.1.4), (2.1.1), (2.1.2) and analogues for A(BA)n, (BA)n.

2.3 Let V be a vector space over IR equipped with a symmetric bilinear form
(.|.). For non-isotropic α ∈ V , let rα: V −→ V be the corresponding reflection,
defined by

(2.3.1) rα(v) = v − 2[(v | α)/(α | α)]α (v ∈ V )

Let Π be a linearly independent subset of V such that (α | α) = 1 (α ∈ Π). Let
R = { rα | α ∈ Π }, W = 〈R〉, Φ = WΠ, Φ+ = {

∑
α∈Π

mαα ∈ Φ | mα ≥ 0 for all

α }, Φ− = −Φ+ and T =
⋃

w∈W
wRw−1.

2.4 Lemma.

(i) The conditions (a), (b) below are equivalent

(a) Φ = Φ+ ∪ Φ−
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(b) For all α, β ∈ Π with α += β,

(α | β) ∈ (−∞,−1] ∪ {− cos
π

m
| m ∈ IN, m ≥ 2 }

(ii) Suppose that conditions (a) (b) of (i) above hold. For w ∈ W , let !(w) =
min{n ∈ IN | w ∈ Rn }, N̄(w) = {α ∈ Φ+ | w(α) ∈ Φ− } and N(w) = { t ∈ T |
!(wt) < !(w) }. Then

(a) The map i: α -→ rα is a bijection i: Φ+ → T and iN̄(w) = N(w) (w ∈ W ).

(b) (W, R) is a Coxeter system and if α, β ∈ Π, α += β,

ord(rαrβ) =






m ((α | β) = − cos π
m (m ∈ IN, m ≥ 2))

∞ ((α | β) ≤ −1)

(c) If wrαw−1 = rβ (w ∈ W, α, β ∈ Φ) then w(α) ∈ {β,−β}.

Proof (i) Suppose α, β ∈ Π (α += β) and let r = rα, s = rβ . In (2.1), take
γ = −(α | β), A = IR, q

1
2 = X = 1. Then A and B are the matrices representing

the action of r and s (respectively) on the 〈r, s〉-invariant subspace IRα + IRβ
(with respect to the ordered basis α, β). By (2.1.1) and (2.1.2), the condition
that 〈r, s〉α ∪〈r, s〉β ⊆ Φ+∪Φ− is that pnpn+1 ≥ 0 for all n ∈ IN, so (a) implies
(b) by Lemma (2.2) (i). The implication (b) =⇒ (a) follows by a standard
argument (cf. (2.6.3)).

(ii) All these facts follow from (i) (a) as in [Ste], [De2]. We recall the argument
here. First, W is a group of isometries of V ; hence ‖wα‖2 = ‖α‖2 for any
α ∈ V, w ∈ W , and if α is non-isotropic, wrαw−1 = rw(α). This shows that
‖α‖2 = 1 and rα ∈ T for all α ∈ Φ. If α, β ∈ Φ and rα = rβ , then α = kβ
for some k ∈ IR, and we must have k ∈ {1,−1} since ‖α‖2 = ‖β‖2 = 1. These
remarks prove (c), and that i: Φ+ −→ T is a bijection. Now (i) (a) implies
that for α ∈ Π, rα(Φ+ \ {α}) = Φ+ \ {α}. From this, one may check that
iN̄ : W −→ P(T ) satisfies (1.1.1) and (1.1.2), hence by (1.2) and (1.3), (W, R) is
a Coxeter system and iN̄ = N . The claim about ord(rαrβ) follows from (2.2)
(iv) (cf. (2.7)).

When the conditions (a) and (b) (i) hold, we will say that we have a geometric
realisation of (W, R) on V with simple roots Π. As usual, Φ will be called

23



the root system and the elements of Φ+(Φ−) are called positive (respectively,
negative) roots.

2.5 We now describe certain “generic” root systems corresponding to the root
systems in (2.4). Every root will turn out to be either positive or negative,
the positive roots being linear combinations of simple roots, the coefficients
themselves all being Laurent polynomials with non-negative coefficients.

Let (W, R) be a Coxeter system with Coxeter matrix (mr,s)r,s∈R (thus, mr,s =
ord(rs) ∈ IN ∪ {∞}). In (2.6)–(2.10) (ar,s)r,s∈R denotes a fixed real (R × R)
symmetric matrix satisfying

(i) ar,r = 2 (r ∈ R)

(ii) ar,s = −2 cos π
mr,s

(mr,s += ∞ r, s ∈ R, r += s)

(iii) ar,s ≤ −2 (mr,s = ∞, r, s ∈ R)
and n: { (r, s) ∈ R × R | r += s } −→ {1,−1} is a fixed function satisfying
n(r, s) = −n(s, r) (r, s ∈ R, r += s).

2.6 Let Xr,s (r, s ∈ R, r += s) and q
1
2 be indeterminates such that Xr,s =

Xs,r (r, s ∈ R, r += s), A = IR[q±1/2, X±1
r,s ] be the algebra of Laurent polynomi-

als in q1/2 and the Xr,s, and K be the quotient field of A. Let V be a K space
on basis {er}r∈R.

For r ∈ R, define Xr ∈ EndK (V ) by

{
Xr(er) = −er

Xr(es) = qes − ar,sq1/2Xn(r,s)
r,s er (s ∈ R, s += r)

It is well-known that there is a representation ρ:H −→ EndK(V ) of the Hecke
algebra H = Hq,K(W ) such that ρ(Tr) = Xr ; for finite W , this is esssentially
the “reflection representation” defined in [CIK]. To check that ρ exists here,
note firstly that X2

r = (q − 1)Xr + qId. One also needs to see that

(2.6.1)

m︷ ︸︸ ︷
(. . .XsXrXs) et =

m︷ ︸︸ ︷
(. . .XrXsXr) et

when m = mr,s is finite (r, s, t ∈ R, r += s). Now taking γ = −ar,s/2 and
X = Xn(r,s)

r,s in (2.1), one sees that A and B are the matrices representing the
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action of Xr and Xs on the subspace spanned by the basis vectors er and es,
so (2.6.1) follows from (2.2) (iii) if t ∈ {r, s}. If t /∈ {r, s}, then one may choose
k, l ∈ K such that Xr(et + ker + les) = Xs(et + ker + les) = q(et + ker + les)
(since the matrix




1 + q q1/2ar,sX

n(r,s)
r,s

q1/2ar,sX
−n(r,s)
r,s 1 + q





is non-singular) and (2.6.1) follows since both sides are equal to qm(et + ker +

les) −
m︷ ︸︸ ︷

(. . .XsXrXs)(ker + les).

Let A+ = IR+[q±1/2, X±1
r,s ] be the set of Laurent polynomials with non-negative

coefficients. Let r, s ∈ R with r += s. Interpreting the matrices A and B as
above, (2.1.1) (2.1.2) and (2.2) (ii), (iii) show that

(2.6.2) ρ

k︷ ︸︸ ︷
(. . . TsTrTs) er ∈ A+er + A+es (0 ≤ k < mr,s).

We now have

(2.6.3) If w ∈ W, r ∈ R and !(wr) > !(w), then ρ(Tw)er ∈
∑
t∈R

A+et.

This may be proved by the following standard argument ([De2]). The result
holds if w = 1, so suppose w += 1 and argue by induction on !(w). Choose
s ∈ R so that !(ws) < !(w); note s += r. Use (1.14.1) to write w = w′w′′ where
w′′ ∈ 〈r, s〉 and !(w′r) = !(w′s) = !(w) + 1. By (1.14.2), !(w) = !(w′) + !(w′′).

Now w′′ =

k︷ ︸︸ ︷
(. . . srs) where 1 ≤ k < mr,s (since !(wr) > !(w)). By (2.6.2),

ρ(Tw′′)er ∈ A+er + A+es, and by induction, ρ(Tw′)er, ρ(Tw′′)er are both in∑
t∈R

A+et. Therefore ρ(Tw)er = ρ(Tw′)ρ(Tw′′)er ∈
∑
t∈R

A+et as claimed.

2.7 Let Xr,s (r, s ∈ R, r += s) be indeterminates as in (2.6), R = IR[X±1
r,s ], L

be the quotient field of R and E be an L-vector space on a basis {er}r∈R = Π.
Define elements e∨r ∈ E∗ (r ∈ R) of the dual E∗ of E by 〈er, e∨r 〉 = 2 and

〈es, e
∨
r 〉 = ar,sX

n(r,s)
r,s (s ∈ R, s += r).
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By specialising the reflection representation ρ of (2.6) to q = 1, one sees that
there is a W -action on E such that

(2.7.1) r(h) = h − 〈h, e∨r 〉er (r ∈ R, h ∈ E).

The contragredient representation of W on E∗ is given by

(2.7.2) r(h∨) = h∨ − 〈er, h∨〉e∨r (r ∈ R, h∨ ∈ E∗).

Let R+ = IR+[X±1
r,s ] be the set of Laurent polynomials in R with non-negative

coefficients, Φ = WΠ and Φ+ = {
∑

α∈Π
mαα ∈ Φ | mα ∈ R+ for all α ∈

Π }, Φ− = −Φ+. By specialising (2.6.3) to q = 1, it follows that

(2.7.3) Φ = Φ+ ∪ Φ−.

The following result is an analogue of (2.4) (c).

2.8 Lemma. If w, w′ ∈ W and r, r′ ∈ R satisfy wrw−1 = w′r′w′−1, then
w(er) = kw′(er′) where ±k ∈ 〈X±1

r,s 〉 (the subgroup of the group of units of R
generated by the Xr,s).

Proof There is no loss of generality in assuming that w′ = 1. Let E′ be the
R-span in E of the elements of Π; thus, E′ is a free R-module with R-basis Π,
and E′ is W -invariant. Write w(er) =

∑
s∈R

pses (ps ∈ R, s ∈ R), and note that

each ps ∈ ±R+.

Regard IR as an R-module by means of the IR-algebra homomorphism f :R −→
IR with f(Xr′′,s′′) = 1 (r′′, s′′ ∈ R). Now the induced W -action on E′ ⊗R IR,
given by w · v = (w ⊗ 1) (v) (v ∈ E′ ⊗R IR) is a geometric realisation of (W, R)
with simple roots et ⊗ 1 (t ∈ R). Since wrw−1 = r′, it follows from (2.4) (c)
that w · (er ⊗ 1) = ±(er′ ⊗ 1). But w · (er ⊗ 1) =

∑
s∈R

f(ps) (es ⊗ 1). Since

±ps ∈ R+, we have f(ps) = 0 iff ps = 0. Hence ps = 0 unless s = r′. This
proves that w(er) = ker′ where k ∈ R and f(k) ∈ {1,−1}. Similarly, one has
w−1(er′) = k′er for some k′ ∈ R. Now one sees that er = w−1w(er) = k′ker so
k is actually a unit. Since also f(k) ∈ {1,−1}, it follows that ±k ∈ 〈Xr,s〉 as
claimed.
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Lemma 2.8 shows that for each t ∈ T , there is a corresponding element of Φ+,
well defined up to multiplication by monomials in the X±1

r,s .

As well as the root system Φ, one has a dual root system Φ∨ = WΠ∨ in E∗,
where Π∨ = {e∨r }r∈R.

The next proposition implies that the element of R obtained by pairing a root
with a dual root is either in R+, or in −R+.

2.9 Proposition. Suppose w ∈ W, r, s ∈ R and !(wr) > !(w). Write
wrw−1 = t. Then exactly one of (i)–(iv) below holds

(i) t = s

(ii) st = ts, !(st) = !(t) + 1 and 〈w(er), e∨s 〉 = 0

(iii) !(sts) = !(t) + 2 and −〈w(er), e∨s 〉 ∈ R+ \ {0}

(iv) !(sts) = !(t) − 2 and 〈w(er), e∨s 〉 ∈ R+ \ {0}.

Proof The possibilities (i)–(iv) are clearly mutually exclusive. Note that to prove
the result, it suffices to prove that the same holds with (w, r) replaced by any
other pair (w′, r′) ∈ W × R with w′r′w′−1 = t and !(w′r′) > !(w′) (for then
w′(er′) = kw(er) for some k ∈ 〈X±1

r,s 〉, by (2.8)).

Suppose that (i) does not hold, but that st = ts. Then !(st) > !(t), else we would
have !(sts) = !(t) − 2 by Lemma (1.4). Now by (2.8) w(er) − 〈w(er), e∨s 〉es =
sw(er) = kw(er) for some k ∈ 〈±X±1

r,s 〉. Write w(er) =
∑

r′∈R′
αr′er′ . Now if

k += 1, it follows that αr′ = 0 for r′ += s. Hence w(er) = αses. Specialising to the
geometric realisation as in the proof of (2.8), we have w(er ⊗1) = f(αs)(es⊗1),
hence wrw−1 = s contrary to the assumption that t += s. Hence k = 1 and so
〈w(er), e∨s 〉 = 0 as required for (ii).

Now assume !(sts) = !(t) + 2. First we prove that (iii) holds in the special case
when there exist r′, s′ ∈ R such that r, w, s,∈ 〈r′, s′〉. Let m = mr′,s′ .

In (2.1), take A = R, q1/2 = 1, γ = −ar′,s′/2 and X = Xn(r′,s′)
r′,s′ . Then for

n ∈ IN
s′(r′s′)ne′r = p2n+1er′ + p2n+2X

−1es′

(r′s′)ner′ = p2n+1er′ + p2nX−1es′
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Since 〈er′ , e∨s′〉 = −2γX−1, 〈es′ , e∨r′〉 = −2γX we have

(2.9.1)

{
〈s′(r′s′)ner′ , e∨r′〉 = 2p2n+1 − 2γp2n+2 = p2n+1 − p2n+3

〈(r′s′)ner′ , e∨s′〉 = −2γX−1p2n+1 + 2p2nX−1 = X−1(p2n − p2n+2)

Now we are assuming that r, w, s,∈ 〈r′, s′〉 and that !(wr) > !(w), !(sts) =
!(t) + 2 where t = wrw−1. By the remark at the beginning of the proof and
symmetry we only need consider the cases

w = s′(r′s′)n, r = r′, s = r′ (5 ≤ (4n + 3) + 2 ≤ m)
w = (r′s′)n, r = r′, s = s′ (3 ≤ (4n + 1) + 2 ≤ m)

and the result is true in these cases by (2.9.1) and (2.2) (ii), (iii).

Now we may deal with the general case of (iii); We proceed by induction on
!(t). Let !(t) = 2k + 1, and choose s′ ∈ R with !(s′t) < !(t). Write t = xy
with x ∈ 〈s′, s〉 (note s += s′) and !(sy) = !(s′y) = !(y) + 1 (using 1.14.1). Now
make use of Lemma (1.4). If !(x) ≥ k + 1, we have t ∈ 〈s′, s〉 and the remark at
the beginning reduces us to the special case considered earlier. Hence we may
assume !(x) ≤ k, and write y = y′x−1 where !(y) = !(y′) + !(x) (still using
(1.4)). Write y′ = zr′z−1 (z ∈ W , r′ ∈ R, !(y′) = 2!(z) + 1). By the remark at
the beginning, it will suffice to prove that

−〈xz(er′), e∨s 〉 ∈ R+ \ {0}

or, equivalently, −〈z(er′ ), x−1(e∨s )〉 ∈ R+ \ {0} (since it is the case that t =
xy′x−1 = xzr′(xz)−1 and !(t) = 2!(xz) + 1).

Now since !(sts) = !(t) + 2, we must have x−1 =

p︷ ︸︸ ︷
(. . . s′ss′) where 1 ≤ p <

m (m = ms,s′). Also, !(sy′) = !(s′y′) = !(y′) + 1; hence !(sy′s) ≥ !(y′) and
!(s′y′s′) ≥ !(y′), at least one of these two inequalities being strict because
!(xy′x−1) = 2!(x)+ !(y′). Moreover, if !(x) = p = m− 1, then sx is the longest
element of 〈s, s′〉 and so both of these inequalities above are strict.

Now in (2.1) let A = R, q1/2 = 1, X = Xn(s′,s)
s,s′ , γ = −as,s′/2. We have

s′e∨s = e∨s − as,s′X−1e∨s′ s′e∨s′ = −e∨s′

se∨s′ = e∨s′ − as,s′Xe∨s se∨s = −e∨s

28



and so by (2.1.1), (2.1.2), for n ∈ IN

(2.9.2)

{
s′(ss′)ne∨s = p2n+1e

∨
s + p2n+2X

−1e∨s′

(ss)ne∨s = p2n+1e
∨
s + p2nX−1e∨s′

even though e∨s and e∨s′ may be linearly dependent.

Now we consider two cases.

Case 1. p + 1 < m.

In this case, (2.9.2) and (2.2) (ii), (iii) show that x−1e∨s ∈ (R+ \ {0})e∨s +(R+ \
{0})e∨s′ . By (iii) and the inductive assumption, we have that

−〈z(er′), e∨s )〉 and − 〈z(er′), e∨s′〉

are both in R+, and at least one is non-zero. Hence −〈z(er′), x−1(e∨s )〉 ∈ R+ \
{0} as required

Case 2. p + 1 = m

Here (2.9.2) and (2.2) (iii) give x−1e∨s ∈ (R+ \ {0})e∨s ∪ (R+ \ {0})e∨s′ (de-
pending on the parity of m). By the inductive assumption, we have that both
−〈z(er′), e∨s 〉 and −〈z(er′ ), e∨s′〉 are in R+ \ {0} so −〈xz(er′), e∨s′〉 ∈ R+ \ {0}
here also.

Finally, consider the case (iv) !(sts) = !(t)− 2. In this case, applying (iii) with
t replaced by sts gives −〈sw(er), e∨s 〉 ∈ R+ \ {0} i.e. 〈w(er), e∨s 〉 ∈ R+ \ {0}.
(One must note that !(sw) < !(swr) but since !(wr) < !(w), if this failed it
would follow that sw = wr and s = t, contrary to assumption).

We conclude this chapter with some observations about the specialisations of
the representation given by (2.7.1).

2.10 Let E′ be the R-submodule of E spanned by Π; thus, Π is an R-basis
of E′. Let xr,s (r, s ∈ R, r += s) be any family of elements of IR+ \ {0} with
xr,s = xs,r and let g:R −→ IR be the IR-algebra homomorphism with g(Xr,s) =
xr,s (r, s ∈ R, r += s). Then E′ ⊗g IR is a faithful W-module with action given
by w.(v) = (w ⊗ 1)v (w ∈ W, v ∈ E′ ⊗g IR).
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For suppose (w⊗1)v = v for all v ∈ E′⊗g IR. Write w(er) =
∑
s∈R

βr,ses and note

that ±βr,s ∈ R+. Then er ⊗ 1 = (w ⊗ 1)(er ⊗ 1) =
∑
s∈R

g(βr,s)(es ⊗ 1). Since

the xr,s are positive, it follows that βr,s = 0 for s += r and βr,r ∈ R+. Now
specialise to the geometric realisation of W via the homomorphism f :R −→ IR
considered in the proof of (2.8). We now have (w ⊗ 1)(er ⊗ 1) = f(βr,r)(er ⊗ 1)
where f(βr,r) ∈ IR+. Hence w keeps all the simple roots, and hence all the
positive roots, positive and so w = 1. Hence E′ ⊗g IR is a faithful W-module.

Suppose now that g′:R −→ IR is another homomorphism with g′(Xr,s) = yr,s ∈
IR+ \ {0}. If θ: E′ ⊗g IR −→ E′ ⊗g′ IR were an isomorphism of W -modules, we
would necessarily have θ(er ⊗g 1) ∈ IR(er ⊗g′ 1); this is because, for any r ∈ IR,
E′ ⊗g IR is the direct sum of the 1-eigenspace of r and the (−1)-eigenspace, the
latter having (er ⊗g 1) as the basis, and θ would preserve this decomposition.
Now assume that R is finite.

Let X denote the matrix with entries Xr,r = 2 (r ∈ R); Xr,s = ar,sx
n(r,s)
r,s (r, s

∈ R, r += s) and let Y be defined similarly using yr,s in place of xr,s. The above
comments imply that E′⊗g IR and E′⊗g′ IR are isomorphic W -modules iff there
exists an invertible diagonal matrix Λ such that ΛXΛ−1 = Y .

Thus, if the Coxeter graph of (W, R) is a forest (i.e. all its connected components
are trees) all these specialisations are isomorphic, but if the Coxeter graph
contains a cycle there are uncountably many non-isomorphic specialisations.
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Chapter 3

CANONICAL GENERATORS OF REFLECTION SUBGROUPS

In Chapter 1 it was shown that every reflection subgroup of a Coxeter system
has a canonical set of Coxeter generators. In this chapter, our main result is a
criterion for a set of reflections to be the canonical Coxeter generators of the
reflection subgroup they generate. The condition is that the inner products
of distinct elements of the corresponding set of positive roots (in a geometric
realisation of the Coxeter system) should all lie in the set {− cos π

m | m ∈
IN, m ≥ 2 } ∪ (−∞,−1].

As an application of this criterion, we describe the canonical generators of re-
flection subgroups of Weyl groups of type A, B and D. Another application is
given in Chapter 4.

We begin by fixing some notation, and then translate some of the results from
Chapter 1 into the language of root systems.

3.1 Let (W, R) be a Coxeter system. We may assume that W is a group of
isometries of a vector space V as in (2.3), and that R is the set of reflections
determined by a set Π of simple roots satisfying the condition (b) of Lemma
(2.4) (i). We adopt without change all the notation and terminology of (2.3)
and (2.4), and also use the following notation for a reflection subgroup W ′ of
W .

The set of canonical generators of W ′ will be denoted by S(W ′) as in Chapter
1. Recall that

(3.1.1) S(W ′) = { t ∈ T | N(t) ∩ W ′ = {t}}

The corresponding set of positive roots is denoted ∆(W ′). Thus,

(3.1.2) ∆(W ′) = i−1S(W ′) = {α ∈ Φ+ | rα ∈ S(W ′) }.
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We also set

(3.1.3) Φ(W ′) = {α ∈ Φ | rα ∈ W ′}

(3.1.4) Φ+(W ′) = Φ(W ′) ∩ Φ+, Φ−(W ′) = Φ(W ′) ∩ Φ− = −Φ+(W ′) and let
!W ′ : W ′ -−→ IN denote the length function of (W ′, S(W ′)).

By Lemma (2.4) (ii) (a),

(3.1.5) ∆(W ′) = {α ∈ Φ+ | N̄(rα) ∩ Φ(W ′) = {α} }.

In our present notation, theorem (1.8) gives the following three facts:

(3.1.6) (W ′, S(W ′)) is a Coxeter system

(3.1.7) Φ(W ′) = W ′∆(W ′)

(3.1.8) N̄(w) ∩ Φ(W ′) = {α ∈ Φ+(W ′) | !W ′(wrα) < !W ′(w) } (w ∈ W ′)

We will also need

(3.1.9) if α ∈ Π and rα /∈ W ′, then ∆(rαW ′rα) = rα∆(W ′).

This follows from Lemma (1.7) (i), noting that rα∆(W ′) ⊆ Φ+ since α /∈ ∆(W ′).

In (3.2)–(3.4), W ′ denotes a fixed reflection subgroup of W and we write !′ for
!W ′ . The following two lemmas are directed toward the computation of the
inner products (α | β) (α, β ∈ ∆(W ′)) in (3.4).

3.2 Lemma. Let α, β ∈ ∆(W ′) with α += β and ord(rαrβ) = n. Then for

0 ≤ m < n,

m︷ ︸︸ ︷
(. . . rβrαrβ) α ∈ Φ+ and

m︷ ︸︸ ︷
(. . . rαrβrα) β ∈ Φ+.

Proof Note that we have {rα, rβ} ⊆ S(W ′) and that !′ is the length function of
(W ′, S(W ′)). Therefore, for 0 ≤ m < n,

!′(

m︷ ︸︸ ︷
(. . . rβrαrβ) rα) = m + 1 > m = !′

m︷ ︸︸ ︷
(. . . rβrαrβ) .

Write

m︷ ︸︸ ︷
(. . . rβrαrβ) = w. Then α /∈ { γ ∈ Φ+(W ′) | !′(wrγ) < !′(w) }. By (3.1.8),

α /∈ N̄(w) ∩ Φ(W ′). But α ∈ ∆(W ′) ⊆ Φ+(W ′), so α /∈ N̄(w). Since α ∈ Φ+,
we have w(α) ∈ Φ+ by definition of N̄ . The other fact is proved similarly.
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3.3 Lemma. Let α, β ∈ ∆(W ′) with α += β and ord(rαrβ) = n. Write

m︷ ︸︸ ︷
(. . . rβrαrβ)α = cmα + dmβ

m︷ ︸︸ ︷
(. . . rαrβrα) β = c′mα + d′

mβ (0 ≤ m < n)

Then dm ≥ 0, d′
m ≥ 0, cm ≥ 0, c′m ≥ 0 for 0 ≤ m < n.

Proof By symmetry, it will suffice to prove that dm ≥ 0, d′
m ≥ 0. The proof of

this will be by induction on !(rα).

Suppose first that !(rα) = 1. Then α ∈ Π. Write β =
∑

γ∈Π
aγγ where aγ ∈

IR (γ ∈ Π). Since β ∈ ∆(W ′) ⊆ Φ+, we have aγ ≥ 0 for all γ ∈ Π. In fact,
aγ0 > 0 for some γ0 ∈ Π\{α}, since otherwise we would have β ∈ IRα and so
β = α (because ‖β‖2 = ‖α‖2 = 1 and α, β ∈ Φ+).

Now for 0 ≤ m < n, Lemma (3.2) gives

m︷ ︸︸ ︷
(. . . rβrαrβ) α = cmα+

∑
γ∈Π

dmaγγ ∈ Φ+.

The coefficient of γ0 in this is dmaγ0 ≥ 0. Since aγ0 > 0, it follows that dm ≥ 0.
Similarly, d′

m ≥ 0.

Suppose inductively now that the result is true for reflection subgroups W ′′ of
W and α′, β′ ∈ ∆(W ′′) with α′ += β′ and !(rα′) < !(rα) where !(rα) ≥ 3. By
(1.5), there exists s ∈ R with !(srαs) = !(rα) − 2. Then !(rαs) < !(rα), so
s ∈ N(rα). But since α ∈ ∆(W ′), N(rα)∩W ′ = {rα}. Since s += rα, this shows
that s /∈ W ′. Let W ′′ = sW ′s. By (3.1.9), it follows that ∆(W ′′) = s∆(W ′)
and therefore sα, sβ ∈ ∆(W ′′).

Now rsα = srαs, rsβ = srβs and hence ord(rsαrsβ) = ord(rαrβ) = n. Since
!(rsα) = !(srαs) = !(rα) − 2, the inductive assumption gives

m︷ ︸︸ ︷
(. . . rsβrsαrsβ)(sα) = cm(sα) + dm(sβ)

m︷ ︸︸ ︷
(. . . rsαrsβrsα)(sβ) = c′m(sα) + d′

m(sβ)

where dm, d′
m ≥ 0 for 0 ≤ m < n. Since rsβ = srβs and rsα = srαs, the result

follows on applying s to both sides of these equations.
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The following result is the first half of our criterion for a set of reflections to be
the set of canonical generators of some reflection subgroup.

3.4 Corollary. For any α, β ∈ ∆(W ′) with α += β, let nα,β = ord(rαrβ).
Then {

(α | β) = − cos π
nα,β

(nα,β ∈ {2, 3, 4, . . .})
(α | β) ≤ −1 (nα,β = ∞)

Proof Let Ψ = 〈rα, rβ〉Π′ where Π′ = {α, β}, and set Ψ+ = {cα + dβ ∈ Ψ |

c ≥ 0, d ≥ 0 }. Now the elements of Ψ are ±
m︷ ︸︸ ︷

(. . . rαrβrα)β, ±
m︷ ︸︸ ︷

(. . . rβrαrβ)α
(0 ≤ m < nα,β). By Lemma (3.3), Ψ = Ψ+ ∪ −Ψ+. The conclusion of the
corollary therefore holds by Lemma (2.4) (i), (ii) (b).

In (3.5)–(3.7), Γ denotes a fixed subset of Φ+ such that (α | β) ∈ (−∞,−1] ∪
{− cos π

n | n ∈ IN, n ≥ 2 } for all α, β ∈ Γ with α += β, and W ′ = 〈rα | α ∈ Γ〉
denotes the reflection subgroup generated by the reflections in the elements of
Γ. The following sections will show that Γ = ∆(W ′).

3.5 Let Γ′ be a subset of Γ.

Let U be a vector space over IR on a basis Π′ = {eα}α∈Γ′ and define a symmetric
bilinear form (· | ·) on U by setting (eα | eβ) = (α | β) (α, β ∈ Γ′). Note that
‖eα‖2 = ‖α‖2 = 1 for all α ∈ Γ′.

For non-isotropic u ∈ U , let su: U −→ U denote the corresponding reflection,
defined by

su(v) = v − 2[(v | u)/(u | u)]u (v ∈ U).

Let R′ = { su | u ∈ Π′ }, W ′′ = 〈R′〉, Ψ = W ′′Π′, Ψ+ = {
∑

α∈Γ′
cαeα ∈ Ψ | cα ≥

0 for all α ∈ Γ′ }, and Ψ− = −Ψ+. Since Π′ satisfies the condition (b) of Lemma
(2.4) (i), it follows that (W ′′, R′) is a Coxeter system realised geometrically on
U with Π′ as its set of simple roots, and Ψ+ is the corresponding set of positive
roots.
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Note that, by (2.4) (ii) (b), for α, β ∈ Γ′ with α += β we have

ord (seαseβ ) =
{

n (eα | eβ) = − cos π
n (n ∈ IN, n ≥ 2)

∞ (eα | eβ) ≤ −1

=
{

n (α | β) = − cos π
n (n ∈ IN, n ≥ 2)

∞ (α | β) ≤ −1
= ord (rαrβ).

Since (W ′′, R′) is a Coxeter system, this implies that there exists a homomor-
phism θ: W ′′ −→ W ′ such that θ(seα) = rα (α ∈ Γ′).

Let L: U −→ V be the IR-linear map such that L(eα) = α (α ∈ Γ′). We now
claim that

(3.5.1) L(w′′u) = θ(w′′)L(u) (w′′ ∈ W ′′, u ∈ U).

To prove (3.5.1), first notice that if α, β ∈ Γ′, then

L(seα(eβ)) = L(eβ − 2(eβ | eα)eα)
= β − 2(β | α)α since (eβ | eα) = (β | α)
= rα(β)
= θ(seα)L(eβ).

By linearity, this gives L(seα(u)) = θ(seα)L(u) (α ∈ Γ′, u ∈ U). Since W ′′ =
〈seα | α ∈ Γ′〉 and θ is a homomorphism, the claim (3.5.1) follows by induction
on the length of w′′ in (W ′′, R′).

We will need to apply the results in (3.5) twice. The first application is to the
proof of

3.6 Lemma. With the above notation, ∆(W ′) ⊆ Γ.

Proof Take Γ′ = Γ in (3.5). Since θ(R′) = { rα | α ∈ Γ′ } and W ′ = 〈rα | α ∈ Γ′〉,
it follows that θ is a surjective.

Let γ ∈ ∆(W ′). Choose x ∈ W ′′ with θ(x) = rγ ∈ W ′. Let seα1
. . . seαn

(αi ∈
Γ′) be a reduced expression for x in (W ′′, R′). Note n ≥ 1. Now !′′(xseαn

) <
!′′(x), where !′′ is the length function on (W ′′, R′). Applying (2.4) (i) (a) to
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the geometric realisation of (W ′′, R′) on U , we have x(eαn) ∈ Ψ−, say x(eαn) =
−
∑

α∈Γ′
cαeα where cα ≥ 0 for all α ∈ Γ′. Hence

rγ(αn) = θ(x)L(eαn) = L(xeαn) by (3.5.1)

= L

(
−
∑

α∈Γ′

cαeα

)

= −
∑

α∈Γ′

cαα.

But rγ(αn) ∈ Φ and each α ∈ Γ′ is a non-negative linear combination of elements
of Π, so rγ(αn) ∈ Φ−. Since αn ∈ Γ′ ⊆ Φ+(W ′), it follows that αn ∈ N̄(rγ) ∩
Φ(W ′), and so by (3.1.5), γ = αn ∈ Γ′ = Γ. Since γ ∈ ∆(W ′) was arbitrary,
∆(W ′) ⊆ Γ as wanted.

We are now able to complete the proof of

3.7 Proposition. Let Γ ⊆ Φ+ be such that

(3.7.1) (α | β) ∈ (−∞,−1] ∪ {− cos π
n | n ∈ IN, n ≥ 2 } for all α, β ∈ Γ with

α += β, and let W ′ = 〈rα | α ∈ Γ〉. Then Γ = ∆(W ′).

Proof Take Γ′ = ∆(W ′) in (3.5); this is possible by (3.6). Since (W ′, S(W ′)) is
a Coxeter system, we know that θ: (W ′′, R′) −→ (W ′, S(W ′)) is an isomorphism
of Coxeter systems. In particular,

(3.7.2) !′(θ(w′′)) = !′′(w′′) (w′′ ∈ W ′′) where !′′ is the length function of
(W ′′, R′).

Let γ ∈ Γ. Then rγ ∈ W ′ ∩ T ; by Theorem (1.8), there exist αp, . . . , α0 ∈
∆(W ′) such that rα = rαp . . . rα1rα0rα1 . . . rαp . Since rαp . . . rα1rα0rα1 . . . rαp =
rαp . . . rα1rα0rα0rα0rα1 . . . rαp , there is no loss of generality in assuming that
!′(rαp . . . rα1rα0) > !′(rαp . . . , rα1). By (3.7.2), this gives !′′(seαp

. . . seα1
seα0

) >

!′′(seαp
. . . seα1

) and so by (2.4) (ii) (a), β = seαp
. . . seα1

(eα0) ∈ Ψ+. Write
β =

∑
δ∈Γ′

aδeδ where aδ ≥ 0 for all δ ∈ Γ′. We now have L(β) = rαp . . . rα1(α0) =
∑

δ∈Γ′
aδδ ∈ Φ+, since Γ′ ⊆ Φ+ and L(β) ∈ Φ. Write β′ = L(β). Then rβ′ =
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rαp . . . rα1rα0rα1 . . . rαp = rγ . Since γ, β′ ∈ Φ+ and rγ = rβ′ , it follows that
γ = β′ =

∑
δ∈Γ′

aδδ.

Now suppose that γ /∈ ∆(W ′). Then by (3.7.1), (γ | δ) ≤ 0 for all δ ∈ Γ′ =
∆(W ′), and so

1 = (γ | γ) =
∑

δ∈Γ′

aδ(δ | γ) ≤ 0.

This contradiction shows that the assumption γ /∈ ∆(W ′) is false. Hence if
γ ∈ Γ, then γ ∈ ∆(W ′) i.e. Γ ⊆ ∆(W ′). The reverse inclusion is true by (3.6),
so the proposition has been proved.

3.8 We now combine (3.4) and (3.7) to characterise the sets of reflections
which arise as canonical generators of reflection subgroups. It is desirable to
formulate the result so that it applies directly to classical root systems, so we
now allow roots to have different lengths.

Specifically, let V be a real vector space equipped with a symmetric bilinear
form (· | ·) and Π be a linearly independent set of non-isotropic vectors of
V . For non-isotropic α ∈ V , let rα denote the corresponding reflection. Set
R = { rα | α ∈ Π }, W = 〈R〉, Φ = WΠ and Φ+ = {

∑
α∈Π

cαα ∈ Φ | cα ≥ 0

for all α ∈ Π }. We make the following assumptions (cf. [Ste]) concerning this
situation:

(i) (α | α) > 0 for all α ∈ Π (and hence for all α ∈ Φ)

(ii) If α ∈ Φ and k ∈ IR, then kα ∈ Φ iff k ∈ {1,−1}

(iii) Φ = Φ+ ∪ (−Φ+).

For α ∈ Φ, write ‖α‖ = (α | α) 1
2 .

Then (W, R) is a Coxeter system which is realised geometrically on V , with
Π′ = { ‖α‖−1α | α ∈ Π } as the set of simple roots; for R = { rβ | β ∈ Π′ }
and Φ′ = WΠ′ = { ‖α‖−1wα | w ∈ W, α ∈ Π } = { ‖α‖−1α | α ∈ Φ }, so every
element of WΠ′ is a combination of elements of Π′ with coefficients all of the
same sign, whence the result by (2.4) (i). The corresponding set of positive
roots is Φ′+ = { ‖α‖−1α | α ∈ Φ+ }. By (3.4) and (3.7), we have
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3.9 Theorem. Let Γ be a subset of Φ+. Then {rα | α ∈ Γ } is the canonical
set of generators S(W ′) of some reflection subgroup W ′ of the Coxeter system
(W, R) iff

(3.9.1) (α|β)
‖α‖ ‖β‖ ∈ {− cos π

n | n ∈ IN, n ≥ 2 } ∪ (−∞,−1] for all α, β ∈ Γ with
α += β. (Of course, if these conditions hold then W ′ = 〈rα | α ∈ Γ〉).

Note that condition (iii) of (3.8) is equivalent to the validity of (3.9.1) with
Γ = Π (by (2.4) (i) and the discussion in (3.8)).

3.10 Corollary. Let (W, R) be a Coxeter system, T =
⋃

w∈W
wRw−1 its set of

reflections, and N(w) = { t ∈ T | !(wt) < !(w) } (w ∈ W ). Then for any subset
T ′ of T , (i) and (ii) below are equivalent:

(i) N(t) ∩ 〈T ′〉 = {t} for all t ∈ T ′

(ii) N(t) ∩ 〈t′, t〉 = {t} for all t, t′ ∈ T ′.

Proof There is no loss of generality in assuming that (W, R) is a group of isome-
tries of a real vector space V as in (3.1); we also use the rest of the notation
there. Now (i) obviously implies (ii). Assume that condition (ii) holds, and let
Γ = i−1T ′ = {α ∈ Φ+ | rα ∈ T ′ }, W ′ = 〈T ′〉 = 〈rα | α ∈ Γ〉. Let α, β ∈ Γ
with α += β. Then N(rα) ∩ 〈rα, rβ〉 = {rα} and N(rβ) ∩ 〈rα, rβ〉 = {rβ}, so
{rα, rβ} = S(〈rα, rβ〉). By (3.9), (α|β)

‖α‖ ‖β‖ ∈ (−∞,−1]∪{− cos π
n | n ∈ IN, n ≥ 2 }.

It now follows by (3.9) applied to Γ that T ′ = S(W ′), and (i) holds by definition
of S(W ′).

It would be interesting to have a direct proof of (3.10) from the definition of a
Coxeter system, in the style of the arguments of Chapter 1.

In (3.15) we will describe a procedure for calculating the set of canonical gener-
ators of a (finitely generated) reflection subgroup of a Coxeter system (W, R).
As a preliminary, we investigate the canonical generators of a dihedral reflection
subgroup.
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In (3.11)–(3.13), (W, R) denotes a Coxeter system realised geometrically as a
group of isometries of a real vector space V as in (3.1), with simple roots Π and
positive roots Φ+.

3.11 Lemma. Let α, β ∈ Φ+ with α += β. Then

ord (rαrβ) =
{

n (α | β) = − cos kπ
n (k, n ∈ IN, 0 < k < n, gcd (n, k) = 1)

∞ otherwise

Proof This follows from (2.2) (iv) on noting that if −1 < (α | β) < 1, then the
restriction of (· | ·) to U = IRα + IRβ is positive definite, so V is the direct sum
of U and the orthogonal complement of U .

3.12 Remark. For any α, β ∈ Φ,

(α | β) ∈ (−∞,−1] ∪ { cos
kπ

n
| k, n ∈ IN n += 0 } ∪ [1,∞)

(by considering the canonical generators of 〈rα, rβ〉, this reduces to checking the
claim for the geometric realisations of a dihedral group).

Our next result explicitly describes the canonical generators of a dihedral re-
flection subgroup containing a simple reflection of (W, R).

3.13 Lemma. Let α ∈ Π and β ∈ Φ+, with α += β. Let W ′ = 〈rα, rβ〉.

(i) If rαrβ has infinite order, then

S(W ′) =
{ {rα, rβ} (rα +∈ N(rβ))
{rα, rαrβrα} (rα ∈ N(rβ)).

(ii) Suppose (α | β) = − cos kπ
n (k, n ∈ IN, 0 < k < n, gcd (n, k) = 1). For

p ∈ IN, p ≥ 1 set tp = s1 . . . sp−1spsp−1 . . . s1 where

sp =
{

rβ (p odd)
rα (p even).
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Choose m1, m2 ∈ IN satisfying m1k ≡ 1 (mod n), m2k ≡ −1 (mod n). Then

S(W ′) =






{rα, rβ} (n = 2)
{rα, tm2} (n += 2, rα ∈ N(tm1))
{rα, tm1} (n += 2, rα +∈ N(tm1)).

Proof Note that by (1.16), #S(W ′) = 2. Also, rα ∈ S(W ′).

(i) Let R′ = {rα, rβ}. Then (W ′, R′) is an infinite dihedral Coxeter system, so
any set of two reflections of (W ′, R′) (i.e. elements of

⋃
w∈W ′

wR′w−1) which gen-

erate W ′ is conjugate to R′ in W ′. In particular, S(W ′) is conjugate to R′ (note
S(W ′) ⊆

⋃
w∈W ′

wR′w−1 by (1.16)) and contains rα, so either S(w′) = {rα, rβ} or

S(W ′) = {rα, rαrβrα}. If rα ∈ N(rβ), we must have S(W ′) = {rα, rαrβrα}. On
the other hand, if S(W ′) = {rα, rαrβrα} then rβ = rα(rαrβrα)rα is a reduced
expression for rβ in (W ′, S(W ′)), and so rα ∈ N(rβ) by (1.8) (iii).

(ii) Write ∆(W ′) = {α, γ}. Since (α | β) = − cos kπ
n (0 < k < n, gcd (n, k) =

1), #(W ′) = 2n by (3.11). Using (3.9) and (3.11) again, we must have (α | γ) =
− cos π

n . The restriction of (· | ·) to U = IRα + IRγ is positive definite, and we
regard U as a two-dimensional Euclidean space. Let Φ′ = { δ ∈ Φ | rδ ∈ W ′ };
since every element of W ′∩T is conjugate in W ′ to rα or rγ , Φ′ consists of the 2n
unit vectors which form with (−α) a directed angle of the form mπ

n (0 ≤ m < 2n)
(the root system of a dihedral group of order 2n, in the standard geometric
realisation).

Let

αj =
{

β (j odd)
α (j even) and γj = rα1 . . . rαj (αj1) (j ∈ IN),

and assume that the plane U is oriented so that β ∈ U makes a directed angle
of kπ

n with (−α). Then γj makes a directed angle of jkπ
n with (−α). Now there

are exactly two roots in Φ′ which make a directed angle of ±π
n with −α; one is

γ, and we denote the other by γ′. Note that rα(γ) = −γ′, so rγ′ = rαrγrα.

Now γm1 (respectively, γm2) makes a directed angle with −α of the form (j +
1
n )π (j ∈ ZZ) (respectively, (j − 1

n )π (j ∈ ZZ)). Hence {rγ , rγ′} = {rγm1
, rγm2

} =
{tm1 , tm2}; in particular, S(W ′) equals either {rα, tm1} or {rα, tm2}.
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If n = 2, then Φ(W ′) = {±α,±β} so S(W ′) = {rα, rβ}. Suppose n ≥ 3.
If rα ∈ N(tm1), we must have S(W ′) = {rα, tm2}. On the other hand, if
S(W ′) = {rα, tm2} then tm1 = rαtm2rα is a reduced expression for tm1 in
(W ′, S(W ′)) and so rα ∈ N(tm1) by (1.8) (iii).

3.14 Remark. For any reflection subgroup W ′ of a Coxeter system (W, R),
we have W ′ ∩ R = S(W ′) ∩ R. It follows from (1.7.1) that for any r ∈ R,

S(rW ′r) =
{

rS(W ′)r (r /∈ S(W ′))
S(W ′) (r ∈ S(W ′)).

Thus, if one knows S(W ′) one may determine S(W ′′) for any conjugate W ′′ of
W ′. Taken in conjunction with (3.13), this gives a procedure for calculating
S(W ′) when W ′ is any dihedral reflection subgroup of (W, R).

3.15 Let (W, R) be a Coxeter system, T its set of reflections and T ′ be a
finite subset of T . Following is an algorithm for determining S(W ′) where
W ′ =< T >.

Set T0 = T ′, and define T1, T2, . . . as follows:

If S(〈t, t′〉) = {t, t′} for all t, t′ ∈ Ti (t += t′) set Ti+1 = Ti. Otherwise, choose
t, t′ ∈ Ti with t += t′ and S(〈t, t′〉) += {t, t′}, and define Ti+1 = (Ti\{t, t′}) ∪
S(〈t, t′〉).

We claim that there exists some i ∈ IN with Ti = Ti+1, and that S(W ′) = Ti.

For if Ti += Ti+1, then (1.16) and (1.17) show that
∑

t∈Ti+1

!(t) <
∑

t∈Ti

!(t); hence

Ti = Ti+1 for some i ∈ IN. By (3.10), it follows that Ti = S(〈Ti〉) and the claim
follows on noting that 〈Ti〉 = 〈Ti−1〉 = . . . = 〈T0〉 = W ′.

Note that by (1.16), we have #(Tj+1) ≤ #(Tj) (j ∈ IN) and in addition Tj+1 ⊆⋃
w∈W ′

wTjw−1(j ∈ IN). Therefore,

(3.15.1) #(S(W ′)) ≤ #(T ′) and

(3.15.2) S(W ′) ⊆
⋃

w∈W ′
wT ′w−1

41



3.16 Corollary. For any subset T ′ of the reflections T of a Coxeter system
(W, R), the following hold:

(i) #(S(〈T ′〉)) ≤ #(T ′)

(ii) 〈T ′〉 ∩ T =
⋃

w∈〈T ′〉
wT ′w−1

Proof If #(T ′) is infinite, (i) follows by a standard cardinality argument, and
the case #(T ′) finite in (i) is just (3.15.1). To prove (ii), it suffices to show
that S(W ′) ⊆

⋃
w∈〈T ′〉

wT ′w−1 (by (1.8)). Since each element of W ′ lies inside a

subgroup generated by a finite subset of T ′, this follows from (3.15.2).

A reflection subgroup W ′ of (W, R) is said to be a dihedral reflection subgroup if
#(S(W ′)) = 2, or, equivalently, if W ′ is generated by two (distinct) reflections
((1.16)). At one stage, we will need a result on the existence of maximal dihedral
reflection subgroups of (W, R). This is given in (3.18) after a preliminary

3.17 Lemma. Let (W, R) be a Coxeter system realised geometrically on a real
vector space V with positive roots Φ+, and let U be a two dimensional subspace
of V . Then there do not exist α, β, γ ∈ Φ+ ∩ U with (α | β) ≤ 0, (α | γ) ≤ 0
and (β | γ) ≤ 0.

Proof Suppose such α, β, γ existed. There is no non-trivial relation of linear
dependence between α, β, γ with non-negative coefficients so we may write, say,
γ = aα + bβ where a ≥ 0, b ≥ 0. Then 1 = (γ | γ) = a(α | γ) + b(β | γ) ≤ 0, a
contradiction.

Lemma (3.17) shows that a reflection subgroup of a dihedral Coxeter system is
of rank at most two.

3.18 Corollary. Let W ′ be a dihedral reflection subgroup of a Coxeter system
(W, R). Then there is a dihedral reflection subgroup W1 of (W, R) with the
following property:

if W2 is any dihedral reflection subgroup of (W, R) such that W ′ ⊆ W2 then
W2 ⊆ W1.
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Proof Assume that (W, R) is realised geometrically on V as in (3.17), and write
∆(W ′) = {α, β}. Let Φ1 = Φ ∩ (IRα + IRβ) and W1 = 〈rγ | γ ∈ Φ1〉. By (3.16)
(ii), Φ(W1) ⊆ W1Φ1 ⊆ IRα+IRβ, and so (3.17) and (3.9) show that #S(W1) ≤ 2;
therefore, W1 is a dihedral reflection subgroup of (W, R). Suppose W2 is a
dihedral reflection subgroup containing W ′, and let ∆(W2) = {γ, δ}. Using
(3.1.7), we have {α, β} ∈ Φ(W2) = W2∆(W2) ⊆ IRγ + IRδ, hence ∆(W2) ⊆ Φ1

and W2 ⊆ W1 as desired.

Corollary (3.18) asserts that every dihedral reflection subgroup is contained in
a unique maximal dihedral reflection subgroup. We conclude the chapter with
some examples concerning reflection subgroups of “universal” Coxeter systems,
and of finite Coxeter systems of types A, B, D.

3.19 Example. Let (W, R) be a Coxeter system such that for r, s ∈ R with
r += s, rs has infinite order (a universal Coxeter system). Then the product of
any two reflections is of infinite order (this is easily checked when one of the
reflections is simple, and the general case reduces to this). It follows that every
reflection subsystem of (W, R) is a universal Coxeter system.

Consider now the case #(R) = 3, say R = {r, s, t}. We realise (W, R) geo-
metrically in the standard way; let V be a 3-dimensional vector space over IR
with basis Π = {α, β, γ}, equipped with a bilinear form such that (δ | δ) =
1, (δ | ε) = −1 for any δ, ε ∈ Π with δ += ε, and identify r, s, t with the re-
flections in α, β, γ respectively. One may check that for any k ∈ ZZ, (rs)kγ =
γ + 2k(2k − 1)β + 2k(2k + 1)α. Let Γ = { (rs)kγ | k ∈ ZZ }, R′ = { rδ | δ ∈ Γ }
and W ′ = 〈R′〉. For any j, k ∈ ZZ with j += k, we have ((rs)kγ | (rs)jγ) = (γ |
(rs)|j−k|γ) = 1 − 8|k − j|2 ≤ −1. Thus, (W ′, R′) is a reflection subsystem of
(W, R).

This example is in marked contrast to the case of finite Coxeter systems If (W, R)
is a Coxeter system with #(W ) finite, and (W ′, R) is a reflection subsystem,
then #(R′) ≤#(R) (this follows from our (3.9) and [Bo] Ch V, no 4.8 and 3.5).

3.20 Example.

(i) Let l ≥ 3 be an integer and V be a real vector space with basis {ε1, . . . , εl},
equipped with the bilinear form (· | ·) determined by (εi | εj) = δij (i, j =
1, . . . , l). The finite Coxeter group (W, R) of type Bl has a standard realisation
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on V as in (3.2); this is described in ([Bo], page 252). The positive roots Φ+

are εi (1 ≤ i ≤ l), εi ± εj(1 ≤ i < j ≤ l).

We will shortly describe the sets of positive roots corresponding to the canonical
generators of all the reflection subgroups of (W, R). First, we describe some
standard sets of positive roots satisfying (3.9.1).

Let J ⊆ {1, . . . , l}, say J = {i1, . . . , ij} where 1 ≤ i1 < i2 < . . . < ij ≤ l. Define

A(J) = { εik+1 − εik | 1 ≤ k ≤ j − 1 }
B(J) = A(J) ∪ {εij} (j = #(J) ≥ 1)
D(J) = A(J) ∪ {εij−1 + εij} (j = #(J) ≥ 2)

Also, if J ′ = {k1, . . . , km} (1 ≤ k1 < . . . < km ≤ l) is another subset of {1, . . . , l}
such that J ∩ J ′ = ∅, we set

A(J, J ′) = A(J) ∪ A(J ′) ∪ {εij + εkm} (j, m ≥ 1).

Given a set X of roots, it will be convenient to define its support supp(X) to
be the smallest subset of {ε1, . . . , εl} the linear span of which contains X (thus
supp(A(J)) = supp(B(J)) = supp(D(J)) = { εj | jεJ } and supp(A(J, J ′)) =
{ εi | iεJ ∪ J ′ }).

It is straightforward to check from (3.9) that a set of roots corresponds to the
set of canonical generators of some reflection subgroup of (W, R) iff it is a union
of disjointly supported sets of roots each of one of the types A(J) (#(J) ≥
2), B(J) (#(J) ≥ 1), D(J) (#(J) ≥ 2) or A(J, J ′) (J ∩ J ′ = ∅, #(J) ≥
1, #(J ′) ≥ 1). The expression as a union of such sets is unique except for order
(and the notational ambiguity A(J, J ′) = A(J ′, J)).

(ii) The root system of type Dl is a subsystem of that of type Bl; the positive
roots are precisely the roots εi ± εj (1 ≤ i < j ≤ l). In this case the reflection
subgroups of the Coxeter group of type Dl correspond to the unions of disjointly
supported sets of roots each of one of the types A(J) (#(J) ≥ 2), D(J) (#(J) ≥
2) or A(J, J ′) (J ∩ J ′ = ∅, #(J) ≥ 1, #(J ′) ≥ 1).

(iii) The root system of type Al−1 is a subsystem of that of type Dl; the positive
roots are precisely the roots εi − εj (1 ≤ i < j ≤ l). Here, reflection subgroups
of the Coxeter group of type Al−1 correspond to unions of disjointly supported
sets of roots each of type A(J) (#(J) ≥ 2).
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Chapter 4

REFLECTION SUBGROUPS OF AFFINE WEYL GROUPS

The reflection subgroups of finite Weyl groups are known, up to isomorphism, by
an algorithm attributed to Borel and Siebenthal, and independently to Dynkin
([BS], [D]; see also [Co]). This algorithm is described in [Ca].

The purpose of this chapter is to prove a result which determines all the reflec-
tion subsystems of an affine Weyl group, up to isomorphism as Coxeter systems,
from the isomorphism types of reflection subsystems of the corresponding finite
Weyl group. The proof is an application of the results of Chapter 3. For our
geometric realisation of the affine Weyl group, we use (essentially) the natural
representation on the Cartan subalgebra of the corresponding Kac-Moody Lie
algebra; this has the advantage that the resulting root system relates in a par-
ticularly simple way to the root system of the corresponding finite Weyl group
([K]).

In the proof, we will make use of the classifications of affine Weyl groups and
finite root systems ([Bo]) and generalised Cartan matrices of finite and affine
types ([K]).

We begin by introducing some notation and terminology that will be required
for the statement of the main result, and its proof.

4.1 If A1, . . . , An are Coxeter systems, their direct product will be denoted
by A1 × . . .× An; for instance, (W1, R1) × (W2, R2) = (W1 × W2, (R1 × {1}) ∪
({1}× R2)).

For an irreducible root system of type X (either Al (l ≥ 1), Bl (l ≥ 3), Cl (l ≥
2), Dl (l ≥ 4), E6, E7, E8, F4 or G2) let W (X) denote the corresponding
finite Coxeter system (of type X) and W̃ (X) denote the Coxeter system of
type X̃ ([Bo] Ch VI, 4.1 and 4.3; we write C̃2 instead of B̃2). Note that for
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l ≥ 3, W (Bl) ∼= W (Cl) but W̃ (Bl) +∼= W̃ (Cl) (where ∼= denotes isomorphism of
Coxeter systems).

The following result was conjectured by Coxeter ([Co]):

4.2 Theorem. Let X be an irreducible root system (of one of the above types
Al, . . . , G2).

(i) If W (X) has a reflection subsystem isomorphic to W (X1) × . . . × W (Xn),
then for any i (0 ≤ i ≤ n), W̃ (X) has a reflection subsystem isomorphic to

W̃ (X1) × . . .× W̃ (Xi) × W (Xi+1) × . . .× W (Xn)

(here the Xi are root systems of the above types Al, . . . , G2 ).

(ii) Every reflection subsystem of W̃ (X) is isomorphic to one of those described
in (i).

In [Co], it is shown that (i) holds, and that if W̃ (X) has a reflection subsystem
of type W̃ (Y ), then W (X) has a reflection subsystem of type W (Y ).A proof of
Theorem (4.2) will be given in (4.3)–(4.14). We begin by recalling some facts
about sets of vectors with negative inner products.

4.3 Let V be a Euclidean space i.e. a finite dimensional real vector space
equipped with a symmetric, positive definite bilinear form (.|.). We will say that
a non-empty set Γ = {α1, . . . , αn} of non-zero elements of V is indecomposable
if Γ cannot be expressed as a disjoint union Γ = Γ1∪Γ2 where Γ1 and Γ2 are non-
empty mutually orthogonal subsets of V . Any finite set of non-zero elements
of V may be partitioned into non-empty indecomposable mutually orthogonal
subsets (its indecomposable components). If Γ is indecomposable and satisfies
(αi | αj) ≤ 0 (i += j), then the matrix

(
2(αi|αj)
(αi|αi)

)

i,j=1,...,n
= M(Γ) satisfies the

properties (m1)–(m3) of ([K], §4.0) and so is, in the terminology there, either
of finite, affine or indefinite type.

The following lemma recalls the implications of these cases.
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4.4 Lemma. Let Γ be as immediately above. Then

(i) M(Γ) is not of indefinite type

(ii) If M(Γ) is of finite type, Γ is linearly independent

(iii) If M(Γ) is of affine type, the subspace
n∑

i=1
IRαi has dimension (n − 1).

There exist c1 > 0, . . . , cn > 0 such that
n∑

i=1
ciαi = 0. Set c = (c1, . . . , cn)t and

x = (x1, . . . , xn)t (xi ∈ IR, i = 1, . . . , n). Then M(Γ)x = 0 iff x = λc for some
λ ∈ IR.

Proof The matrix M ′(Γ) = (αi | αj)i,j=1,...,n is of the same type as M(Γ). Since

for any xi ∈ IR (i = 1, . . . , n),
n∑

i,j=1
(αi | αj)xixj = ‖

n∑
i=1

xiαi‖2 ≥ 0, M ′(Γ) is

symmetric and positive. The result now follows from ([Bo] Ch. V, no 3.6) and
([K], §4.5).

Lemma (4.4) has the following simple consequence.

4.5 Corollary. Let Γ′ be a finite non-empty set of non-zero elements of V
such that (α | β) ≤ 0 for all α, β ∈ Γ′ with α += β. Then either Γ′ is linearly
independent or there exist non-negative real numbers cα (α ∈ Γ′), not all zero,
such that

∑
α∈Γ′

cαα = 0.

Proof Let Γ′ =
n⋃

i=1
Γi be the decomposition of Γ′ into its indecomposable com-

ponents Γi. Since the Γi are mutually orthogonal, Γ′ is linearly independent iff
each Γi is independent. The result follows by (4.4).

4.6 Let (W, R) be a finite Coxeter system realised as a group of isometries of
a real vector space V as in (3.8); in addition to the assumptions there, we now
require that V be finite dimensional, and that the form (.|.) be positive definite.
If W ′ is a reflection subgroup of W , let Ψ = {α ∈ Φ | rα ∈ W ′ }. One knows
that Ψ contains a simple system Γ i.e. a linearly independent subset Γ of Ψ such
that each element of Ψ is a linear combination of elements of Γ with coefficients
all of the same sign, and that, setting R′ = { rα | α ∈ Γ }, (W ′, R′) is a Coxeter
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system. For our purposes, we need to know that the Coxeter system (W, R)
contains a reflection subsystem (in the sense of (1.8)) isomorphic to (W ′, R′).
Since all simple systems in Ψ are conjugate under the action of W ′, the following
Lemma shows that (W ′, R′) ∼= (W ′, S(W ′)).

4.7 Lemma. Let S(W ′) be the canonical generators of W ′, and ∆(W ′) =
{α ∈ Φ+ | rα ∈ S(W ′) }. Then ∆(W ′) is a simple system in Ψ.

Proof Since ∆(W ′) ⊆ Φ+, there do not exist non-negative scalars cα, not all 0,
with

∑
α∈∆(W ′)

cαα = 0. By (4.5), ∆(W ′) is linearly independent. By theorem

(3.9), and the immediately following remark, Ψ = Ψ+ ∪ (−Ψ+) where

Ψ+ =
{ ∑

α∈∆(W ′)

cαα ∈ Ψ | cα ≥ 0 for all α ∈ ∆(W ′)
}
.

4.8 Recall the definitions of a generalised Cartan matrix and its Dynkin dia-
gram ([K]). The Dynkin diagrams of all the indecomposable generalised Cartan
matrices of affine type are given in ([K], pages 48–49) and we adopt the nota-
tion there. We assume that the vertices of each diagram are given a standard
indexing by the integers 0, 1, . . . , l with 0 designating the leftmost vertex; the
corresponding Cartan matrix A = (aij)i,j=0,...,l is reconstructed as in ([K], §4.7).
For i = 0, 1, . . . , l + 1 we let ai be the number in the Dynkin diagram adjacent
to the i-th vertex, and a∨

i the number adjacent to the i-th vertex of the dual
diagram (obtained by reversing the directions of all arrows, keeping the same
indexing of the vertices). Thus, A(a0, . . . , an)t = 0.

4.9 Let X be one of Al(l ≥ 1), . . . , G2. Consider the affine Cartan matrix
(aij)i,j=0,...,l of type X(1) and define ai, a∨

i as in (4.8).

Let V be the real vector space on basis Π = {α0, . . . , αl} and define a bilinear
form (.|.) on V by

(4.9.1) (αi | αj) = a∨
i a−1

i aij (i, j = 0, . . . , l). It follows from ([K], §6.2) that

(4.9.2) the form (.|.) is symmetric and positive semidefinite, and that, adopting
the notation of (3.8), the assumptions (3.8) (i), (ii), (iii) hold.

Now let V0 =
l∑

i=1
IRαi, Φ0 = Φ∩V0, Φ+

0 = Φ+∩V0 and Π0 = Π∩V0. We collect

together some additional facts from ([K], §6.2 and 6.3) as
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4.10 Lemma.

(i) The Coxeter system (W, R) is isomorphic to W̃ (X).

(ii) The restriction of (.|.) to V0 is positive definite, and Φ0 is a root system of
type X in V0 with Π0 as a set of simple roots and Φ+

0 the corresponding set of
positive roots.

(iii) Let δ =
l∑

i=0
aiαi. Then (δ | αi) = 0 (i = 0, . . . , l), (δ | δ) = 0.

(iv) The root system Φ0 determines Φ as follows:

(4.10.1) Φ+ = Φ+
0 ∪ {α + nδ | α ∈ Φ0, n ∈ IN, n ≥ 1, }.

For any α, β ∈ Φ, we define

(4.10.2) cα,β = (α|β)
‖α‖ ‖β‖ , nα,β = 2(α|β)

(α|α) .

With the aid of (4.10.1), we immediately reduce the classification of reflection
subsystems of W̃ (X) to a question concerning sets of vectors in the root system
Φ0.

4.11 Lemma. There exists a reflection subsystem of W̃ (X) with Coxeter
matrix (mij)i.j∈I iff there exists a family {βi}(i∈I) of elements of Φ0 such that

(4.11.1) cβi,βj = − cos π
mij

(i, j ∈ I) ( π
∞ = 0 by convention).

Proof Note that if (4.11.1) holds, then βi += βj for i, j ∈ I with i += j.

Since {δ, α1, . . . , αl} is a basis of V , we may define a linear map p: V −→ V0

satisfying p(δ) = 0, p(αi) = αi (i = 1, . . . , n). We will also let q: V0 −→ V
denote the map v -−→ v + δ (v ∈ V0).

Now by (4.10.1),

(4.11.2) p(Φ+) = Φ0; q(Φ0) ⊆ Φ+,

and by (4.10) (iii), we have
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(4.11.3) cα,β = cp(α),p(β) (α, β ∈ Φ+); cα,β = cq(α),q(β) (α, β ∈ Φ0).

Observe that the Cauchy-Schwarz inequality on V0 together with the first part
of (4.11.3) implies

(4.11.4) | cα,β |≤ 1 (α, β ∈ Φ+).

Now apply (3.9) to show that (W, R) has a reflection subsystem with Coxeter
matrix (mij)i,j∈I iff there exists a family {γi}i∈I of elements of Φ+ satisfying

cγi,γj = − cos
π

mij
(i, j ∈ I).

Making use of (4.11.2) and (4.11.3), we see that this is equivalent to the existence
of {βi}i∈I satisfying (4.11.1).

4.12 Note that since Φ0 is a root system of type X , it contains roots of at
most two different lengths, and if α ∈ Φ0, then ±2α +∈ Φ0.

From the second fact and the calculations on ([Bo]), pg 148) it follows that for
α, β ∈ Φ0 with α += β,

(4.12.1) cα,β ∈ {− cos π
m | m ∈ IN ∪ {∞}, m ≥ 2 } iff nα,β ≤ 0.

Thus, given a family {βi}i∈I of elements of Φ0 satisfying (4.11.1), it follows
that the matrix A = (nβi,βj )i,j∈I is a generalised Cartan matrix. By (4.4), each
connected component of the Dynkin diagram of A is of finite or affine type. The
Coxeter graph of the Coxeter matrix (mij)i,j∈I satisfying (4.11.1) is obtained
from the Dynkin diagram of A by replacing each connected component of type
A(1)

1 or A(2)
2 by the Coxeter graph of type Ã1, and removing all arrows from any

multiple bonds on the other components.

4.13 We can now prove (4.2) (ii). Suppose that Γ ⊆ Φ0 and that nα,β ≤ 0

for all α, β ∈ Γ with α += β. Let Γ =
n⋃

i=1
Γi be the decomposition of Γ into

indecomposable mutually orthogonal sets Γi. For any non-zero α ∈ V0, we
denote the reflection in α by sα: V0 −→ V0.

For each i such that M(Γi) (defined as in (4.3)) is of finite type, say Y ′
i , we

set Yi = Zi = Y ′
i , Γ′

i = Γi, (noting Γ′
i is linearly independent by 4.4 (ii)) R′

i =
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{ sβ | β ∈ Γ′
i } and W ′

i = 〈R′
i〉, Φ′

i = W ′
iΓ′

i. Then Φ′
i is a root system of type Yi

(in the linear span of Γ′
i), Γ′

i is a simple system in Φ′
i and (W ′

i , R
′
i) ∼= W (Yi).

On the other hand, if M(Γi) is of affine type Y ′
i , we may write Γ′

i = {β0, . . . , βm}
so that the matrix M(Γ) is the Cartan matrix of type Y ′

i determined by the
standard labelling of its Dynkin diagram; we let bj denote the number adjacent
to the j-th vertex of that Dynkin diagram. By (4.4) (iii),

(4.13.1)
m∑

i=0
biβi = 0, {β1, . . . , βm} is linearly independent.

Now Y ′
i cannot be A(2)

2 (else 2β0 + β1 = 0) or A2
2l(l ≥ 2) (since then ‖βl‖ =√

2‖βl−1‖ = 2‖β0‖, assuming the vertices are labelled 0, 1, . . . , l − 1, l from left
to right).

Let Γ′
i = {β1, . . . , βm}, R′

i = { sβ | β ∈ Γ′
i }, W ′

i = 〈R′
i〉, Φ′

i = W ′
iΓ′

i. Since Γ′
i

is linearly independent, Φ′
i is a root system (in the linear span of Γ′

i) and Γ′
i is a

simple system in Φ′
i. The Dynkin diagram of Φ′

i is obtained by deleting vertex
0 of the Dynkin diagram of Y ′

i ie Φ′
i is of type Zi, where

Zi =






Z (Y ′
i = Z(1))

Cl (Y ′
i = A(2)

2l−1 (l ≥ 3))

Bl (Y ′
i = D(2)

l+1 (l ≥ 2))

F4 (Y ′
i = E(2)

6 )

G2 (Y ′
i = D(3)

4 ).

We also define

Yi =






Z (Y ′
i = Z(1))

Bl (Y ′
i = A(2)

2l−1(l ≥ 3))

Cl (Y ′
i = D(2)

l+1(l ≥ 2))

F4 (Y ′
i = E(2)

6 )

G2 (Y ′
i = D(3)

4 )

and note that W (Yi) ∼= W (Zi). By (4.11) and (4.12), W̃ (X) has a reflection
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subsystem isomorphic to P1 × . . .× Pn, where

Pi =

{
W (Yi) (Y ′

i of finite type)

W̃ (Yi) (Y ′
i of affine type)

and every reflection subsystem is isomorphic to one arising in this way from
some set Γ satisfying nα,β ≤ 0 for α, β ∈ Γ, α += β.

Let R0 = {sα1 , . . . , sαl}, W0 = 〈R0〉. Then by (4.10) (ii), (W0, R0) ∼= W (X).
To prove (4.2) (i), it will suffice to show (W0, R0) has a reflection subsystem
isomorphic to W (Y1) × . . .× W (Yn).

Let Γ′ =
n⋃

i=1
Γ′

i; this is linearly independent since the Γ′
i are independent and

mutually orthogonal. Let R′ = { rβ | β ∈ Γ′ } =
n⋃

i=1
R′

i, W ′ = 〈R′〉, Φ′ = W ′Γ′.

Since the Γ′
i are mutually orthogonal, Φ′ =

n⋃·
i=1

Φ′
i and Γ′ is a simple system in

Φ′. By (4.6), (W0, R0) has a reflection subsystem isomorphic to (W ′, R′). But

(W ′, R′) ∼= (W ′
1, R

′
1) × . . .× (W ′

n, R′
n) by orthogonality of the Γi

∼= W (Z1) × . . .× W (Zn) since Φ′
i is of type Zi

∼= W (Y1) × . . .× W (Yn) since W (Yi) ∼= W (Zi).

4.14 To complete the proof of (4.2), it suffices to prove that if W (X) has a
reflection subsystem (W ′, R′) isomorphic to W (X1)× . . .×W (Xn), then W (X̃)
has a reflection subsystem isomorphic to W̃ (X1) × . . .× W̃ (Xn).

Identify W (X) with (W0, R0) where R0 = {sα1 , . . . , sαn}, W0 = 〈R0〉. Let
Π′ = {α ∈ Φ+

0 | rα ∈ R′ } and Φ′ = W ′Π′. Note Π′ is linearly independent by
(4.7). By (3.9) and (4.11.4)

(4.14.1) cα,β ∈ {− cos π
m | m ∈ IN ∪ {∞}, m ≥ 2 } for all α, β ∈ Π′, α += β.

Let Π′ =
m⋃

i=1
Π′

i be the decomposition of Π′ into mutually orthogonal indecom-

posable subsets Π′
i. Let Ri = { rα | α ∈ Π′

i }, Wi = 〈Ri〉, Φi = WiΠi. The
decomposition of Π′ into indecomposable components corresponds to the de-
composition of (W ′, R′) into irreducible components, so m = n and it may be
assumed that (Wi, Ri) ∼= W (Xi).
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Suppose that Φi is a root system of type Yi (necessarily one of Al, . . . , G2).
Since W (Yi) ∼= (Wi, Ri) ∼= W (Xi), we have either Yi = Xi or (Yi = Bli , Xi =
Cli (li ≥ 3)) or (Yi = Cli , Xli = Bli (li ≥ 3)). Let Tk = (a(k)

ij )i.j=0,...,lk be the
affine Cartan matrix of type






X(1)
k (Xk = Yk)

D(2)
lk+1 (Yk = Blk , Xk = Clk , lk ≥ 3)

A(2)
2lk−1 (Yk = Clk , Xk = Blk , lk ≥ 3)

(k = 1, . . . , n), and a(k)
i be the number associated to the i-th vertex of the

corresponding Dynkin diagram.

We may write Π′
k = {α(k)

1 , . . . , α(k)
lk

} ordered in such a way that
2(a(k)

i |a(k)
j )

(a(k)
i |a(k)

i )
=

a(k)
ij (i, j = 1, . . . , lk), and define

α(k)
0 = −

lk∑

i=1

a(k)
i α(k)

i , Πk = {α(k)
0 } ∪ Π′

k .

One may check from the descriptions of the root systems in ([Bo], pages 250–
275) that in each case, α(k)

0 ∈ Φk (in fact, except for the cases where Tk is of type
D(2)

lk+1 or A(2)
2lk−1, α

(k)
0 is the negative of the highest root of Φk corresponding to

the simple system Π′
k) and that the matrix M(Πk) is equal to Tk. Since Πk is

orthogonal to Πj if j += k, (4.12) shows that W̃ (X) has a reflection subsystem
the Coxeter graph of which has as connected components the Coxeter graphs of
type X̃1, . . . , X̃n. This completes the proof of (4.2).

4.15 Remark We will now describe an algorithm for computing the isomor-
phism types of reflection subgroups of affine Weyl groups, in terms of operations
with their Coxeter graphs. For this purpose, it is convenient to agree that the
Coxeter graph of type Bl (l ≥ 3) is also of type Cl. We define two types of
operations on Coxeter graphs Γ all of whose connected components are of type
Al, . . . , G2, Ãl, . . . , G̃2.

By a deletion we will mean the removal of one or more vertices, together with
all edges incident with them, from one connected component of Γ.
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By a completion, we will mean the replacement of a connected component of Γ
which is a Coxeter graph of finite type X with one of type X̃ (X = Al, . . . , G2).

Also, define a move to consist of a completion of a component of finite type,
followed by a deletion applied to the newly introduced component of affine
type. If X is of finite type Al, . . . , G2, then the Coxeter graphs of the reflection
subsystems of W (X) are precisely those obtained by beginning with a Coxeter
graph of type X and applying a finite number of moves ([Ca]).

It follows from (4.2) that the Coxeter graphs of the reflection subsystems of
W̃ (X) are precisely those obtained by beginning with the Coxeter graph of type
X and applying any finite sequence of completions and deletions. Also, the
reflection subsystems of W (X) are those whose Coxeter graphs arise in this way
and have all their connected components of finite type.

For example, from the Coxeter graph of type F̃4 one can obtain by successive
deletions and completions the Coxeter graphs of type B4, B̃4, D4,D̃4, A1×A1×
A1 × A1.Completing in turn each component of type A1, one sees that W̃ (F4)
(of rank 5) contains a reflection subsystem of type W̃ (A1)× W̃ (A1)× W̃ (A1)×
W̃ (A1) (of rank 8).
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Chapter 5

THE SIMPLICIAL COMPLEX OF A BRUHAT INTERVAL

To any Coxeter system (W, R), there is associated a standard partial order on
W , the Bruhat order ([De1]). This chapter begins by recalling some character-
isations of Bruhat order; we then prove two special results that will be used
later.

The main result of the chapter is that the simplicial complex of an open Bruhat
interval is a sphere; this is a consequence of the lexicographical shellability of
Bruhat order proved in [BW], but the proof here depends on a study of a natural
decomposition of the simplicial complex into cells.

Finally, it is shown that the subgroup generated by the ratios x−1y of all pairs of
elements x, y in some closed Bruhat interval is actually generated by the ratios
of the pairs of elements in some fixed maximal chain.

Throughout this chapter, (W, R) denotes a Coxeter system, !: W −→ IN is the
corresponding length function, and T =

⋃
w∈W

wRw−1. Recall the definition of

the Bruhat graph Γ(W,R) (see (1.11)).

5.1 Definition. The Bruhat order ≤ on W is the partial order such that
x ≤ y iff there exists a sequence x = x0, x1, . . . , xn = y of elements of W such
that for each i ∈ {1, . . . , n}, (xi−1, xi) ∈ E(W,R). In other words, x ≤ y iff there
exists a path in Γ(W,R) from x to y (x, y ∈ W ).

5.2 Remark. Let P(W ) denote the monoid of subsets of W under the prod-
uct A ·B = { ab | a ∈ A, b ∈ B } (A, B ∈ P(W )). If r, s ∈ R and nr,s = ord (rs)
is finite, then

nr,s︷ ︸︸ ︷
(. . .{1, r} · {1, s} · {1, r}) = 〈r, s〉 =

nr,s︷ ︸︸ ︷
(. . .{1, s} · {1, r} · {1, s}) .
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It follows by ([Bo] Ch IV, no. 1.5) that there is a function f : W −→ P(W ) such
that f(w) = {1, r1} · . . . · {1, rn} whenever w = r1 . . . rn (ri ∈ R) and n = !(w).
The first of the alternative characterisations of Bruhat order below shows that
f(w) = { v ∈ W | v ≤ w }.

5.3 Proposition.

(i) Let v, w ∈ W and write w = r1 . . . rn (ri ∈ R, n = !(w)). Then v ≤ w iff
there exist integers i1, . . . , im with 1 ≤ i1 < . . . < im ≤ n and w = ri1 . . . rim

(where ≤ denotes Bruhat order on W ).

(ii) Bruhat order is the unique partial order ≤ on W such that 1 ≤ w for all
w ∈ W and the following “Z-property” holds:

if x, y ∈ W, r ∈ R and !(rx) < !(x), !(ry) < !(y) then conditions (a)–(c) below
are equivalent.

(a) x ≤ y (b) rx ≤ y (c) rx ≤ ry

(iii) Bruhat order is the unique partial order ≤ on W such that

(a) If x ≤ y, then !(x) ≤ !(y). If x ≤ y and !(x) = !(y) then x = y.

(b) If A ⊆ W has a maximum (minimum) element then for any r ∈ R, {1, r}A
has a maximum (respectively, minimum) element.

Proof Parts (i) and (ii) are proved in [De 1], so we only prove (iii). First, let ≤
denote Bruhat order. Then (iii) (a) follows from the Definition (5.1). Also, the
Z-property implies that

(5.3.1) if ∅ += A ⊆ W and a = max (A), then

max ({1, r}A) =
{

a (!(ra) < !(a))
ra (!(ra) > !(a)),

and the statement about the minimum is proved similarly.

Conversely, suppose now that ≤ is a partial order on W satisfying (iii) (a),
(b). We show that ≤ satisfies the conditions of (ii). Let w ∈ W and write
w = r1 . . . rn (ri ∈ R). By repeated application of (iii) (b), the set B =
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{1, rn} . . .{1, r1}w has a minimal element, say x. Since 1 ∈ B, we have x ≤ 1,
hence x = 1 by (iii) (a). Since w ∈ B, 1 ≤ w. Hence 1 ≤ w for all w ∈ W .

Now take x ∈ W . The set {1, r}{x} = {x, rx} has a minimum element by (iii)
(b); using (iii) (a), we have

{
x ≤ rx (!(rx) > !(x))
rx ≤ x (!(rx) < !(x)).

To check the Z-property, take x, y ∈ W and r ∈ R with !(rx) < !(x) and
!(ry) < !(y). Then rx ≤ x and ry ≤ y. Hence if x ≤ y, then rx ≤ x ≤ y.
On the other hand, suppose that rx ≤ y. Since rx += y, (iii) (a) implies that
!(rx) ≤ !(y)− 1, hence !(x) ≤ !(y). The set {rx, y} has a maximum element y,
so {1, r}{rx, y} = {rx, ry, x, y} has a maximum element which must be either
x or y (since rx < x and ry < y). In particular, either x ≤ y or y ≤ x. But
!(x) ≤ !(y), so if the latter holds, (iii) (a) shows that x = y. Hence x ≤ y in
either case. Thus, x ≤ y iff rx ≤ y. Similarly, rx ≤ y iff rx ≤ ry. Hence (iii) is
proved.

Henceforward, the Bruhat order on W will always be denoted by ≤. For any
x, y ∈ W , we define

(x, y) = {w ∈ W | x < y < w }, (x, y] = {w ∈ W | x < y ≤ w } etc.

5.4 Corollary. Let A ⊆ W have a maximum (minimum) element. Then for
any w ∈ W, [1, w]A has a maximum (respectively, minimum) element.

Proof If w = r1 . . . rn (n = !(w)), then by (5.2), [1, w] = {1, r1} . . . {1, rn}. The
result follows by repeated use of (5.3) (iii) (b).

Following is an interesting special property of Bruhat intervals of the form [1, w].

5.5 Proposition. For any w ∈ W ,

#{ r ∈ R | r ≤ w } ≤ #{ x ∈ W | x ≤ w, !(x) = !(w) − 1 }.

Proof For w ∈ W , let c(w) = #{ x ∈ W | x ≤ w, !(x) = !(w) − 1 } and
a(w) = #{ r ∈ R | r ≤ w }, b(w) = c(w) − a(w). We have to prove that
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b(w) ≥ 0; this is the case y = 1 of
(5.5.1) if w = vy where v ∈ W J and y ∈ WJ , then b(w) ≥ b(y).
Here J ⊆ R and W J , WJ are as in (1.14). We prove (5.5.1) by induction
on !(v). If !(v) = 0 then (5.5.1) is trivial, so assume !(v) ≥ 1 and (5.5.1)
holds for v of smaller length. There is no loss of generality in assuming that
J = { r ∈ R | r ≤ y } ([Bo] Ch IV, no 1.8). Choose s ∈ R with !(vs) < !(v),
and write v = v′v′′ where v′′ ∈ WJ∪{s} and v′ ∈ W J∪{s}. Since !(vs) < !(v),
it follows that v += v′. But !(v) = !(v′) + !(v′′), so !(v′) < !(v). By induction,
b(w) = b(v′(v′′y)) ≥ b(v′′y), noting that v′′y ∈ WJ∪{s}. Also, a(v′′y) ≤ #(J ∪
{s} ≤ a(y) + 1.

Choose r ∈ J ∪ {s} so that !(rv′′) < !(v′′); this is possible since v′′ ∈ WJ∪{s}
and v′′ += 1. Then v = v′v′′ where !(v) = !(v′) + !(v′′) = !(v′r) + !(rv′) and it
follows that v′′ ∈ W J , rv′′ ∈ W J . In particular,

(5.5.2) v′′WJ += rv′′WJ (by (1.14.1)

Let y1, . . . , ym (m = c(y)) be the distinct elements of { x ∈ W | x ≤ y, !(x) =
!(y) − 1 }, and consider the elements v′′y1, . . . , v′′ym, rv′′y of [1, v′′y]. Since
v′′ ∈ W J , rv′′ ∈ W J we have !(v′′yi) = !(v′′) + !(yi) = !(v′′) + !(y) − 1 =
!(v′′y)− 1 and !(rv′′y) = !(rv′′) + !(y) = !(v′′) + !(y)− 1 = !(v′′y)− 1. Making
use of (5.5.2), we see that these elements are all distinct. This proves that
c(v′′y) = #{x ∈ W | x ≤ v′′y, !(x) = !(v′′y) − 1 } ≥ m + 1. Hence b(w) ≥
b(v′′y) = c(v′′y) − a(v′′y) ≥ (c(y) + 1) − (a(y) + 1) = b(y) as required.

We now turn to the consideration of simplicial complexes of Bruhat intervals.
For the statement and proof of our result, we need quite a number of notions
and facts from elementary combinatorial topology and it is convenient to collect
these all together at the outset.

5.6 In this chapter, the word complex will mean finite, abstract, simplicial
complex. Thus, a complex K is a (finite) set of finite sets such that if A ∈ K
and B ⊆ A then B ∈ K; if A ∈ K then A is said to be a simplex of K, of
dimension dim A = (#(A) − 1). Note that by our conventions, any non-empty
complex contains the empty simplex ∅, and ∅ has dimension (−1). A subcomplex
of a complex K is defined to be a subset L of K which is itself a complex. An
n-simplex (n ∈ IN ∪ {−1}) is a set of cardinality (n + 1).
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Let K be a complex and A be a simplex. We define the complement, star and
link of A in K to be the complexes

C(A, K) = {B ∈ K | B +⊇ A }
st(A, K) = {C ∈ K | A ∪ C ∈ K }
lk(A, K) = {C ∈ st(A, K) | A ∩ C = ∅}.

For any L ⊆ K, its closure is defined to be the complex

L̄ = {B ∈ K | there exists C ∈ L with B ⊆ C}.

If M is any other complex with K ∩M ⊆ {∅}, define the join of K and M to be

KM = {A ∪ B | A ∈ K, B ∈ M }.

A complex K is defined to be n-homogeneous if for all A ∈ K there exists
B ∈ K with A ⊆ B and dimB = n. If K is n-homogeneous, its boundary

•
K is

by definition L̄, where L is the set of (n−1)-simplexes of K contained in an odd
number of n-simplexes of K, and

◦
K = K \

•
K (

◦
K is not a complex in general).

5.7 Let K be a complex, A += ∅ a simplex and {a} a 0-simplex not in K. Let
P = lk (A, K), Q = C(A, K), and note

(5.7.1) K = AP ∪ Q, AP ∩ Q =
•
A P

Let L = a
•
AP ∪ Q; here, a denotes the complex { {a }, ∅}. (One may regard

L as a “subdivision” of K.) Then we write K
(A,a)−→L. If (Kλ)λ∈Λ is a family of

subcomplexes of K and Kλ
(A,a)−→Lλ (λ ∈ Λ) then we will write

(K: (Kλ))
(A,a)−→ (L: (Lλ)) and (L: (Lλ))

(A,a)−1

−→ (K: (Kλ)).

Often, one writes just −→ instead of
(A,a)±1

−→ . The equivalence relation on such
pairs (K: (Kλ)λ∈Λ) generated by the relation −→ will be denoted ∼. (In fact, if
K and L are complexes, then K ∼ L iff K and L have simplicially homeomor-
phic subdivisions, but this won’t be needed here.) Note the following simple
properties of −→:
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(5.7.2) If Kλ
(A,a)−→ Lλ (λ ∈ Λ) then ∪λ Kλ

(A,a)−→ ∪λ Lλ and ∩λ Kλ
(A,a)−→ ∩λ Lλ

(5.7.3) If K
(A,a)−→ L and K ′ (A,a)−→ L′ then K ⊆ K ′ iff L ⊆ L′

(5.7.4) If K
(A,a)ε

−→ L and K ′ (A,a)ε

−→ L then K = K ′ (ε ∈ {−1, 1}).

From [A], we have

(5.7.5) Suppose K
(A,a)−→L. Then K is n-homogeneous iff L is n-homogeneous. If

K is homogeneous, then
•
K

(A,a)−→
•
L .

If K, L are homogeneous complexes, the “elementary move” K
(A,a)ε

−→ L is called
internal if (ε = 1 and A /∈

•
K ) or (ε = −1 and A /∈

•
L ).

5.8 Definition. For n ∈ {1} ∪ IN, let Bn denote a complex consisting of an

n-simplex and its subsets, and Sn =
•
B n+1. A complex K is called a (combi-

natorial) n-ball if K ∼ Bn and a (combinatorial) n-sphere if K ∼ Sn. We set
•
B−1 = S−2 = ∅. The following proposition lists some properties of balls and
spheres ([A]).

5.9 Proposition.

(i) Let B be an n-ball (n ∈ {−1} ∪ IN) . Then B is n-homogeneous and
•
B is

an (n− 1)-sphere. If {a} /∈ B, then aB is an (n + 1)-ball and (aB)• = B ∪ a
•
B .

If A += ∅ is a p-simplex of B, then lk(A, B) is a (n − p − 1)-sphere if A /∈
•
B or

an (n − p − 1)-ball if A ∈ B•.

(ii) Let S be an n-ball (n ∈ IN). Then S is n-homogeneous and
•
S = ∅. If K

is a non-empty n-homogeneous subcomplex of S and
•
K = ∅, then K = S. If

{a} /∈ S then aS is an (n + 1)-ball and (aS)• = S. If A += ∅ is a p-simplex of S,
then lk(A, S) is a (n − p − 1)-sphere.

(iii) If E1, E2 are two n-balls such that E1 ∩E2 =
•
E 1 ∩

•
E 2 = F is an (n− 1)-

ball, then E1 ∪ E2 is an n-ball and (E1 ∪ E2)• = (
•
E 1 ∪

•
E 2) \

◦
F .
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The following technical result ([A]) will be used repeatedly

5.10 Theorem. Let B be an n-ball, and J be a complex such that B∩J ⊆
•
B

and {a} be a 0-simplex not in J ∪
•
B . Then there is a sequence of elementary

internal moves B = K0 −→ K1 −→ . . . −→ Km = a
•
B such that Ki ∩ J ⊆

•
K i =

•
B for i = 0, 1, . . . , m. Moreover, if in the above Ki

(A,a)ε

−→ Ki+1 then also

J ′ (A,a)ε

−→ J ′ for any subcomplex J ′ of J .

This completes our inventory or standard facts from combinatorial topology.

5.11 If P is any finite poset,
∑

P denotes the complex whose simplexes are
the totally ordered subsets (also called chains) of P . For any x, y ∈ P , we define
(x, y) = { z ∈ P | x < z < y }, [x, y) = { z ∈ P | x ≤ z < y } etc. The poset P
is said to satisfy the Jordan-Dedekind chain condition if for any x, y ∈ W with
x ≤ y,

∑
[x, y] is an n-homogeneous complex for some n ∈ IN; we then write

n = !(x, y).

In (5.12)–(5.14), X denotes a finite poset, with a maximum element w, satisfying
the Jordan-Dedekind chain condition. We define below a notion of an “X-celled
complex”; this is a combinatorial analogue of a CW -complex with cells indexed
by X and inclusion relations amongst the closed cells described by the partial
order on X .

5.12 Definition. An X-celled complex is a pair (K: (ex)x∈X) where K is a
complex and the ex (x ∈ X) are subcomplexes of K satisfying

(i) ex is a [!(x, w)− 1]-ball (X ∈ X)

(ii)
•
e x = ∪

z>x
ez (x ∈ X)

(iii) K =
⋃·

x

◦
e x

(the unions being taken over all elements of X satisfying any indicated condi-
tion).

We need two general lemmas concerning X-celled complexes.
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5.13 Lemma. Let (K: (ex)) be an X-celled complex and suppose that

(K: (ex)) ∼ (L: (fx)).

Then (L: (fx)) is an X-celled complex.

Proof It will suffice to prove this in the case where the complexes differ by a
single elementary move (K: (ex))

(A,a)ε

−→ (L: (fx)). Since ex is a [!(x, w) − 1]-ball

and ex
(A,a)ε

−→ fx, it follows that fx is a [!(x, w) − 1]-ball and
•
e x

(A,a)ε

−→
•
f . Since

∪z>x ez
(A,a)ε

−→ ∪z>x fz and
•
e x = ∪z>x ez , this shows that

•
f x = ∪z>x fz (x ∈ X).

Suppose that x, z ∈ X and x += z. Then
◦
e z ∩ ◦

e x = ∅. That is, (ez \ ∪t>z et) ∩
(ex \ ∪t>x ex) = ∅, or, equivalently, ez ∩ ex ⊆

⋃
t>z

or t>x

et. This implies that

fz ∪ fx ⊆
⋃

t>z
or t>x

ft and so
◦
f z ∩

◦
f x = ∅.

Finally, K
(A,a)ε

−→ L, ∪x ex
(A,a)ε

−→ ∪x fx and K = ∪x ex imply that L = ∪x fx.

Together with (5.13), the result below shows that the existence of an X-celled
complex is a very restrictive condition on X .

5.14 Lemma. Let (K: (ex)) be an X-celled complex. Then (K: (ex)) ∼
(L: (fx)) where fx =

∑
[x, w) (x ∈ W ) and L = ∪x fx.

Proof It will be convenient to abbreviate !(x, w) by !′(x) (x ∈ X) (recall w is
the maximum element of X).

For m ∈ IN, let Xm = { x ∈ X | !(x, w) ≤ m } and let K(m) be the set of pairs
(L: (fx)x∈Xm) where L is a complex with no vertex in X \ Xm and the fx are
subcomplexes such that L =

⋃
x∈Xm

fx.

If A = (L: (fx)x∈Xm) ∈ K(m), define Â = (L̂: (f̂x)x∈X) by setting

f̂x =






fx (x ∈ Xm)
⋃

z>x
!′(z)=m

∑
[x, z)fz (x ∈ X \ Xm)
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and L̂ =
⋃

x∈X
f̂x. We make the following claim:

(5.14.1) if L1, L2 ∈ K(m) and L1 ∼ L2 then L̂1 ∼ L̂2.

To prove this claim, it will suffice to show that if L1
(A,a)ε

−→ L2 where A is a
simplex with no vertex in X \ Xm and a /∈ X \ Xm then L̂1

(A,a)ε

−→ L̂2.

Write L1 = (M : (gx)x∈Xm) and L2 = (N : (hx)x∈Xm). Note that {a} /∈ M̂

otherwise {a} ∈ M and the elementary move
(A,a)−→ couldn’t be applied to M ,

by its definition). It will be sufficient to prove that ĝx
(A,a)−→ ĥx, for then we also

have M̂ =
⋃

x∈X
ĝx −→

⋃
x∈X

ĥx = N̂ .

Now if x ∈ Xm, then ĝx = gx
(A,a)−→ hx = ĥx. If x ∈ X \ Xm, then

C(A, ĝx) =
⋃

z>x
!′(z)=m

∑
[x, z)C(A, gz)

st(A, ĝx) =
⋃

z>x
!′(z)=m

∑
[x, z)st(A, gz)

and
lk(A, ĝx) =

⋃

z>x
!′(z)=m

∑
[x, z)lk(A, gz).

Hence

ĝx
(A,a)−→ C(A, ĝx) ∪ a

•
A lk(A, ĝx)

=
⋃

z>x
!′(z)=m

∑
[x, z) (C(A, gz) ∪ a

•
A lk(A, gz))

=
⋃

z>x
!′(z)=m

∑
[x, z) hz

= ĥx

and so (5.14.1) is proved.
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Now we complete the proof of the lemma. Note that if P
({b},a)−→ P ′ then P ′

does not have b as a vertex. Hence there is no loss of generality in assuming
that K has no vertex in X . We will show by downward induction on m that
A∞ ∼ Âm, where A∞ = (K: (ex)x∈X) and Am =

( ⋃
x∈Xm

ex: (ex)x∈Xm

)
∈ K(m).

If m ≥ max{!(x, w) | x ∈ X} then Âm = Am = A∞. Suppose inductively that
m ≥ 1 and that A∞ ∼ Âm.

Choose any y0 ∈ X with !′(y0) = m. If y ∈ Xm and y += y0, then
◦
e y0 ∩ ey =

◦
e y0 ∩ (∪z≥y

◦
e z) = ∅ since

◦
e y0 ∩

◦
e z = ∅ unless z = y0, and y +≤ y0. Now make

use of (5.10) applied to the ball B = ey0 with a = y0 and J =
⋃

y∈xm

y 0=y0

ey to

conclude that

Am ∼
(
⋃

x∈Xm

e′x: (e′x)x∈Xm

)
where e′x =

{
ex (x += y0)
y0

•
e y0 (x = y0).

Repeating this for each y0 with !′(y0) = m, we have

Am ∼ B =

(
⋃

x∈Xm

gx: (gx)x∈Xm

)
where gx =

{
ex (!′(x) < m)
x

•
e x (!′(x) = m).

Now if !′(x) = m and y > x, there exists z with !′(z) = m − 1 and y ≥ z > x,
hence ey ⊆ ez. Thus,

•
e x =

⋃

y>x

ey =
⋃

z>x
!′(z)=m−1

ez.

Therefore, B̂ =
( ⋃

x∈X
g′

x: (g′
x)x∈X

)
where

g′
x = gx = ex (!′(x) < m) and

g′
x = gx =

⋃

z>x
!′(z)=m−1

∑
[x, z)ez (!′(x) = m).
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If !′(x) > m, then

g′
x =

⋃

z:z>x
!′(z)=m

∑
[x, z)gz =

⋃

z:z>x
!′(z)=m

∑
[x, z)

⋃

y:y>z
!′(x)=m−1

zey

=
⋃

y:y>x
!′(y)=m−1

[ ⋃

z:y>z>x
!′(z)=m

∑
[x, z)z

]
ey

=
⋃

y:y>x
!′(y)=m−1

∑
[x, y)ey

noting that
∑

[x, y) =
⋃

z:y>z>x
!′(z)=m

∑
[x, z)z since the complex on the right is clearly

a subcomplex of that on the left, and every simplex on the left is contained in
a maximal simplex, and this maximal simplex has a vertex z with y > z > x,
!′(z) = m and so lies in

∑
[x, z)z.

The above computations prove that B̂ = Âm−1 (by definition of the latter).
Using (5.14.1), this gives

A∞ ∼ Âm ∼ B̂ = Âm−1.

Finally, A∞ ∼ Â0 = (L: (fx)x∈X) where for x ∈ X, fx =
∑

[x, w)ew =
∑

[x, w),
and L =

⋃
x∈X

fx.

5.15 We are now able to give our main construction. Here X denotes a finite
poset, with a minimum element v and a maximum element w, satisfying the
Jordan-Dedekind chain condition; for x ∈ X , we abbreviate !(x, w) by !′(x).

Assume that the group {1, r} has an action on the set X satisfying the following
“Z-property” (compare (5.3) (ii)):

(i) For all x ∈ X, |!′(rx) − !′(x)| = 1

(ii) For all x, y ∈ X with !′(rx) > !′(x) and !′(ry) > !′(y) the conditions (a)–
(c) below are equivalent:
(a) x ≤ y (b) rx ≤ y (c) rx ≤ ry

(note that !′ increases from top to bottom onX).
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The following result gives a construction of a [v, w]-celled complex from a [v, rw]-
celled complex, under the above hypotheses.

5.16 Theorem. Suppose that (K: (ey)y∈Y ) is a Y -celled complex, where Y =
[v, rw]. Let {a} be a 0-simplex not in L. Let L = aK and define subcomplexes
fx (x ∈ X) of L as follows. If x ∈ [v, rw] and rx > x, letfx = aex and

frx =
{

ex rx /∈ [v, rw]
aerx ∪ ex rx ∈ [v, rw]

Then (L: (fx)x∈X) is an X-celled complex.

Proof Note that if x ≤ y, then !(x, y) = !′(x) − !′(y).

By applying (5.15) (ii) with x = y, it follows that for x ∈ X and r ∈ R, !′(rx) >
!′(x) iff rx < x, and !′(rx) < !′(x) iff rx > x. Note (5.15) (ii) shows now that if
y ∈ X , then either ry > y and y ≤ rw, or ry < y and ry ≤ rw; this proves that
fy has been defined for all y ∈ X . In fact, let X∗ = { x ∈ Y | rx > x }. Then

(5.16.1) X = X∗
⋃· rX∗ and Y = X∗

⋃· {rx | x ∈ X∗, rx ∈ Y }.

The proof that (L: (fx)) is an X-celled complex is given in (5.17), (5.18) and
(5.19), corresponding to the three parts of Definition (5.12) to be checked.

5.17 Proof that fx is a [!(x, w)− 1]-ball (x ∈ X).

If x ∈ [v, rw], rx > x and rx /∈ [v, rw], then ex is a [!(x, rw) − 1]-ball, and so
frx = ex is an [!(rx, w)− 1]-ball and fx = aex is a [!(x, w)− 1]-ball.

Suppose now that x ∈ [v, rw], rx > x, rx ∈ [v, rw). Then ex is a [!(x, rw)− 1]-
ball and erx is a [!(rx, rw)−1]-ball. Hence fx = aex is a [!(x, w)−1]-ball. Also,
aerx is a [!(rx, w) − 1]-ball which we now denote by gx. Note that ex ⊇ •

e x =⋃
y∈Y
y>x

ey ⊇ erx. Hence

ex ∩ gx = ex ∩ aerx = ex ∩ erx = erx and
•
e x ∩

•
g x =

•
e x ∩ (a

•
e rx ∪ erx)

= (
•
e x ∩ a

•
e rx) ∪ (

•
e x ∩ erx)

= (
•
e x ∩ •

e rx) ∪ erx

= erx.
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Since ex and gx are both [!(rx, w)−1]-balls and erx is a [!(rx, w)−2]-ball, (5.9)
(iii) shows that frx = ex ∪ gx is a [!(rx, w)− 1]-ball. For future reference, note

(5.17.1)
•
f rx = [(aerx)• ∪ •

e x] \ ◦
e rx

5.18 Proof that
•
f x =

⋃
z>x

fz (x ∈ X).

Recall that X∗ = {x ∈ Y | rx > x }. Suppose that x ∈ X∗ and rx /∈ Y . If
z ∈ X∗ and rz ∈ Y , we cannot have z ≥ x or rz ≥ x for these would imply
rw ≥ rx i.e. rx ∈ Y contrary to assumption. Hence z ≥ rx and rz ≥ rx are
also impossible (since rx > x).

If x, z ∈ X∗, rz /∈ Y and z += x, then z > x ⇐⇒ rz > x ⇐⇒ rz > rx. Therefore,
for x ∈ X∗ with rx /∈ Y , (5.16.1) and the above comments give

•
f x = (aex)• = a

•
e x ∪ ex =

(
a
⋃

y∈Y
y>x

ey

)
∪ ex

=
⋃

z∈X∗
rz /∈Y
z>x

(aez ∪ ez) ∪ ex

=
⋃

z∈X∗
rz /∈Y
z>x

(fz ∪ frz) ∪ frx =
⋃

y∈X
y>x

fy

and
•
f rx =

•
e x =

⋃

y∈Y
y>x

ey =
⋃

z∈X∗
rz /∈Y
z>x

ez =
⋃

z∈X∗
rz /∈Y
z>x

frz =
⋃

y∈X
y>rx

fy.

Now consider the case when x ∈ X∗ and rx ∈ Y . Note that for any z ∈
X∗ \ {x}, rz > x if and only if z > x. Hence

⋃

z∈X
z>x

fz =
⋃

z∈X∗
z>x

(fz ∪ frz) ∪ frx

=
⋃

z∈X∗
rz /∈Y
z>x

(aez ∪ ez) ∪
⋃

z∈X∗
rz∈Y
z>x

(aez ∪ aerz ∪ ez) ∪ (aerx ∪ ex)
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=
⋃

z∈X∗
rz /∈Y
z>x

aez ∪
⋃

z∈X∗
rz∈Y
z>x

(aez ∪ aerz ∪ (aerx ∪ ex)

=
⋃

y∈Y
y>x

aey ∪ ex = a
•
e x ∪ ex = (aex)• = f•

x .

Also, since if rz > z then rz > rx if and only if z > x, it follows that

⋃

z∈X
z>rx

fz =
⋃

z∈X∗
z>x

frz ∪
⋃

z∈X∗
z>rx

fz

=
⋃

z∈X∗
z>x

rz /∈Y

ez ∪
⋃

z∈X∗
z>x

rz∈Y

(aerz ∪ ez) ∪
⋃

z∈X∗
z>rx
rz /∈Y

aez ∪
⋃

z∈X∗
z>rx
rz∈Y

aez

=
⋃

y∈Y
y>rx

aey ∪
⋃

y∈Y
y>x
y 0=rx

ey

=
[(( ⋃

y∈Y
y>rx

aey

)
∪ erx

)
∪
⋃

y∈Y
y>x

ey

]
\
(
erx \

⋃

y∈Y
y>rx

ey

)

= [(a
•
e rx ∪ erx) ∪ •

e x] \ ◦
e rx

= [(aerx)• ∪ •
e x] \ ◦

e rx

=
•
f rx by (5.17.1)

5.19 Proof that aK =
⋃·

x∈X

◦
f x.

Let x ∈ X∗. Then
◦
f x = { { a } ∪ A | A ∈ ◦

e x }, and

◦
f rx =

{
◦
e x (rx /∈ Y )
{ { a } ∪ A | A ∈ ◦

e rx } ∪
◦
e rx ∪ ◦

e x (rx ∈ Y )
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(for if rx ∈ Y , then

◦
f rx = [aerx ∪ ex] \ [((aerx)• ∪ •

e x) \ e◦rx] by (5.17.1)

= [(aerx ∪ ex) \ ((aerx)• ∪ •
e x)] ∪ ◦

e rx since
◦
e rx ⊆ aerx

= [(aerx)◦ \ •
e x] ∪ [

◦
e x \ (aerx)•] ∪ ◦

e rx

= (aerx)◦ ∪ ◦
e x ∪ ◦

e rx

noting (aerx) ∩ ex ⊆ (aerx)• ∩ •
e x).

Since the
◦
e y (y ∈ Y ) are pairwise disjoint, so are the

◦
f x (x ∈ X). Also,

⋃

x∈X

◦
f x =

⋃

x∈X∗

(
◦
f x ∪

◦
f rx) =

⋃

y∈Y

(
◦
e y ∪ { { a } ∪ A | A ∈ ◦

e y }) = aK.

This completes the proof of Theorem (5.16).

We can now prove

5.20 Theorem. Let (W, R) be a Coxeter system, and x, y ∈ W with x ≤ y (in
the Bruhat order) and !(y) ≥ !(x)+2. Then

∑
(x, y) is a (!(y)−!(x)−2)-sphere.

Proof First we prove by induction on !(y) that there exists a [1, y]-celled complex
(K: (ex)x∈[1,y]). If y = 1, one sets K = {∅} = e1 and the result holds. If !(y) ≥ 1,
choose r ∈ R with !(ry) < !(y). The interval [1, y] satisfies the Jordan-Dedekind
chain condition (e.g. from [De1]) and the action of {1, r} on [1, y] satisfies the
Z-property in the sense of (5.15) (i) and (ii). By induction, there exists a [1, ry]-
celled complex, and so (5.16) produces a [1, y]-celled complex (L: (fx)x∈[1,y]); in
fact, there exists such a complex in which L is a (!(y) − 1)-simplex. Using
(5.13) and (5.14), we see that (K: (ex)x∈[1,y]) is a [1, y]-celled complex, where
ex =

∑
[x, y), (1 ≤ x ≤ y) and K =

⋃
x∈[1,y]

ex.

In particular, if x ≤ y and !(y) ≥ !(x) + 2, then ex is a (!(y) − !(x) − 1)-ball,
so

•
e x is a (!(y) − !(x) − 2)-sphere. But

•
e x =

⋃
z:x<z≤y

∑
[z, y) =

∑
(x, y), hence

the result
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5.21 Remark. Theorem (5.20) is a special case of a result of Björner and
Wachs ([BW]). They prove that for any subset J of R, the simplicial complex of
an open interval in the set W J , with order induced by Bruhat order, is either a
combinatorial ball or a combinatorial sphere. We wil need the following simpler
result ([De1], [BW]):

(5.21.1) If w, w′ ∈ W J and w < w′ then all maximal chains w′ = w0 > w1 >
. . . > wn = w have the same length n = !(w′) − !(w).

We conclude this chapter with a result which associates to any Bruhat interval
in (W, R) an isomorphic Bruhat interval of some reflection subsystem (W ′, R′)
of (W, R).

5.22 Proposition. Let (W, R) be a Coxeter system, and x, y ∈ W satisfy
x ≤ y. Let x = x0 < x1 < . . . < xn = y be a maximal chain from x to y (thus,
n = !(y) − !(x)). Let W ′ = 〈x−1

i xi−1 | 1 ≤ i ≤ n〉. Then W ′ is a reflection
subgroup of W . Let R′ be the set of canonical generators of W ′,≤′ denote the
Bruhat order on (W ′, R′), and z denote the element of xW ′ with minimal length
!(z). Set x′ = z−1x, y′ = z−1y and let I (resp. I ′ ) denote the interval [x, y] in
the Bruhat order of (WR) (resp. [x′, y′] in the Bruhat order of (W ′, R′)).

Then there is an isomorphism of posets θ: I ′ −→ I such that θ(w) = zw (w ∈ I ′)

Proof Since xi−1 < xi and !(xi) = !(xi−1) + 1, Definition (5.1) implies that
x−1

i xi−1 ∈ T (i = 1, . . . , n). Hence W ′ = 〈W ′∩T 〉, so W ′ is a reflection subgroup
as claimed. Let !′ be the length function on (W ′, R′). Since x−1

i xi−1 ∈ W ′ ∩ T
and !(xi−1) < !(xi), (1.13) (i) and (ii) imply that !′(z−1xi−1) < !′(z−1xi); since
(z−1xi)−1(z−1xi−1) ∈ W ′ ∩ T . Definition (5.1) now gives that x′ = z−1x0 <′

z−1x1 <′ . . . <′ z−1xn = y′. In particular, !′(y′) − !′(x′) ≥ !(y) − !(x).

Now let w ∈ [x′, y′]. Let x′ = w0 <′ w1 <′ . . . <′ wm = y′ be a maximal chain
from x′ to y′, containing w. By (5.1), w−1

i wi−1 ∈ W ′∩T , and so by (1.13) again,
it follows that !(zw0) < !(zw1) < . . . < !(zwn). Since (zwi)−1(zwi−1) ∈ T , (5.1)
gives x = zw0 < zw1 < . . . < zwm = y. In particular, m = !′(y′) − !′(x′) ≤
!(y) − !(x).

The above shows that there is a strictly monotone map θ: I ′ −→ I such that
θ(x) = zw (w ∈ I ′), and that !′(y′) − !′(x′) = !(y) − !(x) = n. Now if n ≤ 1,
then θ is obviously an isomorphism of posets, so assume that n ≥ 2. Let
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L′ =
∑

(x′, y′) (respectively L =
∑

(x, y)) be the simplicial complex of the
interval (x′, y′) in the order ≤′ (resp. of the interval (x, y) in the order ≤). By
(5.20), both L′ and L are (n − 2)-spheres.

Now if A = {a0, . . . , ak} is a k-simplex of L′, then θ(A) = {θ(a0), . . . , θ(ak)} is
a k-simplex of L. Hence K = { θ(A) | A ∈ L′ } is a subcomplex of L, isomorphic
to L′ as a simplicial complex. In particular, K += ∅, K is (n − 2)-homogeneous
and

•
K = ∅. By (5.9) (ii), it follows that K = L. Therefore θ induces an

isomorphism of the open intervals (x′, y′) and (x, y). But θ maps the minimal
element x′ of I ′ to the minimum element x of I, and similarly for y′ and y, so
θ is an isomorphism of posets.

As an immediate consequence of (5.22), we have

5.23 Corollary. Let notation be as in (5.22). Then for any z, z′ ∈ I we have
z−1z′ ∈ W ′

5.24 Remark. In (5.22) and (5.23), it is possible that W ′ = W . This cannot
happen if !(y) − !(x) < #(R). Later, we give conditions under which (W ′, R′)
is a dihedral reflection subsystem.
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Chapter 6

THE POLYNOMIALS RX,Y

This chapter begins with a construction that produces pairs of inverse elements
of the incidence algebra (over the ring ZZ[u, u−1], u an indeterminate) of a lo-
cally finite poset. Under an additional assumption, the inverse of one of these
elements is obtained simply by applying the ring involution of the incidence
algebra extending the involution u -−→ u−1 of ZZ[u, u−1], and one may define
formal analogues of the Kazhdan-Lusztig polynomials in this context.

We then turn to the consideration of the polynomials Rx,y defined for elements
x, y of a Coxeter system by Kazhdan and Lusztig ([KL1]), and show how these
polynomials Rx,y arise from our incidence algebra construction; the data re-
quired for the construction is obtained from certain total orderings of the reflec-
tions.

We begin by recalling the definition of the incidence algebra of a poset ([Ai],
Chapter IV).

6.1 Let P be a locally finite poset (i.e. all intervals in P are finite) and A be
a commutative ring. The incidence algebra AA(P ) is the set

{ f : P 2 −→ A | f(x, y) = 0 if x +≤ y }

regarded as an A-module in the usual way, and equipped with the convolution
product ∗ defined by

(f ∗ g)(x, y) =
∑

z:x≤z≤y

f(x, z)g(z, y) (f, g ∈ AA(P )).

This is an associative A-algebra with the Kronecker delta δ, defined by

δ(x, y) =
{

1 x = y
0 otherwise,
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as identity. An element f of AA(P ) is invertible iff f(x, x) is a unit of A, for
all x ∈ P .

For our purposes, we assume given a fixed element α of A, and a ring involution
of A, written a -−→ ā, such that ᾱ = −α. Then there is an induced ring
involution of AA(P ), which we also denote by f -−→ f̄ , such that

f̄(x, y) = f(x, y) (f ∈ AA(P ), x, y ∈ P ).

6.2 We now fix an arbitrary subset C1 of { (x, y) ∈ P 2 | x < y }, and for
n ∈ IN, define Cn(x, y) = { (x0, . . . , xn) ∈ Pn+1 | (xi−1, xi) ∈ C1 for i =
1, . . . , n, x = x0, y = xn }. Also, set C(x, y) =

⋃

n∈IN
Cn(x, y) (a finite set by the

local finiteness of P ) and Cn =
⋃

(x,y)∈P 2
Cn(x, y) (n ∈ IN).

One could regard C1 as the set of edges of a directed graph with vertex set P ,
and then Cn(x, y) is the set of paths of length n from x to y. For τ ∈ Cn, write
!(τ) = n.

For any subset I of C2 and τ = (x0, . . . , xn) ∈ Cn, we now define

(6.2.1) dI(τ) = { xi | 1 ≤ i ≤ n − 1, (xi−1, xi, xi+1) ∈ I},

and set aI(τ) = dC2\I(τ).

If one calls the chains of I decreasing chains and those of C2 \ I increasing, then
dI(τ) could be called the descent set of τ and aI(τ) its ascent set. This termi-
nology is motivated by the situation in which the elements of C1 are labelled by
elements of a poset, and I is the set of paths (x, y, z) in C2 such that (x, y) has
a greater label than (y, z) (e.g. see [BW]).

We now define an element rI of the incidence algebra; on an interval [x, y] of
P, rI is essentially the generating function for the numbers of increasing paths
of lengths 0,1,2,. . . .

6.3 Definition. For any subset I of C2, define rI ∈ AA(P ) by

(6.3.1) rI(x, y) =
∑

τ∈C(x,y)
dI(τ)=∅

α!(τ) (x, y ∈ P )

73



More generally, for p ∈ IN let rI
p ∈ AA(P ) be defined by

(6.3.2) rI
p(x, y) =

∑

τ∈C(x,y)

#dI (τ)=p

α!(τ) (x, y ∈ P ).

The following proposition describes the inverse of rI .

6.4 Proposition. Let I be a fixed subset of C2 and r = rI , s = rC2\I . Then

r ∗ s̄ = s̄ ∗ r = δ.

Proof It will suffice to show that r ∗ s̄ = δ That is, we must show that for
x, y ∈ P ,
(6.4.1)

∑
z∈P

r(x, z)s̄(z, y) = δ(x, y).

This is clear if x = y or x +≤ y, so suppose x < y. For any z ∈ [x, y], we
have an operation of concatenation of chains; if τ1 = (x0, . . . , xn) ∈ Cn(x, z)
and τ2 = (xn, . . . , xn+m) ∈ Cm(z, y) we have τ1 · τ2 = (x0, . . . , xn, . . . , xn+m) ∈
Cn+m(x, y). Note that !(τ1 · τ2) = !(τ1) + !(τ2).

For any τ = (x0, . . . , xn) ∈ C(x, y), we abuse notation and write z ∈ τ if z = xi

for some i ∈ {0, . . . , n} (in this case, i is uniquely determined). If z = xi, we
then define τ1(z) ∈ C(x, z) and τ2(z) ∈ C(z, y) by τ1(z) = (x0, . . . , xi) and
τ2(z) = (xi, . . . , xn).

Supressing I from the notation, let

S1 = {(σ, ρ, z) | z ∈ P, σ ∈ C(x, z), ρ ∈ C(z, y), d(σ) = ∅, a(σ) = ∅ }
and

S2 = { (τ, z) | τ ∈ C(x, y), z ∈ τ, d(τ1(z)) = ∅, a(τ2(z)) = ∅ }.

There are maps S1 −→ S2 and S2 −→ S1 given by (σ, ρ, z) -−→ (σ · ρ, z) and
(τ, z) -−→ (τ1(z), τ2(z), z) respectively, and these are inverse bijections.
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Therefore
∑

z∈P

r(x, z)s̄(z, y) =
∑

z∈P

[ ∑

σ∈C(x,z)
d(σ)=∅

α!(σ)
][ ∑

ρ∈C(z,y)
a(ρ)=∅

ᾱ!(ρ)
]

=
∑

(σ,ρ,z)∈S1

(−1)!(ρ)α!(σ)+!(ρ)

=
∑

(τ,z)∈S2

(−1)!(τ2(z))α!(τ)

=
∑

τ∈C(x,y)

[ ∑

z∈τ
d(τ1(z))=∅
a(τ2(z))=∅

(−1)!(τ2(z))
]
α!(τ)

and it needs only be checked that if x += y and τ ∈ C(x, y), then

(6.4.1)
∑

z∈F (τ)

(−1)!(τ2(z)) = 0

where F (τ) = { z ∈ τ | d(τ1(z)) = ∅, a(τ2(z)) = ∅ }.

Write τ = (x0, . . . , xn) (note n ≥ 1). Then

F (τ) = { xi | (0 ≤ i ≤ n)(xj−1, xj, xj+1) /∈ I (1 ≤ j ≤ i − 1),
xj−1, xj, xj+1) ∈ I (i + 1 ≤ j ≤ n − 1) }

.

One sees that either F (τ) = ∅, or F (τ) = {xm−1, xm} for some m (1 ≤ m ≤ n).
In either case, (6.4.1) is satisfied.

Here are two special cases of this result.

6.5 Examples.

(i) Let C1 = { (x, y) ∈ P 2 | x < y } and I = ∅. Then

r∅(x, y) =

{ 1 x = y
α x < y
0 otherwise
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and rC2(x, y) =
∑

τ∈C(x,y)

α!(τ). Taking our ring A to be the polynomial ring

Q[α] with the involution α -−→ −α, then specialising α to 1 in the identity

(r∅)−1 = (rC2)

gives the well-known formula µP (x, y) = ζ−1(x, y) =
∑

τ∈C(x,y)

(−1)!(τ), where µP

is the Möbius function on P and ζ denotes the zeta function of P (see [Ai]).

(ii) Take A = Q[α] as in (i), and suppose that P satisfies the Jordan-Dedekind
chain conditon (all maximal chains from x to y have the same length, denoted
!(x, y)). Let

C1 = { (x, y) ∈ P 2 | x < y and there is no z with x < z < y }
= { (x, y) ∈ P 2 | x < y and !(x, y) = 1 }.

Suppose that I ⊆ C2 is such that if x, y ∈ P and x ≤ y then rI(x, y) = α!(x,y)

(for example, P could be a lexicographically shellable poset in the sense of [BW],
and I the set of chains of length 2 with label decreasing from top to bottom).

Specialising α to 1 in the identity

(rI)−1 = (rC2\I)

gives µP (x, y) = (−1)!(x,y) #{ τ ∈ C(x, y) | aI(τ) = ∅ }. More generally, one
has a similar result to ([BW], Theorem 3.4) concerning the values of the Möbius
function on a rank-selected subposet of P .

6.6 We assume as in (6.5) that A = Q[α] is a polynomial ring, and ᾱ = −α.
For any m ∈ IN and f ∈ AA(P ), define dm

dαm f ∈ AA(P ) in the obvious way:

[
dm

dαm
f

]
(x, y) =

dm

dαm
[f(x, y)] (x, y) ∈ P ).

Our next result expresses the rI
p (p ∈ IN) in terms of rI (implicitly).
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6.7 Proposition. For any subset I of C2 and any n ∈ IN, n ≥ 1,

(6.7.1) (rI)n =
n−1∑

m=0

1
m!

dm

dαm
(αmrI

n−1−m)

Proof Evaluate both sides of (6.7.1) at (x, y) ∈ P 2. The right hand side of
(6.7.1) gives

n−1∑

m=0

∑

τ∈C(x,y)

#d(τ)=n−1−m

(
m + !(τ)

m

)
α!(τ)

and the left hand side gives

∑

(z0,...,zn)∈P n+1

z0=x,zn=y

∑

τi∈C(zi−1,zi)
d(τi)=∅

(i=1,...,n)

n∏

i=1

α!(τi) =
∑

τ∈C(x,y)

∑

τi∈C(i=1,...,n)
d(τi)=∅

τ=τ1·...·τn

α!(τ)

where C =
⋃

(x,y)∈P 2
C(x, y) and τ1 · . . . · τn denotes the chain obtained by con-

catenating τ1, . . . , τn. Now if τ = τ1 · . . . · τn where d(τi) = ∅, (i = 1, . . . , n),
then #d(τ) ≤ n − 1.

Hence to prove (6.7.1), it suffices to show that if τ ∈ C(x, y) and #d(τ) =
n − 1 − m, where 0 ≤ m ≤ n − 1, then
(6.7.2) #{( τ1, . . . , τn) ∈ Cn | d(τi) = ∅ (i = 1, . . . , n), τ = τ1 · . . . · τn } =(

m+!(τ)
m

)
.

Suppose τ ∈ Cp(x, y), say τ = (x0, . . . , xp), and that d(τ) = {xi1 , . . . , xin−m−1}
where 1 ≤ i1 < . . . < in−m−1 ≤ p (thus !(τ) = p).

Let { (τ1, . . . , τn) ∈ Cn | d(τi) = ∅ (i = 1, . . . , n), τ = τ1 · . . . · τn } = K. If
(τ1, . . . , τn) ∈ K, then there exist integers k1, . . . , kn−1 such that 0 ≤ k1 ≤
. . . ≤ kn−1 ≤ p, and, with k0 = 0 and kn = p, τj ∈ C(xkj−1 , xkj ) (j =
1, . . . , n). Moreover, since {xi1 , . . . , xin−m−1} = d(τ1 · . . . · τn), we must have
{i1, . . . , in−m−1} ⊆ {k1, . . . , kn−1}.

On the other hand, suppose given integers k1, . . . , kn−1 with 0 ≤ k1 ≤ . . . ≤
kn−1 ≤ p and {i1, . . . , in−m−1} ⊆ {k1, . . . , kn−1}. Set k0 = 0, kn = p, and
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τj = (xkj−1 , xkj−1+1, . . . , xkj ) (i = 1, . . . , n). Then τ = τ1 · . . . · τn and d(τj) =
∅ (j = 1, . . . , n).

The preceding two paragraphs prove that there is a bijection of K with the
set of non-desceasing functions f : {1, . . . , n − 1} −→ {0, 1, . . . , p} such that the
(n−m− 1)-set {i1, . . . , in−m−1} is contained in the image of f . Call this set of
functions L.

Suppose given f ∈ L. For k = 1, . . . , n − m − 1, let jk = min { j | 1 ≤
j ≤ n − 1, f(j) = ik }. Let hf : {1, . . . , m} −→ {1, . . . , n − 1} be the unique
strictly increasing function such that jk is not in the image of hf , for all k =
1, . . . , n − m − 1. Then the map f -−→ f ◦ hf is a bijection between L and
the set M of non-decreasing functions g: {1, . . . , m} −→ {0, 1, . . . , p}. The map
g -−→ {g(1), g(2) + 1, . . . , g(m) + m − 1} is a bijection between M and the set
of m-subsets of {0, 1, . . . , m + p − 1}, of which there are

(m+p
m

)
. Hence

#(K) = #(L) = #(M) =
(

m + p

m

)
=
(

m + !(τ)
m

)
,

completing the proof of (6.7.2) and hence of the proposition.

Now the coefficient of rI
n−1 on the right of (6.7.1) is 1, so one may solve in turn

for rI
0 , rI

1 , r
I
2, . . . , in terms of powers of rI . This implies

6.8 Corollary. If I, J are subsets of C2 and rI = rJ , then rI
p = rJ

p (p ∈ IN).

We will not make any essential use of (6.7) or (6.8), but give one application
here.

6.9 Example. This is a continuation of Example (6.5) (ii), and we maintain
the notation in force there. We need an identity involving binomial coeffi-
cients. For non-negative integers m, n (m ≥ 1), we have dm−1

dxm−1 [xn(1 + x)m] =
m∑

k=0

(m
k

) (n+k)!
(n+k+1−m)!x

k+n+1−m. Putting x = −1 and rearranging, one obtains

(6.9.1)
m∑

k=0

(−1)k

(
n + k

k

)(
n + 1
m − k

)
=
{ 0 m > 0

1 m = 0.
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Fix x, y ∈ P with !(x, y) = n, and for i ∈ IN, let γi and ζi+1 denote the values
of rI

i (x, y) and (rI)i+1(x, y) at α = 1 (thus, ζi+1 = ζi+1(x, y) is the value of a
power of the zeta function).

The identity (6.7.1) gives

ζj+1 =
j∑

k=0

(
n + k

k

)
γj−k (j ∈ IN)

and it is clear that one may solve uniquely for γj in terms of ζj+1, . . . , ζ1. Indeed,

j∑

k=0

(
n + k

k

) j−k∑

l=0

(−1)l

(
n + 1

l

)
ζj−k+1−l

=
j∑

m=0

m∑

k=0

(−1)m−k

(
n + k

k

)(
n + 1
m − k

)
ζj+1−m

= ζj+1 by (6.9.1) and so

γj =
j∑

k=0

(−1)k

(
n + 1

k

)
ζj+1−k.

In particular,

j∑

k=0

(−1)k
(

!(x, y) + 1
k

)
ζj+1−k(x, y) ≥ 0 (j ∈ IN)

(the left hand side being zero for j ≥ !(x, y)).

6.10 Henceforward we assume that A = ZZ[u, u−1] is the ring of Laurent
polynomials in an indeterminate u, that the involution a -−→ ā of A is the
one determined by ū = u−1, and that α = u−1 − u. We also define another
involution a -−→ â of A such that û = −u.

We continue to let AA(P ) denote the incidence algebra of a fixed locally finite
poset P . The involutions a -−→ ā and a -−→ â have extensions to AA(P )
which we denote by f -−→ f̄ and f -−→ f̂ respectively (where f̄(x, y) =
f(x, y), f̂(x, y) = ̂f(x, y) (f ∈ AA(P ), x, y ∈ P )).
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Assume that there exists an element r ∈ AA(P ) satisfying
(6.10.1) r ∗ r̄ = r̄ ∗ r = δ
(6.10.2) r(x, x) = 1 (x ∈ P )

After a preliminary remark, the following sections describe some formal conse-
quences of these two conditions.

6.11 Remark. Here are three situations in which such an element r exists.

(i) If (W, R) is any Coxeter system, take P = W equipped with the Bruhat
order. For x, y ∈ P , let r(x, y) = u!(y)−!(x)Rx,y(u2) where Rx,y is the polynomial
defined in [KL1]. Here, one also has
(6.11.1) r(x, y) is a polynomial in (u−1 − u) = α.

(ii) More generally, let P = W J be the set of shortest coset representatives of a
parabolic subgroup WJ of W . In [De 4], Deodhar defines polynomials RJ

τ,σ and
(6.10.1), (6.10.2) are satisfied with r(x, y) = u!(y)−!(x)RJ

x,y(u2) (x, y ∈ W J ).
However, r(x, y) cannot in general be normalised here so as to satisfy (6.11.1).

(iii) Suppose given C1 as in (6.2), and a subset I of C2 such that, in the
notation of (6.3), rI = rC2\I . Set r = rI . Then (6.10.2) and (6.11.1) hold, and
so does (6.10.1) (by (6.4)). It will be seen later that the element r defined for a
Coxeter system in (i) is produced by this construction.

Corresponding to the element r ∈ AA(P ), we now define elements p, q = AA(P );
in case r is as in (6.11) (i), the p(x, y) (x, y ∈ P ) are, up to normalisation, the
Kazhdan-Lusztig polynomials of the Coxeter system (W, R), and the q(x, y) are
the inverse Kazhdan-Lusztig polynomials (to within normalisation).

6.12 Proposition.

(i) There exists a unique element p ∈ AA(P ) satisfying

(a) p(x, x) = 1 (x ∈ P )

(b) p(x, y) ∈ u−1ZZ[u−1] (x, y ∈ P, x += y)

(c) p = r ∗ p̄

(ii) There exists a unique element q ∈ AA(P ) satisfying
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(a) q(x, x) = 1 (x ∈ P )

(b) q(x, y) ∈ u−1ZZ[u−1] (x, y ∈ P, x += y)

(c) q = q̄ ∗ r

(iii) If for all x, y ∈ P, r(x, y) is a polynomial in α = u−1 − u, then p ∗ q̂ =
q̂ ∗ p = δ

Proof (i) The proof here is by a standard argument ([L 1]). Set p(x, x) = 1 for
all x ∈ P . Given x, y ∈ P with x < y, one may suppose that p(z, y) (x < z ≤
y) exists and is uniquely determined by the conditions p(y, y) = 1, p(z, y) ∈
u−1ZZ[u−1] (z += y) and p(z, y) =

∑
w:z≤w≤y

r(z, w)p(w, y).

Let β(x, y) =
∑

z:x<z≤y
r(x, z)p(z, y). One must show that there exists a unique

element p(x, y) ∈ u−1Z[u−1] satisfying p(x, y) − p(x, y) = β(x, y). This will be
the case provided β(x, y) = −β(x, y). But

β(x, y) =
∑

z:x<z≤y

r(x, z)p(z, y)

=
∑

z:x<z≤y

∑

w:z≤w≤y

r(x, z)r(z, w)p(w, y)

=
∑

w:x<w≤y

∑

z:x<z≤y

r(x, z)r(z, w)p(w, y)

= −
∑

w:x<w≤y

r(x, w)p(w, y) by (6.10.1) and (6.10.2)

= −β(x, y)

so (i) is proved, and (ii) is proved similarly.

(ii) Note α̂ = ᾱ, so r̄ = r̂, and that the involutions − andˆof AA(P ) commute.
Then

q̂ ∗ p = ˆ̄q ∗ r̂ ∗ p

= ¯̂q ∗ r̄ ∗ p

= ¯̂q ∗ p̄

= (q̂ ∗ p).
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Now (q̂ ∗ p)(x, y) = 1 if x = y, and (q̂ ∗ p)(x, y) ∈ u−1ZZ[u−1] otherwise. Hence
(q̂ ∗ p)(x, y) = 0 if x += y, and so q̂ ∗ p = δ ie q̂ is a left inverse for p. This implies
p−1 = q̂ (p is invertible since p(x, x) = 1 is a unit in A for all x ∈ P ).

6.13 Remark. For β =
∑

n∈ZZ
bnun, define supp(β) = {n ∈ ZZ | bn += 0 }.

One could define a different element of AA(P ) satisfying (6.12) (i) (a), (i) (c)
and the following in place of (6.12) (i) (b): p(x, y) ∈ IN[u, u−1]; supp(p(x, y)) ∩
supp(p(x, y)) = ∅ (x, y ∈ P, x += y).

We now reinterpret the above facts as statements about a ZZ-module involution
on a certain A-module defined in terms of the poset P , and make some sim-
ple remarks concerning the structure of the sets of invariant and anti-invariant
elements.

6.14 Let ĥ(P ) be the set of formal A-linear combinations
∑

x∈P
axtx (ax ∈ A)

of a family {tx}x∈P of symbols, such that for each x ∈ P there exist only finitely
many y ∈ P with ay += 0 and y ≥ x. Regard ĥ(P ) as an A-module in the obvious
way.

By (6.10.1), there is a ZZ-module involution θ of ĥ(P ) such that θ(
∑

x∈P
axtx) =

∑
x∈P

(
∑

y∈P
r(x, y)āy)tx. Note that by (6.10.2)

(6.14.1) if c =
∑

x∈P
axtx ∈ ĥ(P ) (ax ∈ u−1ZZ[u−1] for all x) and θ(c) = c, then

c = 0.

In this context, (6.12) shows that for x ∈ P , there exists a unique element
c′x ∈ ĥ(P ) satisfying
(6.14.2) θ(c′x) = c′x ; c′x ∈ tx +

∑
y∈P

u−1ZZ[u−1]ty,

and that in fact, c′x =
∑

y∈P
p(y, x)ty, so

(6.14.3) c′x ∈ tx +
∑
y<x

u−1ZZ[u−1]ty.

From (6.14.3), one sees that ĥ(P ) can also be regarded as the set of fomal A-
linear combinations

∑
x∈P

axc′x such that for each x ∈ P there exist only finitely
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many y ∈ P with ay += 0 and y ≥ x.

Now one sees that for any h ∈ ĥ(P ) there exists a unique element c′(h) of ĥ(P )
satisfying
(6.14.4) θ(c′(h)) = c′(h) ; c′(h) ∈ h +

∑
y∈P

u−1ZZ[u−1]ty.

In fact, if h =
∑

x∈P
axc′x ∈ ĥ(P ), set c′(h) =

∑
x∈P

[(1 − λ′)ax + λ′āx]c′x where

λ′(
∑

n∈ZZ
anun) =

∑
n<0

anun; then (6.14.4) holds and (6.14.1) gives uniqueness.

Now define λ: ĥ(P ) −→ ĥ(P ) by λ(
∑

x∈P
axtx) =

∑
x∈P

λ′(ax)tx and note that

if ax ∈
∑
n<0

anun, then λθ(axtx) ∈
∑
y<x

Aty. It follows from this that for any

h ∈ ĥ(P ) and y ∈ P , the element ty occurs with non-zero coefficient in only
finitely many of the elements (λθ)n(h) (n ∈ IN). This shows that for h ∈ ĥ(P ),
the series

∑

n∈IN
(λθ)n(h) converges (in an appropriate sense) to an element of

ĥ(P ), and thus that 1 − λθ is invertible in EndZZ(ĥ(P )). Similarly, (1 − θλ)−1

exists in EndZZ(ĥ(P )).

Now take h ∈ ĥ(P ); we compute

(1 − λθ)c′(h) = c′(h) − λθc′(h)
= c′(h) − λc′(h)
= (1 − λ)c′(h) = (1 − λ)h

and conclude that c′(h) = (1 − λθ)−1(1 − λ)h. Since θ(c′(h)) = c′(h) it follows
that
(6.14.5) (1 − θ)(1 − λθ)−1(1 − λ) = 0.

Now (6.14.5) is equivalent to each of (6.14.6)–(6.14.8) below
(6.14.6) (1 − λ)(1 − θλ)−1(1 − θ) = 0
(6.14.7) (1 − λθ)−1(1 − λ) + (1 − θλ)−1(1 − θ) = 1
(6.14.8) (1 − θ)(1 − λθ)−1 + (1 − λ)(1 − θλ)−1 = 1
(the equivalence of (6.14.5)–(6.14.8) holds if θ, λ are elements of any initial ring
and (1 − θλ), (1− λθ) are both invertible).

Now (6.14.8) gives a canonical decomposition of an element of ĥ(P ) as a sum
of an θ-anti-invariant element, and an element of ĥ(P ) in

∑
x∈P

ZZ[u]tx. Also,
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(6.14.7) gives a representation of an element of ĥ(P ) as a sum of a θ-invariant
element and an element of

∑
x∈P

u−1ZZ[u−1]tx, in ĥ(P ).

Similarly, one could show that there is a unique element c(h) of ĥ(P ) such that
θ(c(h)) = c(h) and c(h) ∈ h +

∑
y∈P

uZZ[u]ty, and prove analogous results for it.

Applying these constructions in the situation (6.11) (i), one obtains (essentially)
the elements Cx, C′

x (x ∈ W ) of the corresponding Hecke algebra ([KL1]). Ap-
plying the construction to the reverse poset produces the elements Dx, D′

x ([L2]).

This completes our discussion of the formal consequences of the existence of an
element r ∈ AA(P ) satisfying (6.10.1) and (6.10.2), and we turn now to the
justification of the remark in (6.11) (iii) that the polynomials Rx,y for a Coxeter
system are produced by our incidence algebra construction.

For the remainder of this chapter, (W, R) denotes a Coxeter system, and T =⋃
w∈W

wRw−1. The data required for the incidence algebra construction will be

obtained from certain orderings of T .

6.15 Definition. A partial order < on T is called a natural order if for any
dihedral reflection subgroup W ′ of W , either

r ≺ rsr ≺ . . . ≺ srs ≺ s or s ≺ srs ≺ . . . ≺ rsr ≺ r

where {r, s} = S(W ′).

Here, for example, r ≺ rsr ≺ . . . ≺ srs ≺ s means that






2m+1︷ ︸︸ ︷
rs . . . r <

2n+1︷ ︸︸ ︷
rs . . . r (1 ≤ 2m + 1 ≤ 2n + 1 ≤ ord(rs))

2m+1︷ ︸︸ ︷
sr . . . s <

2n+1︷ ︸︸ ︷
sr . . . s (1 ≤ 2n + 1 ≤ 2m + 1 ≤ ord(rs))

2m+1︷ ︸︸ ︷
rs . . . r <

2n+1︷ ︸︸ ︷
sr . . . s (1 ≤ 2m + 1, 2n + 1 ≤ ord(rs)).
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6.16 Remarks.

(i) A natural order is a total order on T .

(ii) The reverse of a natural order on T is a natural order on T .

(iii) Let < be a natural order on T , and (W ′, R′) be a reflection subsystem of
(W, R). Then the restriction of < to W ′ ∩T is a natural order of the reflections
of (W ′, R′) (by (1.9) (i)).

(iv) Suppose that (W, R) is a finite Coxeter system, and write T = {t1, . . . , tn}
where n = #(T ). Then it may be shown that the partial order < on T such
that t1 ≺ t2 ≺ . . . ≺ tn is a natural order iff there is a reduced expression
w0 = r1 . . . rn for the longest element w0 of W , such that ti = r1 . . . ri . . . r1 (i =
1, . . . , n).

To show that natural orders exist we make use of the root system of (W, R).

6.17 Lemma. Suppose (W, R) is realised geometrically on a real vector space
V with positive roots Ψ+. Let W ′ be a dihedral reflection subgroup of W and
write S(W ′) = {t, s}. Let < be the order on W ′ ∩ T such that t ≺ tst ≺ . . . ≺
sts ≺ s, and set Ψ′+ = {αεΨ+ | rα ∈ W ′ }.

If α, β, γ ∈ Ψ′+ and rα ≺ rβ ≺ rγ then β = cα + dγ for some c > 0, d > 0.

Proof Let δ,ε be the unique elements of Φ′+ satisfying rδ = t, rε = s, and
let pn (n ∈ IN

⋃
{−1}) be the real numbers defined by the recurrence relation

(2.1.3), with γ = −(δ | ε) (note that γ ∈ { cos π
m | m ∈ IN, m ≥ 2 } ∪ [1,∞) by

(3.9)).

Define an inner product on U = IRδ + IRε so δ and ε form an orthonormal basis
of U , and regard U as a two-dimensional Euclidean space. Every element of
Φ′+ is a non-negative linear combination of δ and ε, and so makes an angle of
between 0 and π

2 (inclusive) with δ; write α ≺ β (α, β ∈ Φ′+) if the angle made
by the vectors α and δ is less than that formed by β and δ.

Now note that if ord(rs) = m is finite, then W ′ ∩ T = {t, tst, . . . ,
2m−1︷ ︸︸ ︷
ts . . . t} and

t ≺ tst ≺ . . . ≺
2m−1︷ ︸︸ ︷
ts . . . t. Whether ord(rs) is finite or not, (2.1.1) and (2.1.2) show
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that the positive root corresponding to
2n+1︷ ︸︸ ︷

ts . . . t (0 ≤ n < ord(ts)) is pn+1δ + pnε,

and that corresponding to
2n+1︷ ︸︸ ︷

st . . . s (0 ≤ n < ord(ts)) is pnδ + pn+1ε. Making
use of the parts of (2.2) (iii), (iv) concerning the ratios pn

pn+1
, it follows that for

α, β ∈ Φ′+, we have α ≺ β iff rα ≺ rβ . The assertion of the lemma is clear from
this characterisation of ≺.

6.18 Proposition. There exists a natural ordering of the reflections T of
(W, R).

Proof Suppose (W, R) is realised geometrically as a group of isometries of a real
vector space V , with simple roots Π and positive roots Φ+. Let U = {

∑
α∈Π

cαα ∈

V |
∑

α∈Π
cα = 1, } be the affine hyperplane spanned by Π, and Ψ = { β ∈ U | β

is non-isotropic and rβ ∈ T }. The map ρ: Ψ −→ T defined by β -−→ rβ (β ∈ Ψ)
is a bijection (if β =

∑
α∈Π

cαα ∈ Φ+, then ρ−1(rβ) = (
∑

α∈Π
cα)−1β).

Let A be a set of linear functions V −→ IR separating the points of Ψ (if R
is finite, A could be chosen to be a singleton set; in general, A can be taken
as the set of all linear functions V −→ IR). We suppose that A is given some
well-ordering, and define a relation < on T by the condition t < t′ iff t = t′

or (t += t′ and ϕ(ρ−1(t)) ≺ ϕ(ρ−1(t′)) where ϕ = min{ f ∈ A | f(ρ−1(t) +=
f(ρ−1(t′)) }) (t, t′ ∈ T ).

The relation < is evidently reflexive and anti-symmetric. To show that < is
transitive, it will suffice to show that if t, t′, t′′ ∈ T are all distinct and t <
t′, t′ < t′′ then t < t′′. Let ϕ = min{ f ∈ A | f(ρ−1(t)) += f(ρ−1(t′)) } and
ϕ′ = min{ f ∈ A | f(ρ−1(t′) += f(ρ−1(t′′)) }. Setting ϕ′′ = min{ϕ, ϕ′} we have
f(ρ−1(t)) = f(ρ−1(t′)) = f(ρ−1(t′′)) if f ∈ A is less than ϕ′′, and ϕ′′(ρ−1(t)) <
ϕ′′(ρ−1(t′′)), so t < t′′. Hence < is a partial order on T , in fact a total order.

Let W ′ be a dihedral reflection subgroup of W , and write S(W ′) = {s, t} where
t ≺ s. Let <′ be the total order on W ′ ∩ T such that t ≺′ tst ≺′ . . . ≺′ sts ≺′ s.
To show that < is a natural order, it will be sufficient to prove that the restriction
of < to W ′ ∩ T is <′.
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Set δ = ρ−1(t), ε = ρ−1(s), Ψ′ = ρ−1(W ′∩T ) and ϕ = min{ f ∈ A | f(ρ−1(t) +=
f(ρ−1(s)) }. It follows from (6.17) that if α, β, γ ∈ Ψ′ and rα ≺′ rβ ≺′ rγ then
for some c ∈ IR with 0 < c < 1, we have β = cα + (1 − c)γ. This shows
firstly f(β) = f(δ) = f(ε) for all β ∈ Ψ′ if f ∈ A is less than ϕ, and that
ϕ(δ) ≺ ϕ(β) ≺ ϕ(ε) for all βεΨ′ \ {δ, ε}. By a second application of the above
consequence of (6.17), it follows that if α, β ∈ ψ′ and rα ≺′ rβ then ϕ(α) ≺ ϕ(β).
Hence if t′, t′′ ∈ W ′ ∩ T and t′ ≺′ t′′, then t′ ≺ t′′. Since ≺ and ≺′ are total
orders, ≺′ is the restriction of ≺ to W ′ ∩ T .

In (6.20), we show how to construct new natural orders from a given natural
order. First, we need the following simple

6.19 Lemma. Let < be a natural order on T, r ∈ R and t ∈ T (t += r). If
t ≺ r then rtr ≺ r. If r ≺ t then r ≺ rtr.

Proof Write S(〈t, r〉) = {r, t′}. Suppose t′ ≺ r. Then t′ ≺ t′rt′ ≺ . . . ≺ rt′r ≺ r.
Hence t ≺ r and rtr ≺ r. Similarly, if r ≺ t′ then r ≺ t and r ≺ rtr.

6.20 Proposition. Let < be a natural order on T , and r ∈ R. Then the
relation <′ on T defined by

t1 <′ t2 iff






t1 = r

or (t1 += r, r ≺ t2 and t1 < t2)
or (t1 += r, t2 ≺ r and rt1r < rt2r) (t1, t2 ∈ T )

is a natural order on T .
Proof We first check that <′ is a partial order. Now <′ is clearly reflexive. To
check that <′ is anti-symmetric, suppose that t1, t2 ∈ T and t1 <′ t2, t2 <′ t1.
If t1, t2 ≺ r or r ≺ t1, t2 or r ∈ {t1, t2}, the definition of <′ implies that t1 = t2.
Otherwise, we have, say, t1 ≺ r ≺ t2. By (6.19), rt1r ≺ r ≺ rt2r contrary
to t2 <′ t1. Hence this last case cannot occur, and <′ is anti-symmetric. To
prove that <′ is transitive, it will suffice to show that if t1, t2, t3 ∈ T and
t1 ≺′ t2, t2 ≺′ t3 then t1 ≺′ t3. Note that r /∈ {t2, t3}, so that r ≺′ t3. Hence
we may assume that t1 += r. If t3 ≺ r, then by (6.19) and the definition
of <′, we have rt2r ≺ rt3r ≺ r, hence t2 ≺ r. From t1 ≺′ t2, we now get
rt1r ≺ rt2r ≺ rt3r and so t1 ≺′ t3. If r ≺ t2 and r ≺ t3, then t1 ≺ t2 ≺ t3
so t1 ≺′ t3. The remaining case is t2 ≺ r ≺ t3. Here t1 ≺′ t2 and (6.19) give
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rt1r ≺ rt2r ≺ r, hence t1 ≺ r ≺ t3 and t1 ≺′ t3. Therefore <′ is a partial order
as claimed.

Now fix a dihedral reflection subgroup W ′ of W , and write S(W ′) = {t, s} where
t ≺ s. We must check that either t ≺′ tst ≺′ . . . ≺′ sts ≺′ s or s ≺′ sts ≺′ . . . ≺′

tst ≺′ t. Consider the following cases.

Case 1 t ≺ r ≺ s Then t ≺ tst ≺ . . . ≺ sts ≺ s. Now S(rW ′r) = {rtr, rsr} by
(3.14) and rtr ≺ r ≺ rsr by (6.19), so rtr ≺ rtstr ≺ . . . ≺ rstsr ≺ rsr. Noting
that if t1 ≺ r ≺ t2, then t1 ≺′ t2, it follows that t ≺′ tst ≺′ . . . ≺′ sts ≺′ s.

Case 2 t ≺ s ≺ r Now S(rW ′r) = {rtr, rsr}, so either rtr ≺ rtstr ≺ . . . ≺
rstsr ≺ rsr or rsr ≺ rstsr ≺ . . . ≺ rtstr ≺ rtr. Since t ≺ tst ≺ . . . ≺ sts ≺ s ≺
r , we have either t ≺′ tst ≺′ . . . ≺′ sts ≺′ s or s ≺′ sts ≺′ . . . ≺′ tst ≺′ t.

Case 3 r ≺ t ≺ s Here r ≺ t ≺ tst ≺ . . . ≺ sts ≺ s so t ≺′ tst ≺′ . . . ≺′ sts ≺′ s.

Case 4 t = r Here r ≺ rsr ≺ . . . ≺ srs ≺ s so r ≺′ rsr ≺′ . . . ≺′ srs ≺′ s.

Case 5 s = r Here t ≺ trt ≺ . . . ≺ rtrtr ≺ rtr ≺ r so r ≺′ rtr ≺′ . . . ≺′ trt ≺′ t.

Hence <′ is a natural order as claimed.

6.21 Remark. The natural order <′ defined in (6.20) will be called the lower
r-conjugate of <. Define the upper r-conjugate <′′ of < to be the reverse of the
lower r-conjugate of the reverse of <. Thus

t1 <′′ t2 iff






t2 = r

or (t2 += r, t1 ≺ r and t1 < t2)
or (t2 += r, r ≺ t1 and rt1r < rt2r) (t1, t2 ∈ T ),

and <′′ is a natural order.

Note that the upper r-conjugate of the lower r-conjugate of < is equal to the
upper r-conjugate of <.
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6.22 Let P be the poset W equipped with Bruhat order, A = ZZ[q 1
2 , q−

1
2 ] be

the ring of Laurent polynomials in an indeterminate q
1
2 and α = q−

1
2 − q

1
2 .

Let C1 = E(W,R) be the edge set of the Bruhat graph Γ(W,R) and adopt the
notations of (6.2).

Let < be a fixed natural order on T . We define a correponding element r≺ of the
incidence algebra AA(P ) as follows using (6.3); r≺ = rI where I = { (x, y, z) ∈
C2 | y−1z ≺ x−1y }. Thus, for any x, y ∈ W, r≺(x, y) is a polynomial in α, the
coefficient of αm being the cardinality of the set

{ (x0, . . . , xm) ∈ Cm(x, y) | x−1
0 x1 ≺ x−1

1 x2 ≺ . . . , x−1
m−1xm }.

Recall the definition of the R̃x,y(x, y ∈ W ) from Chapter 0. We may now state

6.23 Theorem. Let ≺ be a natural order on the reflections of the Coxeter
system (W, R). Then for all x, w ∈ W ,
(6.23.1) r≺(x, w) = R̃x,w.

Theorem (6.23) will be proved by induction on !(w) in sections (6.24)–(6.26). If
w = 1, the result is trivial. So assume !(w) ≥ 1 and that (6.23.1) holds with w
replaced by any element of W of length less than !(w), for any natural order <.
In (6.24)–(6.26), w is fixed and s denotes a fixed element of R with !(ws) < !(w)

6.24 For any natural order <, we define three elements f≺, g≺, h≺ of AA(P )
as follows. Let <′ be the upper s-conjugate of <, and for x, y ∈ W and n ∈ IN,
define

Xn(x, y) = { (x0, . . . , xn) ∈ Cn(x, y) | s < x−1
0 x1 ≺ . . . ≺ x−1

n−1xn }
Yn(x, y) = { (y0, . . . , yn) ∈ Cn(x, y) | s < y−1

0 y1, y
−1
0 y1 ≺′ . . . ≺′ y−1

n−1yn }
Zn(x, y) = { (z0, . . . , zn) ∈ Cn(x, y) | z−1

0 z1 ≺ . . . ≺ z−1
n−1zn ≺ s }.

We set
f≺(x, y) =

∑

n∈IN

#Xn(x, y)αn

g≺(x, y) =
∑

n∈IN

#Yn(x, y)αn

h≺(x, y) =
∑

n∈IN

#Zn(x, y)αn

89



Note that

{ (x0, . . . , xm) ∈ Cm(x, y) | x−1
0 x1 ≺ . . . ≺ x−1

m−1xm }

=
m⋃·

n=0

{ x0, . . . , xm) | (x0, . . . , xn) ∈ Zn(x, xn),

(xn, . . . , xm) ∈ Xm−n(xn, y) }.

It follows that
(6.24.1) r≺ = h≺ ∗ f≺.

For similar reasons
(6.24.2) r≺

′
= h≺ ∗ g≺.

6.25 Lemma. For any y, z ∈ W we have

(i) f≺(y, z) = g≺(ys, zs) (ys < y, zs < z)

(ii) g≺(y, z) − αg≺(y, zs) = f≺(ys, zs) − αf≺(y, zs) (ys < y, zs < z)

(iii) g≺(ys, zs) = f≺(y, z) − αf≺(ys, z) (ys > y, zs < z)

(iv) f≺(y, z) = g≺(ys, zs)− αg≺(ys, z) (ys < y, zs > z)

Proof For y, z ∈ W , and n ∈ IN, let

Un(y, z) = { (x0, . . . , xn) ∈ Cn(y, z) | s ≺ x−1
0 x1 ≺ . . . ≺ x−1

n−1xn }

and define u≺(y, z) =
∑

n∈IN
#Un(y, z)αn. Now note that Xn(y, z) = Un(y, z) if

ys < y, and that if ys > y, then

Xn(y, z) = Un(y, z)
⋃· { (y, y0, . . . , yn−1) | (y0, . . . , yn−1) ∈ Xn−1(ys, z) }.

It follows that

(6.25.1) u≺(y, z) =
{

f≺(y, z) (ys < y)
f≺(y, z) − αf≺(ys, z) (ys > y).
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Similarly, define

Vn(y, z)

= { (x0, . . . , xn) ∈ Cn(y, z) | s ≺ x−1
0 x1, x−1

0 x1 ≺′ . . . ≺′ x−1
n−1xn ≺′ s }

and v≺(y, z) =
∑

n∈IN
#Vn(y, z)αn. Here, we have

(6.25.2) v≺(y, z) =
{

g≺(y, z) (zs > z)
g≺(y, z) − αg≺(y, zs) (zs < z).

Now note that by (1.20), (6.19) and the definition of ≺′, the map Wn+1 −→
Wn+1 defined by (x0, . . . , xn) -−→ (x0s, . . . , xns) restricts to a bijection

Un(y, z) −→ Vn(ys, zs).

It follows that
(6.25.3) u≺(y, z) = v≺(ys, zs) (y, z ∈ W )

The assertions (i)–(iv) all follow from (6.25.1)–(6.25.3).

We may now complete the proof of (6.23).

6.26 Let < be any natural order on T,<′ be its upper s-conjugate and <′′ be
the lower s-conjugate of <. Define f≺, g≺, h≺ as in (6.24).

We first show that f≺(x, ws) = g≺(x, ws) (x ∈ W ) by descending induction
on !(x). If !(x) > !(ws), both sides are zero. Note that r≺(x, ws) = R̃x,ws =
r≺

′
(x, ws). Hence by (6.24.1) and (6.24.2), for any x ∈ W we have

f≺(x, ws) = r≺(x, ws) −
∑

y>x

h≺(x, y)f≺(y, ws)

= r≺
′
(x, ws) −

∑

y>x

h≺(x, y)g≺(y, ws) by induction

= g≺(x, ws).

91



Now we make use of (6.25) to show f≺(x, w) = g≺(x, w)(x ∈ W ).

If xs > x, then g≺(x, w) = αg≺(x, ws) + f≺(xs, ws) by (6.25) (iv)
= αg≺(x, ws) + g≺(xs, ws)
= αf≺(xs, w) + g≺(xs, ws) by (6.25) (i)
= f≺(x, w) by (6.25) (iii).

If xs < s, then f≺(x, w) = g≺(xs, ws) by (6.25) (i)
= f≺(xs, ws)
= g≺(x, w) + α(f≺(x, ws)− g≺(x, ws)) by (6.25)(ii)
= g≺(x, w).

For x ∈ W, r≺(x, w) =
∑

y

h≺(x, y)f≺(y, w)

=
∑

y

h≺(x, y)g≺(y, w)

= r≺
′
(x, y) by (6.24.1), (6.24.2) again.

We have shown that
(6.26.1) r≺(x, w) = r≺

′
(x, w) if <′ is the upper s-conjugate of <.

Since <′ is also the upper s-conjugate of <′′, we have r≺
′′
(x, w) = r≺

′
(x, w).

Hence r≺(x, w) = r≺
′′
(x, w), and to show r≺(x, w) = R̃x,w, it suffices to show

r≺
′′
(x, w) = R̃x,w. Since T has a minimum element s in the ordering <′′, it

follows that there is no loss of generality in assuming that s is the minimum
element of T in the natural ordering <.

But then f≺ = r≺, g≺ = r≺
′
so

r≺(x, w) = f≺(x, w) =
{

g≺(xs, ws) (xs < s)
g≺(xs, ws) + αg≺(x, ws) (xs > x) by (6.25)

=
{

r≺
′
(xs, ws) (xs < x)

r≺
′
(xs, ws) + αr≺

′
(x, ws) (xs > s)

=
{

R̃xs,ws (xs < x)
R̃xs,ws + αR̃x,ws (xs > x)

= R̃x,w by (0.1).

This complete the proof of (6.23).
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6.27 Remark. Let J be a subset of R. It may be shown that there is a
natural order < of T such that t ≺ t′ for all t ∈ WJ ∩ T and t′ ∈ T \WJ . Using
(6.23), it may be shown that if the maximal chains (x0, . . . , xn) of the relative
Bruhat interval [x, y] ∩ W J (x, y ∈ W J ) are labelled by the successive ratios
(x−1

0 x1, . . . , x
−1
n−1xn) ∈ Tn, one obtains an L-labelling in the sense of ([BW],

Definition 3.2) (except that here the labels lie in a totally ordered set rather
than IN).

6.28 We conclude this chapter by mentioning one application of (6.23). Adopt
the notation of (5.22). Let ΓI (respectively ΓI′) be the full subgraph of Γ(W,R)

(respectively, Γ(W ′,R′)) with vertex set I (respectively). Attach to an edge
(x, y) of ΓI or ΓI′ the label x−1y ∈ T . The map θ: I ′ −→ I of (5.22) is an
isomorphism of directed graphs ΓI′ −→ ΓI and θ(x)−1θ(y) = x−1y for any edge
(x, y) of ΓI′ . Using (6.16) (iii) and (6.23), it follows that for v, w ∈ I ′, we
have R̃v,w = R̃θ(v),θ(w), hence Pv,w = Pθ(v),θ(w) where the left-hand sides are
computed in (W ′, R′) and the right-hand sides in (W, R). Note that by (3.16)
(i), #(R′) ≤ !(w) − !(v).

Now consider the case when (W, R) is a finite Weyl group. Every reflection
subsystem of (W, R) corresponds to some Weyl group: now the only Kazhdan-
Lusztig polynomials which occur for intervals of length 3 in finite Weyl groups
of rank at most 3 are 1 and 1 + q ([Sh],pages 20 and 23). It follows that for any
v, w ∈ W with v ≤ w and !(v) = !(w)−3, either Pv,w = 1 or Pv,w = 1+q.
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Chapter 7

POSITIVITY PROPERTIES OF HECKE ALGEBRAS

This chapter is devoted to a study of properties of structure constants of the
Hecke algebra of a Coxeter group, taken with respect to various standard bases.

After giving a number of formal properties of these structure constants, we
introduce four conjectural positivity properties. These hold for dihedral groups,
and in Chapters 8 and 9, it will be shown that the structure constants of the
Hecke algebra of a universal Coxeter system satisfy all four positivity porperties.

For general Coxeter systems, only isolated special cases of these positivity prop-
erties have been proved, and this chapter concludes with a number of such
results. A criterion is given for a Bruhat interval to be isomorphic to a Bruhat
interval in a dihedral group, and used to prove that the Kazhdan-Lusztig poly-
nomials Pv,w (!(w)− !(v) = 3 or 4) have non-negative coefficients.

7.1 Let (W, R) be a Coxeter system and H(W ) the corresponding Hecke alge-
bra over A = ZZ[q 1

2 , q−
1
2 ] where q

1
2 is an indeterminate; we adopt our standard

notation concerning (W, R, ) and H(W ), and, for the moment, find it particu-
larly convenient to work with the A-basis {T̃w}w∈W of H(W ).

As in [L2], we let Ĥ(W ) denote the set of formal A-linear combinations
∑

w∈W

awT̃w (aw ∈ A, w ∈ W ).

This is in a natural way a H(W )-bimodule; for example

T̃r

(
∑

w

awT̃w

)

=
∑

w:rw>w

arwT̃w +
∑

w:rw<w

(arw + (q
1
2 − q−

1
2 )aw)T̃w (aw ∈ A, r ∈ R),
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the action on the right being defined similarly.

Let τ : Ĥ(W ) −→ A denote the A-linear map such that

τ(
∑

awT̃w) = a1.

From [L2], one has the following properties of θ
(7.1.1) τ(T̃xT̃y) = δx,y−1 (x, y ∈ W )
(7.1.2) τ(h1ĥ) = τ(ĥh1) (h1 ∈ H(W ), ĥ ∈ Ĥ(W ))

We will require the following fact when W is finite.

7.2 Lemma. Let (W, R) be a finite Coxeter system with longest element w0

If h ∈ H(W ) and hT̃w =
∑

v∈W
av,wT̃v (w ∈ W ), then

h̄T̃w =
∑

v∈W

avw0,ww0 T̃v (w ∈ W )

Proof First we prove that for any h ∈ H(W ),
(7.2.1) τ(h̄) = τ(T̃w0hT̃w0).

For this, it will be sufficient to prove

(7.2.2) τ(k̄T̃w0) = τ(T̃w0k) (k ∈ H(W )).

Then (7.2.1) follows on setting k = hT̃w0 . Note that both sides of (7.2.2) are A-
linear as functions of k. Hence it suffices to check (7.2.2) when k = T̃x (x ∈ W ).
But then

τ( ¯̃
T xT̃w0) = τ(T̃−1

x−1 T̃w0)

= τ(T̃xw0)
= δ1,xw0

= δw0,x−1

= τ(T̃w0 T̃x).

Replacing h by T̃−1
v hT̃−1

w−1 in (7.2.1) gives

(7.3.1) τ(T̃v−1 h̄T̃w) = τ(T̃(vw0)−1hT̃ww0) (h ∈ Ĥ(W ), v, w ∈ W ).
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Now by (7.1.1),
kT̃w =

∑

v∈W

τ(T̃v−1kT̃w)T̃v (w ∈ W );

taking k = h, then k = h̄ in this and using (7.3.1) gives the result.

7.3 We return to the case of an arbitrary Coxeter system.

For y, w ∈ W , define P̃y,w,Q̃y,w ∈ A by the formulae
(7.3.1) Cw =

∑
y

εyεw
¯̃P y,wT̃y

(7.3.2) T̃w =
∑
y

¯̃Qy,wCy.

Thus, for y, w ∈ W

(7.3.3) P̃y,w = q
− 1

2
w q

1
2
y Py,w

(7.3.4) Q̃y,w = q
− 1

2
w q

1
2
y Qy,w

where Py,w and Qy,w denote the Kazhdan-Lusztig polynomials and inverse
Kazhdan-Lusztig polynomials respectively.

In this notation, we have
(7.3.5) C′

w =
∑
y

P̃y,wT̃y

(7.3.6) Dw =
∑
y

Q̃w,yT̃y

(7.3.7) D′
w =
∑
y

εyεwQ̃y,wT̃y

where Dw, D′
w ∈ Ĥ(W ) are defined in [L2].

We recall that
(7.3.8) τ(CxDy) = τ(C′

xD′
y) = δx,y−1 (x, y ∈ W )

Also, from ([L3], 5.1) we have the following

7.4 Lemma. If W is finite with longest element w0, then
(7.4.1) Dw = C′

ww0
T̃w0 = T̃w0C

′
w0w and

(7.4.2) D′
w = Cww0 T̃w0 = T̃w0Cw0w.
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7.5 Define elements R̃z
y,w ∈ A by

(7.5.1) T̃−1
w−1 T̃z =

∑
y∈W

R̃z
y,wT̃y (w, z ∈ W );

note that R̃1
y,w = R̃y,w (y, w ∈ W ). We now define analogues of the polynomials

Py,w and Qy,w as follows
(7.5.2) C′

wT̃z =
∑

y∈W
P̃ z

y,wT̃y (w, z ∈ W )

(7.5.3) T̃−1
w−1 T̃z =

∑
y∈W

Q̃z
y,wCy (w, z ∈ W ).

We remark right away that the P̃ z
y,w are, up to some normalisation, the same

as the P z
y,w defined in [Dy] but that the Q̃z

y,w are quite diferent from the Qz
y,w

defined there.

Note that by (7.3.5) and (7.3.2), we have
(7.5.4) P̃y,w = P̃ 1

y,w (y, w ∈ W )
(7.5.5) Q̃y,w = Q̃1

y,w (y, w ∈ W )

We also have the following two facts
(7.5.6) P̃ z

x,w =
∑
y

R̃z
x,y

¯̃P y,w (z, x, w ∈ W )

(7.5.7) Q̃z
y,w =

∑
x

¯̃Qy,xR̃z
xw (y, z, w ∈ W ).

For example, (7.5.6) is proved by the computation

C′
wT̃z =

∑

y

¯̃P y,wT̃−1
y−1 T̃z

=
∑

x

(
∑

y

R̃z
x,y

¯̃P y,w

)
T̃x

and the proof of (7.5.7) is similar.

It is convenient to note at this point the following inductive formula for com-
puting R̃z

y,w:

7.6 Lemma.

(i) R̃z
y,1 = δy,z (y, z ∈ W )
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(ii) If x, y, w ∈ W, r ∈ R and wr < w then

R̃y
x,w =

{
R̃ry

x,wr (ry < y)
R̃ry

x,wr + αR̃y
x,wr (ry > y),

where α = q−
1
2 − q

1
2 .

Proof (i) follows trivially from the definition, and (ii) follows by a computation
on writing T̃−1

w−1 T̃y = T̃−1
(wr)−1 T̃−1

r T̃y.

7.7 It follows easily from (7.6) that
(7.7.1) R̃z

y,w = εyεzεwR̃z
y,w and that

(7.7.2) R̃z
y,w(1) = δyz−1,w where R̃z

y,w(1) denotes the value of the Laurent poly-
nomial R̃z

y,w when q
1
2 = 1.

From (7.5.6), (7.5.7) and (7.7.2) we have
(7.7.3) P̃ z

x,w(1) = P̃xz−1,w(1)
(7.7.4) Q̃z

x,w(1) = Qx,wz(1)

The following proposition gives some simple symmetry properties of these struc-
ture constants.

7.8 Proposition. For any y, z, w ∈ W , we have
(7.8.1) R̃z

y,w = R̃y
z,w−1

(7.8.2) P̃ z
y,w = P̃ y

z,w−1

(7.8.3) Q̃z
y,w = Q̃w−1

y−1,z−1

Proof Note that, from (7.1.1) and (7.3.8), we have
(7.8.4) R̃z

y,w = τ(T̃−1
w−1 T̃zT̃y−1)

(7.8.5) P̃ z
y,w = τ(C′

wT̃zT̃y−1)
(7.8.6) Q̃z

y,w = τ(T̃−1
w−1 T̃zDy−1)

Now there is an A-algebra anti-involution ψ:
∑

x∈W
axT̃x -−→

∑
x∈W

axT̃x−1 of
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H(W ), which takes C′
w to C′

w−1 . Hence

P̃ z
y,w = τ(C′

wT̃z T̃y−1) = θ(T̃yT̃z−1C′
w−1)

= τ(C′
w−1 T̃yT̃z−1) by (7.1.2)

= P̃ y
z,w−1 ,

proving (7.8.2), and (7.8.1) is proved similarly using (7.8.4).

To prove (7.8.3), note that the involution h -−→ h̄ of H(W ), applied to (7.5.3),
gives
T̃wT̃−1

z−1 =
∑

y∈W
Q̃z

y,w Cy . Applying ψ, we obtain

T̃−1
z T̃w−1 =

∑
y∈W

Qz
y,w Cy−1 and (7.8.3) follows on comparing with (7.5.3).

In case (W, R) is a finite Coxeter system, we have a number of additional sym-
metry properties

7.9 Proposition. Let (W, R) be a finite Coxeter system with longest element
w0. Then for y, z, w ∈ W , we have
(7.9.1) Q̃z

y,w = P̃ z−1

w0w,w0y

(7.9.2) P̃ z
y,w = P̃ zw0

yw0,w

(7.9.3) Q̃z
y,z = Q̃w0z

y,ww0

Proof From (7.8.6), we have

Q̃z
y,w = τ(T̃−1

w−1 T̃zDy−1)

= τ(T̃−1
w−1 T̃zC

′
y−1w0

T̃w0) by (7.4.1)

= τ(C′
y−1w0

T̃w0wT̃z) by (7.1.2)

= P̃w0w
z−1,y−1w0

by (7.8.5)

= P̃ z−1

w0w,w0y by (7.8.2),

so (7.9.1) holds.
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Using (7.2), we have
C′

wT̃z =
∑
y

P̃ z
y,wT̃y =

∑
y

P̃ zw0
yw0,wT̃y since C̄′

w = C′
w, hence (7.9.2) is proved.

Finally, (7.9.1) and (7.9.2) give (7.9.3) as follows:

Q̃z
y,w = P̃ z−1

w0w,w0y = P̃ z−1w0
w0ww0,w0y = Q̃w0z

y,ww0.

Our next result gives some information about the “supports” of these structure
constants.

7.10 Proposition. If y, z, w ∈ W then

(i) R̃z
y,w = 0 unless y ≤ wz and yz−1 ≤ w and z ≤ w−1y.

(ii) P̃ z
y,w = 0 unless yz−1 ≤ w

(iii) Q̃z
y,w = 0 unless y ≤ wz.

Proof (i) Suppose R̃z
y,w += 0. We first show that y ≤ wz by induction on !(w).

If w = 1, then y = z ≤ wz. If w += 1, choose r ∈ R so wr < w. Then by
(7.6), either R̃rz

y,wr += 0 (whence y ≤ (wr)(rz) = wz) or rz > z and R̃z
y,wr += 0

(whence y ≤ wrz). But if rz > z, then z−1rz ∈ N(z) + z−1N(w)z = N(wz),
so wrz = (wz)(zrz−1) ≤ wz. Hence y ≤ wz. The claim that z ≤ w−1y follows
from this and (7.8.1).

To prove that yz−1 ≤ w, write w = r1 . . . rn (reduced). Then T̃y can only occur
with non-zero coefficient in T̃−1

w−1 T̃z if there exist i1, . . . , im (i ≤ i1 < . . . ≤ im ≤
n) such that y = ri1 . . . rimz, and in that case, yz−1 = ri1 . . . rim ≤ w by (5.3)
(ii). This proves (i).

Now P̃y,w = 0 and Q̃y,w = 0 unless y ≤ w, so (ii) and (iii) follow from (i), (7.5.6)
and (7.5.7).
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7.11 Remark. If (W, R) is any Coxeter system in which the Kazhdan-Lusztig
polynomials Py,w have non-negative coefficients (e.g. if (W, R) is Crystallo-
graphic, or finite) then (7.10) (ii) and (7.7.3) prove that P̃ z

y,w += 0 iff yz−1 ≤ w;
a similar remark applies to Q̃z

y,w.

Now we have some orthogonality relations for our structure constants.

7.12 Proposition. The following relations hold in H(W ); for any x, w ∈ W

(i)
∑
y

εxεyεzR̃z−1

x,y R̃z
y,w = δx,w (z ∈ W ).

(ii)
∑
z

εxεyεzP̃ y
x,zQ̃

y−1

z,w = δx,w (y ∈ W ).

(iii)
∑
z

εxεyεzQ̃y−1

x,z P̃ y
z,w = δx,w (y ∈ W ).

Proof The involution
∑

awT̃w -−→
∑

āwεxT̃w takes Cy to εyC′
y; applying it to

(7.5.3) gives
T̃−1

w−1 T̃z =
∑

y

εyεzεwQ̃z
y,wC′

y

=
∑

y

εyεzεwQ̃w−1

y−1,z−1C′
y.

Using the involution ψ defined in the proof of (7.8), we have

T̃z−1 T̃−1
w =

∑

y

εyεzεwQ̃z−1

y,z−1C′
y.

Hence, replacing z by x−1 and w by y−1,

T̃x =
∑

z

εxεyεzQ̃
z−1

y,x C′
zT̃y−1

=
∑

w

(
∑

z

εxεyεzQ̃
y
z,xP̃ y−1

w,z )T̃w

which is equivalent to (ii).

Properties (i) and (iii) are proved by similar arguments.
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7.13 In some situations, it will prove more convenient to use the following
notation
(7.13.1) C′

wTz = q
− 1

2
w
∑
y

P z
y,wTy (z, w ∈ W ).

Comparing this with (7.5.2), we see that
(7.13.2) P̃ z

y,w = q
− 1

2
z q

− 1
2

w q
1
2
y P z

y,w (y, z ∈ W ).
The following formula permits calculations of the P z

y,w.

7.14 Lemma.

(i) If y, z ∈ W then P z
y,1 = δy,z

(ii) If y, z, w ∈ W, r ∈ R and rw < w then

P z
y,w = qcP z

ry,rw + q1−cP z
y,rw −

∑

x∈W
rx<x

µ(x, rw)q
1
2
wq

− 1
2

x P z
y,x

where
c =
{

1 (ry > y)
0 (ry < y)

and µ(x, rw) is the coefficient of q(!(w)−!(x)−2)/2 in Px,rw(µ(x, rw) is zero unless
x < rw).

Proof (i) is trivial and (ii) follows simply from the formulae ([L3], 5.1)
(7.14.1) C′

w = C′
rC

′
rw −

∑
x∈W
rx<x

µ(x, rw)C′
x and C′

r = q−
1
2 (Tr + 1).

This recurrence formula implies in particular that P z
y,w is a polynomial in q

7.15 Remark. It follows from (7.14) that for any y, z, w ∈ W , the polynomial
P z

y,w has degree at most !(w). Fix z ∈ W . One sees that there is, for any w ∈ W ,
a unique y ∈ W such that the coefficient of qw in P z

y,w is non-zero; denoting this
y by a(y), we see that P z

a(y),w = qw and that a(1) = z,

a(w) =
{

a(rw) (ra(rw) < a(rw))
ra(rw) (ra(rw) > a(rw))

if rw < w (r ∈ R). It follows from (5.3.1) that a(w) is the maximum element
of the set [1, w]z (in the Bruhat order). Similarly, for fixed z, there is for any
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w ∈ W a unique element b(w) of W such that the coefficient of q0 in P z
b(w),w is

non-zero; we have P z
b(w),w = 1 and b(w) is the minimum element of [1, w]z.

7.16 It is known that if (W, R) is a crystallographic or finite Coxeter system
then the Kazhdan-Lusztig polynomials Px,w, Qx,w have non-negative coeffi-
cients, and that if (W, R) is a crystallographic Coxeter system, the structure
constants of H(W ) with respect to the A-basis C′

w of H(W ) are Laurent poly-
nomials with non-negative coefficients (e.g. [KL2], [L2],[A1]). In view of (7.7.3)
and (7.7.4),it is natural to ask whether the P̃ z

xw and Q̃z
xw also have non-negative

coefficients.

With these remarks as motivation, we now list four conjectural positivity prop-
erties [P1]–[P4] of the Hecke algebra of an arbitrary Coxeter system. We recall
that

IN[q
1
2 , q−

1
2 ] = {

∑

n∈ZZ

anq
n
2 | an ∈ IN (n ∈ ZZ) }.

The four properties are
[P1] C′

xT̃y ∈
∑

z∈W
IN[q 1

2 , q
−1
2 ]T̃z (x, y ∈ W )

[P2] T̃−1
x−1 T̃y ∈

∑
z∈W

IN[q 1
2 , q−

1
2 ]Cz (x, y ∈ W )

[P3] C′
xC′

y ∈
∑

z∈W
IN[q 1

2 , q
−1
2 ]C′

z (x, y ∈ W )

[P4] C′
xCy ∈

∑
z∈W

IN[q 1
2 , q

−1
2 ]Cz (x, y ∈ W )

Conjectures [P1] and [P2] assert the positivity of the Laurent polynomials

P̃ y
x,z(x, y, z ∈ W )

and
Q̃y

x,z (x, y, z ∈ W )

respectively. In terms of the function τ introduced in (7.1), [P1]–[P4] may be
reformulated as follows, using (7.1.1) and (7.3.8):
[P1] τ(C′

xT̃yT̃z) ∈ IN[q 1
2 , q−

1
2 ] (x, y, z ∈ W )

[P2] τ(T̃−1
x−1 T̃yDz) ∈ IN[q 1

2 , q−
1
2 ] (x, y, z ∈ W )

[P3] τ(C′
xC′

yD′
z) ∈ IN[q 1

2 , q−
1
2 ] (x, y, z ∈ W )

[P4] τ(C′
xCyDz) ∈ IN[q 1

2 , q−
1
2 ] (x, y, z ∈ W ).
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Many other variants may be given; for instance, the last formulation of [P1]
shows that [P1] is equivalent to the statement

T̃yT̃z ∈
∑

x∈W

IN[q
1
2 , q

−1
2 ]D′

x

where the right hand side is the set of infinite linear combination of the elements
D′

x with non-negative coefficients (such linear combinations converge, in an
appropriate sense, to elements of Ĥ(W ).)

The rest of this thesis is devoted to a study of these positivity properties and
related facts. For finite Coxeter systems, only two of the properties [P1]–[P4]
are independent of one another:

7.17 Proposition. If (W, R) is a finite Coxeter system, then [P1] is equivalent
to [P2] and [P3] is equivalent to [P4].

Proof The equivalence of [P1] and [P2] follows from (7.9.1). Let w0 be the
longest element of W . By (7.4), for any x, y, z ∈ W ,

τ(C′
xC′

yD′
z) = τ(C′

xC′
yCzw0 T̃w0)

= τ(C′
yCzw0 T̃w0C

′
x)

= τ(C′
yCzw0Dw0x)

which shows that [P3] and [P4] are equivalent.

7.18 Remark Lascoux and Schützenberger have given a combinatorial proof
that the Kazhdan-Lusztig polynomials have non-negative coefficients for certain
pairs of elements in symmetric groups ([LS]); in the following chapters, [P1]–
[P4] will be proved for universal Coxeter systems by elementary arguments. In
other cases where positivity properties are known, the proofs depend on a study
of the intersection cohomology of varieties constructed from algebraic groups;
even using the “infinite-dimensional” groups associated with Kac-Moody Lie
algebras, these methods only apply to crystallographic Coxeter systems.

For general Coxeter systems, only isolated results have been obtained. In the
remainder of this chapter, we prove a number of such facts concerning the
coefficient of q in polynomials Pv,w and Qv,w.
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7.19 For the remainder of this chapter, (W, R) denotes an arbitrary Coxeter
system, and we adopt our usual notation concerning (W, R) and its Hecke alge-
bra H(W ). We begin with some properties of the polynomials R̃y,w.

Recall the definition of the Bruhat graph Γ(W,R) of (W, R) (see (1.11)). An
element τ = (x0, . . . , xn) of Wn+1 will be called a path in Γ(W,R) if (xi−1, xi) ∈
E(W,R) (i = 1, . . . , n); τ is then said to be a path from x0 to xn, and we say
that n is the length of τ .

The next result gives more evidence for close connections between the polyno-
mials R̃x,y and the Bruhat graph.

7.20 Proposition. For x, y ∈ W, m ∈ IN the coefficient of αm in R̃x,y is
non-zero iff there is a path of length m in Γ(W,R) from x to y.

Proof If the coefficient of αm is non-zero, then (6.23) ensures the existence of
a path of length m. The converse will be proved by induction on !(y), being
trivial for !(y) = 0.

Suppose !(y) > 0 and that there exists a path (w0, w1, . . . , wm) in Γ(W,R) with
w0 = x and wm = y. Choose r ∈ R so that yr < y. If wjr += wj−1 for all
j = 1, . . . , m, then by (1.20), (w0r, w1r, . . . , wmr) is a path in Γ(W,R) from xr

to yr. By induction, the coefficient of αm in R̃xr,yr is non-zero, and (0.1) shows
that the coefficient of αm in R̃x,y is non-zero.

The other possibility is that wjr = wj−1 for some j ∈ {1, . . . , m}; suppose
without loss of generality that j is the largest element of {1, . . . , m} with wjr =
wj−1, and consider cases as follows:

Case 1. xr < x

In this case, (xr, x = w0, w1, . . . , wj−1 = wjr, wj+1r, . . . , wmr = yr) is a path in
Γ(W,R) from xr to yr of length m, so the coefficient of αm in R̃xr,yr is non-zero,
hence so is that of αm in R̃x,y (by (0.1)).

Case 2. xr > x

Here (x = w0, w1, . . . , wj−1 = wjr, wj+1r, . . . , wmr = yr) is a path of length
m − 1 from x to yr, so the coefficient of αm−1 in R̃x,yr is non-zero, and so is
that of αm in R̃x,y (by (0.1)).
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7.21 Proposition. Let x ∈ W, t ∈ T and suppose that (x, xt) ∈ E(W,R)

(i.e. xt > x) and that !(xt) − !(x) ≥ 3. Then there exist t′ ∈ T and t1, t2, t3 ∈
〈t, t′〉 ∩ T such that (x, xt1, xt1t2, xt1t2t3) is a path in Γ(W,R) from x to xt.

Proof Let y = xt (note !(y) ≥ 1). We prove the result by induction on !(y).
Choose r ∈ R so that yr < y, and consider cases as follows:

Case 1. xr > x

Note that t += r; hence (xr, yr)) ∈ E(W,R) by (1.20). Take t′ = r, t1 = t3 = r
and t2 = rtr to obtain the required path (x, xt1, xt1t2, xt1t2t3) = (x, xr, yr, y).

Case 2. xr < x.

Here yr = xr(rtr) > xr and !(yr) − !(xr) > 3 so there exist t′ ∈ T and
t′1, t

′
2, t

′
3 ∈ 〈rtr, t′〉 ∩ T such that (xr, xrt′1, xrt′1t

′
2, xrt′1t

′
2t

′
3) is a path in Γ(W,R)

from xr to yr. Note that t3 += r (since yrt3 < yr)

Case 2a. r /∈ {t′1, t′2}.

By (1.20), (x, xt1, xt1t2, xt1t2t3) (where ti = rt′ir, i = 1, 2, 3) is a path in Γ(W,R)

from x to y, and we have t1, t2, t3 ∈ 〈t, rt′r〉.

Case 2b. r = t′1

Here, (x, xt′2, xt′2t
′
3, xt′2t

′
3r) is a path in Γ(W,R) from x to y, and t′2, t

′
3, r ∈

〈rtr, t′〉 ∩ T , so t′2, t
′
3, r ∈ 〈t, rt′r〉 ∩ T .

Case 2c. r = t′2

By (1.20),(x, xt1) ∈ E(W,R) where t1 = rt1r. Note t1 = rt′1t
′
2. Hence

(x, xt1, xt1t
′
3, xt1t

′
3r)

is a path in Γ(W,R) from xr to yr. We have t′1, r, t
′
3 ∈ 〈rtr, t′〉, hence t1, t′3, r ∈

〈t, rt′r〉.
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7.22 Corollary. If x, y ∈ W and there is a path of length in Γ(W,R) from x
to y (m < !(y) − !(x)) then there is a path of length m + 2 from x to y in
Γ(W,R).

In ([De 3], Prop 5.3), Deodhar proves the corresponding fact about the coeffi-
cients of R̃x,y.

7.23 Let x, y ∈ W with x ≤ y. Then the coefficient of α!(y)−!(x) in R̃x,y is
1, and (7.20) implies that R̃x,y = α!(y)−!(x) iff (z, zt ∈ [x, y] and t ∈ T imply
|!(zt)− !(z)| = 1). We now investigate the other extreme, when R̃x,y is as large
as possible.

Define polynomials R̃n(n ∈ IN) as follows:

R̃0 = 1, R̃1 = α, R̃2 = α2, R̃n+1 = αR̃n + R̃n−1 (n ≥ 2).

From (0.1), it follows that for x, y ∈ W with x ≤ y, R̃!(y)−!(x) − R̃x,y is a
polynomial in α with non-negative coefficients.

7.24 Lemma. Let x, y ∈ W with x ≤ y and !(y) − !(x) = n ≥ 2. Then
R̃x,y = R̃n iff W ′ = 〈v−1w | v, w ∈ [x, y]〉 is a dihedral reflection subgroup of
(W, R).

Proof Recall that W ′ is always a reflection subgroup of (W, R); in fact, if
(x0, . . . , xn) is a path in Γ(W,R) from x to y, then W ′ = 〈x−1

i xi−1(i = 1, . . . , n)〉
(by (5.23)).

If n = 2, then R̃x,y = α2 = R̃2 and W ′ is dihedral (by the preceeding remark)
so there is nothing to prove.

We now assume !(y) − !(x) = n ≥ 3 and proceed by induction on !(y). Choose
r ∈ R so that yr < y.

Case 1. xr < x

By (5.21.1), there is a path (x′
0, x

′
1, . . . , x

′
n) in Γ(W,R) from xr to yr, such that

!(x′
ir) > !(x′

i) (i = 0, 1, . . . , n). Then (x′
0r, . . . , x

′
nr) is a path from x to y,

and W ′ = 〈rx′−1
i x′

i−1r (i = 1, . . . , n)〉 = rW ′′r where W ′′ = 〈x′−1
i xi−1 (i =

1, . . . , n)〉 = 〈v−1w | v, w ∈ [xr, yr]〉. Hence W ′ is dihedral iff W ′′ is dihedral.
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Also, R̃x,y = R̃xr,yr by (0.1), so R̃x,y = R̃n iff R̃xr,yr = R̃n. The result follows
by induction.

Case 2. xr > x

Suppose R̃x,y = R̃n. It follows by (0.1) and the definition of R̃n that R̃x,yr =
R̃n−1 and R̃xr,yr = R̃n−2; in particular, xr < yr, since R̃n−2 += 0.

Choose a path (w0, . . . , wn−2) in Γ(W,R) from xr to yr. Then

(x, xr = w0, . . . , wn−2)

is a path from x to yr, and so by induction, W ′′ = 〈r, w−1
i wi−1 (1 ≤ i ≤ n− 2)〉

is dihedral (since R̃x,yr = R̃n−1). But (x, xr = w0, . . . , wn−2, wn−2r = y) is a
path from x to y, so W ′ = W ′′ is also dihedral.

Conversely, suppose that W ′ is a dihedral reflection subgroup of (W, R). By
(6.28), R̃x,y = R̃x′,y′ for certain x′, y′ ∈ W ′ with !′(y′) − !′(x′) = n (where !′

is the length function on (W ′, S(W ′)) and R̃x′,y′ is computed in (W ′, S(W ′))).
The result follows since R̃x′,y′ = R̃n ((W ′, S(W ′)) being dihedral).

Recall that for any subset X of W, ΓX denotes the full subgraph on the vertex
set X of the Bruhat graph Γ(W,R). It will be convenient to say that a subgraph
Γ[v,w] (v, w ∈ W, v ≤ w) is an interval of the Bruhat graph.

We now give some equivalent characterisations of intervals of “dihedral type”
in the Bruhat order.

7.25 Proposition. Let x, y ∈ W with x ≤ y and !(y) − !(x) ≥ 2. Then
conditions (i)–(vi) below are equiivalent:

(i) [x, y] has 2 atoms

(ii) [x, y] has 2 coatoms

(iii) [x, y] is isomorphic to a Bruhat interval in a dihedral Coxeter system.

(iv) Γ[x,y] is isomorphic to an interval in the Bruhat graph of a dihedral Coxeter
system.
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(v) 〈v−1w | v, w ∈ [x, y]〉 is a dihedral reflection subgroup.

(vi) R̃x,y = R̃n where n = !(y)− !(x).

Proof By (7.24), (v)⇔(vi). We show that (v)=⇒(iv) =⇒(iii) =⇒(i)=⇒(v).
Assume W ′ = 〈v−1w | v, w ∈ [x, y]〉 is dihedral, and let z be the minimum
element of xW ′. By (5.23), [x, y] ⊆ zW ′, and (iv) follows by (1.13) (i) and
(ii). Hence (v)=⇒(iv). Now (iv)=⇒(iii) by definition of Bruhat order, and the
implication (iii)=⇒ (i) holds since an interval of length at least 2 in a dihedral
group has two atoms.

Now suppose that [x, y] has exactly two atoms x1, x2, and let W ′ be the maximal
dihedral reflection subgroup containing W ′′ = 〈x−1x1, x−1x2〉 ((3.18)). Since
any relfection subgroup of W containing W ′′ and contained in W ′ is itself dihe-
dral, it will suffice to show that
(7.25.1) if (v, w) is an edge of Γ[x,y] and !(w) = !(v) + 1 then v−1w ∈ W ′.

This claim will be proved by induction on n = !(v)− !(x). If n = 0, then v = x
and w ∈ {x1, x2} by our assumption on [x, y] so v−1w ∈ W ′′ ⊆ W ′.

Now assume that n > 0 and (7.25.1) holds for v, w with !(v) − !(x) < n. Take
(v, w) to be an edge of Γ[x,y] with !(w) = !(v) + 1 and !(v)− !(x) = n. Choose
z ∈ [x, v] with !(z) = !(v) − 1. Then [z, w] is an interval of length 2 in the
Bruhat order and so has 2 atoms (by (5.20), for example) of which one is v; let
v′ be the other atom of [z, w]. Since !(z) − !(x) < n, the inductive assumption
implies that the dihedral reflection subgroup W ′′′ = 〈z−1v, z−1v′〉 is contained
in W ′. But by (5.23), the dihedral reflection subgroup 〈v−1w, z−1v〉 contains
W ′′′; since W ′′′ is contained in a unique maximal dihedral reflection subgroup,
it follows that 〈v−1w, z−1v〉 ⊆ W ′. In particular, v−1w ∈ W ′ as required.

The proof of the implications (iii)=⇒(ii)=⇒(v) is entirely similar.

The following result shows that the edges (v, w) of Γ(W,R) with !(w)− !(v) = 3
are determined by the Bruhat order alone.

7.26 Corollary. Let v, w ∈ W with !(w) = !(v) + 3 and v ≤ w. Then
(v, w) ∈ E(W,R) iff the Bruhat interval [v, w] has 2 coatoms.

Proof Suppose first that (v, w) ∈ E(W,R); then w = vt for some t ∈ T . By (7.21),
there is a dihedral reflection subgroup W ′ and reflections t1, t2, t3 ∈ W ′ ∩ T
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such that (v, vt1, vt1t2, vt1t2t3) is a path in Γ(W,R) from v to w. By (5.23),
〈x−1y | x, y ∈ [v, w]〉 is a dihedral reflection subgroup, and so [v, w] has 2
coatoms by (7.25).

Conversely, suppose [v, w] has 2 coatoms. Then Γ[v,w] is isomorphic to an inter-
val of length 3 in the Bruhat graph of a dihedral Coxeter system (W ′, R′); but
(x′, y′) ∈ E(W ′,R′) iff !′(y′)−!′(x′) is an odd positive integer (x′, y′ ∈ W ′) where
!′ is the length function on (W ′, R′). Hence (v, w) ∈ E(W,R) as required.

Proposition (7.25) also gives our first general positivity property.

7.27 Corollary. Let x, y ∈ W with x ≤ y be such that the interval [x, y] has
2 atoms (or 2 coatoms). Then Px,y = Qx,y = 1.

Proof Let W ′ = 〈v−1w | v, w ∈ [x, y]〉 and R′ = S(W ′); then (W ′, R′) is a
dihedral Coxeter system. By (6.28), Px,y = Px′,y′ for some x′, y′ ∈ W ′ with
!′(x′) ≤ !′(y′), where !′ is the length function on (W, R) and Px′,y′ is computed
in (W ′, R′). Since the non-zero Kazhdan-Lusztig polynomials in a dihedral
Coxeter system are all equal to 1, Px,y = Px′,y′ = 1. Similarly, Qx,y = 1.

We now need some information about coefficients of some powers of α in par-
ticular polynomials R̃x,y.

For x, y ∈ W let a[x, y] = #{w ∈ [x, y] | !(w) = !(x) + 1 } and c[x, y] = #{w ∈
[x, y] | !(w) = !(y) − 1 } be the numbers of atoms and coatoms of the interval
[x, y]. Also, let r1[x, y] (respectively p1[x, y], q1[x, y]) denote the coefficient of
α!(y)−!(x)−2 in R̃x,y (respectively, of q in Px,y, of q in Qx,y).

7.28 Lemma. (i) If x, y ∈ W and x ≤ y, !(y) − !x) ≥ 2 then
(7.28.1) p1[x, y] = c[x, y] + r1[x, y] − !(y) + !(x)
(7.28.2) q1[x, y] = a[x, y] + r1[x, y]− !(y) + !(x)

(ii) For any y ∈ W, Q1,y = 1 and
(7.28.3) p1[1, y] = c[1, y]− a[1, y]

Proof (i) Recall that if x < z R̃x,z is a polynomial in α(= q−
1
2 − q

1
2 ) of degree

!(z) − !(x), and that for z < y, ¯̃P z,y ∈ q
1
2 ZZ[q 1

2 ]; by [KL1], the coefficient of
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q
1
2
y q

− 1
2

z in ¯̃P z,y) is 1(z ≤ y). Now p1[x, y] is the coefficient of q
− 1

2
y q

1
2
x q in

P̃x,y − ¯̃Px,y =
∑

z:x<z≤y

R̃x,z
¯̃P z,y.

Let n = !(y) − !(x). Then p1(x, y) is equal to the coefficient of

q
−(n−2)

2 in R̃x,y +
∑

z:x<z≤y
!(z)=!(y)−1

q
1
2 R̃x,z

and therefore to that of q
−(n−2)

2 in

[(q−
1
2 − q

1
2 )n + r1[x, y] (q−

1
2 − q

1
2 )n−2] +

∑

z:x<z≤y
!(z)=!(y)−1

q
1
2 (q−

1
2 − q

1
2 )n−1

i.e. p1[x, y] = r1[x, y] + c[x, y] − n, proving (7.28.1). The proof of (7.28.2) is
similar.

(ii) By [KL1], for w ∈ W and r ∈ R,

CrCw =






−(q 1
2 + q−

1
2 )Cw (rw < w)

Crw +
∑

z<w
rz<z

µ(z, w)Cz (rw > w).

In particular, CrCw ∈
∑
z 0=1

ACz. Since T̃r = Cr + q
1
2 , it follows by induction on

!(y) that

T̃y ∈ q
1
2
y C1 +

∑

z 0=1

ACz.

But T̃y =
∑
x

¯̃Qx,yCx, hence Q̃1,y = q
− 1

2
y and Q1,y = 1.

Hence p1[1, y] = p1[1, y]− q1[1, y] = c[1, y]− a[1, y] by (i).
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7.29 Lemma. Let x, y ∈ W with x ≤ y. Then

(i) The coefficient of α in R̃x,y is
{

1 (x−1y ∈ T )
0 (x−1y /∈ T )

(ii) The coefficient of α2 in R̃x,y is 1
2#{ z | (x, z) ∈ E(W,R), (z, y) ∈ E(W,R) }.

Proof Now (i) follows from (6.23).

To prove (ii), note that the coefficient of α2 in R̃x,y can be non-zero only if
!(y)−!(x) is even and there can only exist a path (x, z, y) in Γ(W,R) if !(y)−!(x)
is even. Hence we may suppose that !(y) − !(x) is even. We have, for x +=
y,
∑
z

R̃x,z
¯̃Rz,y = 0; by (7.7.1), this gives

2R̃x,y = −
∑

z:x<z<y

εzεyR̃x,zR̃z,y

Since R̃x,z,R̃z,y ∈ αZZ[α] for z += x, y, (ii) follows from (i).

It is known ([KL1]) that for x, y ∈ W with !(y)− !(x) ≤ 2 and x ≤ y, Px,y = 1;
in fact, for x ≤ y, the constant term of Px,y is always 1. The following settles
the positivity of Px,y in the next simplest cases, when !(y)− !(x) = 3 or 4.

7.30 Proposition. (i) For x ≤ y with !(y) − !(x) = 3,

Px,y = 1 + max(0, c[x, y]− 3)q = Qx,y

(ii) For x ≤ y with !(y)−!(x) = 4, Px,y and Qx,y have non-negative coefficients.

Proof We will only prove (i) and (ii) for Px,y; the proofs for Qx,y are essentially
the same arguments, applied to the reverse poset.

(i) We Px,y = 1 + p1(x, y)q where

p1[x, y] = c[x, y]− 3 + r1[x, y],
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and
r1[x, y] =

{
1 (x−1y ∈ T )
0 (x−1y /∈ T )

by (7.29) (i). Now c[x, y] ≥ 2 and x−1y ∈ T iff c(x, y) = 2, by (7.26). Hence the
result.

(ii) Here, Px,y = 1 + p1(x, y)q where by (7.29.2), (7.28.1) p1[x, y] = c[x, y] −
4 + r1[x, y] and r1[x, y] = 1

2#{ z | x < z < y, x−1z ∈ T, z−1y ∈ T }. Now
c[x, y] ≥ 2, and if c[x, y] = 2, then Px,y = 1 by (7.27). If c[x, y] ≥ 4 then
p1[x, y] ≥ 0, so we need only consider the case c[x, y] = 3.

Let a1, a2, a3 be the 3 coatoms of the interval [x, y], and let x1, . . . , xn be the
atoms of the interval [x, y] (n ≥ 2). Note that n ≥ 3 (for if n = 2, then c[x, y] = 2
by (7.25)). Also, write {z ∈ [x, y] | !(z) = !(x) + 2 } = {z1, . . . , zm, } (where
z1, . . . , zm are distinct).

Now for any v, w ∈ [x, y], we have µW (v, w) = (−1)!(w)−!(v) where µW denotes
the Möbius function on W (with Bruhat order) (e.g. see [De1]). It follows that
(7.30.1)

∑ !(y)
j=!(x)(−1)jhj(x, y) = 0

where hj(x, y) = #{ z ∈ [x, y] | !(z) = j } (e.g. [Ai]. Prop. 4.10; another way
of seeing this is to compute the Euler characteristic of the sphere of dimension
!(y) − !(x) − 2 by using the decomposition of the simplicial complex

∑
(x, y)

into cells
∑

(x, z] (z ∈ (x, y))).

In any case, (7.30.1) gives 1 − n + m − 3 + 1 = 0, hence m = n + 1. Similarly,
in each interval [x, ai], the number of atoms is equal to the number of coatoms
(i = 1, 2, 3).

We show that we cannot have xi < aj for all i ∈ {1, . . . , n} and j ∈ {1, 2, 3}. For
if aj > xi (i = 1, . . . , n), then the interval [x, aj] has n atoms, hence n coatoms,
and so there is exactly one zkj (1 ≤ kj ≤ m) with zkj /∈ [x, aj]. If aj > xi for all
j ∈ {1, 2, 3} and i ∈ {1, . . . , n}, choose k ∈ {1, . . . , m} such that k += k1, k2, k3

(this being possible since m = n + 1 ≥ 4); then zk ∈ [x, aj] (j = 1, 2, 3), so
aj ∈ [zk, y] (y = 1, 2, 3). This states that the interval [zk, y], of length 2, has
three coatoms a1, a2, a3, which is absurd.

Hence there exist i, j with xi +< aj (i ∈ {1, . . . , n}, j ∈ {1, 2, 3}). This means
that the interval [xi, y] has two coatoms.

Since !(y)− !(xi) = 3, it follows by (7.26) that x−1
i y ∈ T . But x−1xi ∈ T since

x < xi and !(xi) = !(x) + 1. Hence xi ∈ { z | x < z < y, x−1z ∈ T, z−1y ∈ T }
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and since r1[x, y] is an integer, r1[x, y] ≥ 1 (in fact, r1[x, y] = 1 by (7.25) but
we don’t need this). Hence p1[x, y] = c[x, y] − 4 + r1[x, y] = r1[x, y] − 1 ≥ 0 as
required.

7.31 Remark. It is interesting to note that, if x ≤ y and !(y)−!(x) ≤ 4, then
R̃x,y, Px,y, Qx,y depend only on the (isomorphism type of the) poset [x, y],

We finish this chapter with one more positivity property; this one follows im-
mediately from (7.28.3) and (5.5).

7.32 Proposition. For any w ∈ W , the coefficient of q in P1,w is non-
negative.
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Chapter 8

UNIVERSAL COXETER SYSTEMS: [P3], [P4] AND [P1]

In the following chapters, it will be shown that the Hecke algebra of a uni-
versal Coxeter system satisfies all four positivity properties [P1]–[P4] defined
in (7.16). Recall that these conjectures state that certain Laurent polynomi-
als in q

1
2 , arising as the structure constants of the Hecke algebra with respect

to various combinations of bases, have non-negative coefficients. Our general
technique for proving non-negativity of the coefficients is to explicitly construct
sets whose cardinalities are the coefficients in question. The proofs thus in-
volve only elementary combinatorics, and provide explicit information about
the coefficients.

In this chapter, we give proofs of [P3], [P4] and [P1]. The proof of [P2] will
be given in Chapter 9. We begin with some facts needed in the proofs of all
properties [P1]–[P4].

8.1 In all this chapter, (W, R) denotes a fixed universal Coxeter system. Thus,
for any r, s ∈ R with r += s, rs has infinite order, and W is therefore isomorphic
(as a group) to a free product of cyclic groups of order two.

If w ∈ W , then w has a unique reduced expression w = r1 . . . rn (n = !(w)).
We set
(8.1.1) L(w) = { r ∈ R | !(rw) < !(w) }, R(w) = L(w−1) (w ∈ W ). Note that
either
(8.1.2) (w = 1, L(w) = R(w) = ∅) or (w += 1, #L(w) = #R(w) = 1).

We adopt the notation concerning the Hecke algebra H(W ) of (W,R) from
Chapter 0. For x, y ∈ W , we let µ(x, y) denote the coefficient of q(!(y)−!(x)−1)/2

in the Kazhdan-Lusztig polynomial Px,y; thus µ(x, y) is an integer which is zero
unless x ≤ y and !(y)− !(x) is odd.
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It is convenient to let ? denote the relation on W defined by the condition
(8.1.3) y ? w iff y ≤ w and !(y) = !(w) − 1.

The next simple lemma ([Dy]) is fundamental for our proofs of [P1]–[P4] for
universal Coxeter systems.

8.2 Lemma.

(i) Suppose x, y ∈ W, µ(x, y) += 0 and L(x) +⊆ L(y). Then x = sy where
L(y) = {s}. In particular, x ? y.

(ii) Suppose y ∈ W \ {1}; let L(y) = {s} (s ∈ R). Then µ(sy, y) = 1.

Proof

(i) Since µ(x, y) += 0, we have x < y and so y += 1. Let L(y) = {s} (s ∈ R).
Now L(x) += ∅, so L(x) = {r} for some r ∈ R. Since L(x) +⊆ L(y), we must have
r += s. Hence sy < y, sx > x and µ(x, y) += 0. By ([KL1], (2.3.e)), x = sy. The
claim (ii) also follows from ([KL1], (2.3.e)).

In (8.4), we will give an explicit formula for the products C′
vC′

w (v, w ∈ W ) in
the Hecke algebra which will make it obvious that the positivity property [P3]
C′

vC′
w ∈

∑
y∈W

IN[q 1
2 , q−

1
2 ]C′

y (v, w ∈ W ) holds. For the statement of (8.4), the

following notation will be required.

8.3 Definition. If w ∈ W has reduced expression w = r1 . . . rn and 2 ≤ j ≤
n − 1, let

w(j) = r1r2 . . . rj−1rj+2 . . . rn

and note that this is a reduced expression for w(j) if rj−1 = rj+1. Define
elements C′(w, i) (w ∈ W, 0 ≤ i ≤ !(w)) recursively as follows:

C′(w, i) =
{

C′
w(i) + C′(w(i), i − 1) (2 ≤ i ≤ n − 1 and ri−1 = ri+1)

0 (otherwise)
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8.4 Theorem. For any v, w ∈ W ,
(8.4.1)

C′
vC

′
w =
{

C′
vw + C′(vw, n) + C′(vw, n + 1) (L(w) ∩R(v) = ∅)

(q 1
2 + q−

1
2 )[C′

vrw + C′(vrw, n)] (L(w) ∩R(v) = {r}, r ∈ R)

where n = !(v).

This is a restatement of ([Dy], Theorem (3.12)). The proof will occupy (8.5)–
(8.7). The formula (8.4.1) holds if !(v) = 0 or !(w) = 0; the next lemma deals
with the case !(w) = 1 or !(v) = 1 .

8.5 Lemma. Let r ∈ R, and w ∈ W have reduced expression w = r1 . . . rn.
Then

C′
rC

′
w =






(q 1
2 + q−

1
2 )C′

w (n > 0 and r = r1)
C′

rr1...rn
+ C′

r2
. . . rn (n ≥ 2 and r2 = r)

C′
rr1...rn

(otherwise)

There is a similar formula for C′
wC′

r.

Proof The result follows from the formula ([L3], (5.1.15))

C′
rC

′
w =






(q 1
2 + q−

1
2 )C′

w (rw < w)
C′

rw +
∑

y:ry<y
µ(y, w)C′

y (rw > w)

and (8.2).

8.6 In this section, we prove (8.4.1) when L(w) ∩ R(v) = ∅. The proof is
by induction on !(v). By (8.5), we may assume !(w) ≥ 2, !(v) ≥ 2 and write
v = v′rs (v′ ∈ W, r, s ∈ R, !(v) = !(v′) + 2), w = r′s′w′ (w′ ∈ W, r′, s′ ∈ R
and !(w) = !(w′) + 2); inductively, assume (8.4.1) holds with v replaced by v′r
or v′. There are four cases to consider.

Case 1. s /∈ R(v′), s += s′.
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Now C′(vw, n − 1) = 0 since s /∈ R(v′) and C′(vw, n + 1) = 0 since s += s′.
Hence

C′
vC′

w = C′
v′rC

′
sC

′
w (by (8.5), since s /∈ R(v′))

= C′
v′rC

′
sw (by (8.5), since s += s′)

= C′
vw + C′(vw, n − 1) + C′(vw, n)

= C′
vw + C′(vw, n) + C′(vw, n + 1)

Case 2. s /∈ R(v′), s = s′.

Here, C′(vw, n − 1) = 0 since s /∈ R(v′), C′(vw′, n − 1) = 0 since s /∈ R(v′),
and C′(vw, n + 1) = C′

vw′ + C′(vw′, n) since s = s′.

Therefore
C′

vC
′
w = C′

v′rC
′
sC

′
w (by (8.5))

= C′
v′r(C

′
sw + C′

sw′) (by (8.5))

= C′
vw + C′(vw, n − 1) + C′(vw, n) + C′

vw′

+ C′(vw′, n − 1) + C′(vw′, n)

= C′
vw + C′(vw, n) + C′(vw, n + 1).

Case 3. s ∈ R(v′), s += s′.

In this case, C′(vw, n− 1) = C′
v′w + C′(v′w, n− 2) since s ∈ R(v′), C′(v′w, n−

1) = 0 since s′ /∈ R(v′) = {s} and C′(vw, n + 1) = 0 since s = s′. So

C′
vC′

w = (C′
v′rC

′
s − C′

v′)C′
w (by (8.5))

= C′
v′rC

′
sw − C′

v′C′
w (by (8.5))

= C′
vw + C′(vw, n− 1) + C′(vw, n)

− [C′
v′w + C′(v′w, n − 2) + C′(v′w, n − 1)]

= C′
vw + C′

v′w + C′(v′w, n − 2) + C′(vw, n) − [C′
v′w + C′(v′w, n − 2)]

= C′
vw + C′(vw, n) + C′(vw, n + 1)

Case 4. s ∈ R(v′) s = s′

Now C′(vw, n + 1) = C′
vw′ + C′(vw′, n) since s = s′,
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C′(v′w, n − 1) = Cv′w′ + C′(v′w′, n − 2) since s′ ∈ R(v′)

C′(vw′, n − 1) = C′
v′w′ + C′(v′w′, n − 2) since s ∈ R(v′) and

C′(vw, n − 1) = C′
v′w + C′(v′w, n − 2) since s ∈ R(v′).

So C′
vC

′
w = [C′

v′rC
′
s − C′

v′ ]C′
w (by (8.5))

= C′
v′r[C

′
sw + C′

sw′ ] − C′
v′C′

w (by (8.5))

= C′
vw + C′(vw, n − 1) + C′(vw, n) + C′

vw′ + C′(vw′, n − 1)

+ C′(vw′, n) − [C′
v′w + C′(v′w, n − 2) + C′(v′w, n − 1)]

= C′
vw + C′

v′w + C′(v′w, n − 2) + C′(vw, n) + C′
vw′

+ C′
v′w′ + C′(v′w′, n − 2) + C′(vw′, n) − [C′

v′w + C′(v′w, n − 2)

+ C′
v′w′ + C′(v′w′, n − 2)]

= C′
vw + C′(vw, n) + C′

vw′ + C′(vw′, n)

= C′
vw + C′(vw, n) + C′(vw, n + 1)

Hence (8.4.1) holds if L(w) ∩R(v) = ∅

8.7 This section proves (8.4.1) when L(w) ∩R(v) = {r} (r ∈ R). If !(v) = 1,
(8.5) gives the result. Hence assume !(v) ≥ 2 and write v = v′sr where v′ ∈
W, s ∈ R and !(v) = !(v′) + 2. Write w = rw′ (w′ ∈ W ). Assume inductively
that the result holds with v′ replacing v. This time there are two cases.

Case 1. r /∈ R(v′).

Here C′(v′sw, n − 1) = 0 since r ∈ L(w) and r /∈ L(v′), so

C′
vC

′
w = C′

v′sC
′
rC

′
w (by (8.5))

= (q
1
2 + q−

1
2 )C′

v′sC
′
w (by (8.5))

= (q
1
2 + q−

1
2 )[C′

v′sw + C′(v′sw, n − 1) + C′(v′sw, n)] (by (8.6))

= (q
1
2 + q−

1
2 )[C′

vrw + C′(vrw, n)]

Case 2 r ∈ R(v′)
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In this case, C′(v′sw, n − 1) = C′
v′w′ + C′(v′w′, n − 2). Therefore,

C′
vC′

w = [C′
v′sC

′
r − C′

v′ ]C′
w (by (8.5))

= (q
1
2 + q−

1
2 )C′

v′sC
′
w − C′

v′C′
w

= (q
1
2 + q−

1
2 )[C′

v′sw + C′(v′sw, n − 1) + C′(v′sw, n)]

− (q
1
2 + q−

1
2 )[C′

v′rw + C′(v′rw, n − 2)] (by (8.6) and induction)

= (q
1
2 + q−

1
2 )[C′

vrw + C′(vrw, n)].

This completes the proof of Theorem (8.4)

We turn now to the investigation of the coefficients arising when the products
C′

vCw are exposed as A-linear combinations of elements {Cx}x∈W . In (8.9), we
give a formula for these coefficients involving certain sequences of elements of
W × IN, defined in the next section.

8.8 Definition.

(i) For e = ((w0, i0), . . . , (wn, in)) ∈ (W × IN)n+1 (n ∈ IN) define ν(e) = in ∈ IN
and ρ(e) = wn ∈ W .

(ii) Let y, w ∈ W and w = rn . . . r1 (n = !(w)) be the reduced expression for
w. Let B(w, y) ⊆ (W × IN)n+1 be the set of those e = ((w0, i0), . . . , (wn, in)) ∈
(W × IN)n+1 satisfying (8.8.1), (8.8.2)k (k = 1, . . . , n), (8.8.3)k (k = 1, . . . , n)
and (8.8.4)k (k = 3, . . . , n) below:

(8.8.1) w0 = y, i0 = 0

wkw−1
k−1 ∈

{ {1} (rk /∈ L(wk))
R (rk ∈ L(wk))

(8.8.2)k

|ik − ik−1| =
{

1 (rk /∈ L(wk))
0 (rk ∈ L(wk))

(8.8.3)k

(8.8.4)k If rk = rk−2 and (xk−1, ik−1) = (xk−3, ik−3), then either

(a) !(xk−2) < !(xk−1) or

(b) xk−2 = xk−1 and ik−2 < ik−1.

120



We may now state

8.9 Theorem. For any y, w ∈ W ,
(8.9.1)

C′
wCy =

∑

e∈B(w,y)

τν(e)Cρ(e)

where for i ∈ IN, τi = q
i
2 + q

i−2
2 + . . . + q−

i−2
2 + q−

i
2 and the other notation is

as in (8.8).

Sections (8.10)–(8.14) contain a proof of (8.9).

8.10 Lemma. For s ∈ R and x ∈ W ,

CrCx =






−(q 1
2 + q−1/2)Cx (r ∈ L(x))
∑

x∈R
r∈L(sx)

Csx (r /∈ L(x))

Proof This follows from (8.2) and the formula ([L3],(5.1.12))

CrCx =






−(q 1
2 + q−1/2)Cx (r ∈ L(x))

Crx +
∑

y:sy<y
µ(y, x)Cx (r /∈ L(x))

8.11 In order to facilitate comparison between the various sets B(w, y) we
now define sets B′(w, y) ⊆ (W × IN)n+1 (n = !(w)) as follows:

For y, w as in (8.8) (ii), let B′(w, y) ⊆ (W × IN)n+1 be the set of those e =
((w0, i0), . . . , (wn, in)) ∈ (W × IN)n+1 satisfying (8.8.1), (8.8.2)k (k = 1, . . . , n),
(8.8.3)k (k = 1, . . . , n) and (8.8.4)k (k = 3, . . . , n − 1).

Note that the definition of B′(w, y) differs from that of B(w, y) only in the range
of values which k may take in the condition (8.8.4)k.
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The proof of (8.9) will be by induction on !(w); note that (8.9) holds trivially
for w = 1. Suppose that w ∈ W, !(w) ≥ 1 and assume inductively that

C′
vCy =

∑

e∈B(v,y)

τν(e)Cρ(e)

for all v ∈ W with !(v) < !(w).

Let L(w) = {r} (r ∈ R) and set x = rw. Write w = rn . . . r1 (n = !(w)).

8.12 Lemma. With the above notation,

C′
rC

′
xC′

y =
∑

e∈B′(w,y)

τν(e)Cρ(e).

Proof Note that for any m ∈ IN

(8.12.1) τ1τm =
{

τm−1 + τm+1 (m ≥ 1)
τ1 (m = 0),

that C′
r = Cr +(q 1

2 +q−
1
2 ) and so C′

rCz = 0 if r ∈ L(z) (by 8.10). By induction,
we have

C′
rCxCy =

∑

e′∈B(x,y)

r/∈L(ρ(e′))

τν(e′)CrCρ(e′) +
∑

e∈B(x,y)

r/∈L(ρ(e′))

τ1τν(e′)Cρ(e′)

=
∑

e′∈B(x,y)

r/∈L(ρ(e′))

τν(e′)

∑

s∈R
r∈L(sρ(e′))

Csρ(e′)

+
∑

e′∈B(x,y)

r/∈L′(ρ(e′))

ν(e′)>0

[τν(e′)+1 + τν(e′)−1]Cρ(e′) +
∑

e′∈B(x,y)

r/∈L(ρ(e′))

ν(e′)=0

τ1Cρ(e′)

=
∑

e′∈B(x,y)

∑

z∈W
zρ(e′)−1∈R

r∈L(z)

τν(((z,ν(e′),e′))Cρ(((z,ν(e′)),e′))

+
∑

e′∈B(x,y)

r/∈L(ρ(e′))

∑

i∈IN
|i−ν(e′)|=1

τν(((ρ(e′)i),e′))Cρ((ρ(e′),i),e′)

=
∑

e∈B′(w,y)

τν(e)Cρ(e).
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since every element of B′(w, y) is uniquely expressible in one of the forms

((z, ν(e′)), e′) (e′ ∈ B(x, y), z ∈ W, zρ(e′)−1 ∈ R, r ∈ L(z))

((ρ(e′), i), e′) (e′ ∈ B(x, y), r /∈ L(ρ(e′)), i ∈ IN, |i − ν(e′)| = 1)

and each such element of (W × IN)!(w)+1 is in B′(w, y). (When convenient, we
identify (W × IN)n+1 and (W × IN) × (W × IN)n).

Now if n ≤ 2 or (n ≥ 3 and rn += rn−2 (n = !(w))), then C′
rC

′
x = C′

rx and
B′(w, y) = B(w, y) so (8.9.1) holds. Hence we may assume for the remainder of
the proof that n ≥ 3 and rn = rn−2. Let z = rn−2 . . . r1.

8.13 Lemma. With the above notation
∑

e∈B′(w,y)\B(w,y)

τν(e)Cρ(e) =
∑

e′∈B(z,y)

τν(e′)Cρ(e′)

Proof It will suffice to show that the map θ′: (W × IN)!(w)+1 −→ (W × IN)!(w)−1

defined by ((w0, io), . . . , (wn, in)) -−→ ((wo, io), . . . , (wn−3in−3), (wn, in)) re-
stricts to a bijection θ:B′(w, y) \ B(w, y) −→ B(z, y) such that ν(θ(e)) = ν(e)
and ρ(θ(e)) = ρ(e) (e ∈ B′(w, y) \ B(w, y)).

But for e ∈ (W × IN)!(w)+1, ν(θ′(e)) = ν(e) and ρ(θ′(e)) = ρ(e) so we need only
check that θ′ restricts to a bijection as claimed.

Before checking this claim, it is convenient to note the following:
(8.13.1) if ((w0, i0), . . . , (wn−1, in−1), (wn, in)) ∈ B(w, y) and (w′

n, i′n) ∈ W × IN
then ((w0, io), . . . , (wn−1, in−1), (w′

n, i′n)) ∈ B(w, y) iff

w′
nw−1

n−1 ∈
{ {1} (rn /∈ L(w′

n))
R (rn ∈ L(w′

n))

and
|i′n − in−1| =

{
1 (rn /∈ L(w′

n))
0 (rn ∈ L(w′

n)).

Let e = ((w0, i0), . . . , (wn, in)) ∈ B′(w, y) \ B(w, y). Then ((w0, i0), . . . , (wn−2,
in−2)) ∈ B(z, y) and (wn−1, in−1) = (wn−3, in−3), so

wnw−1
n−3 = wnw−1

n−1 ∈
{
{1} (rn−2 = rn /∈ L(wn))
R (rn−2 = rn ∈ L(wn))
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and
|in − in−3| = |in − in−1| =

{
1 (rn−2 = rn /∈ L(wn))
0 (rn−2 = rn ∈ L(wn)).

By the claim (8.13.1), it follows that θ′(e) ∈ B(z, y); hence θ′ restricts to a map
θ:B′(w, y) \ B(w, y) −→ B(z, y).

To show θ is a bijection, define a map ψ′:B(z, y) −→ (W × IN)!(w)+1 as follows.
For e′ = ((w0, i0), . . . , (wn−2, in−2)) ∈ B(z, y), set ψ′(e′) =

((w0, i0), . . . , (wn−3, in−3), (wn−3, in−3 + 1), (wn−3, in−3), (wn−2, in−2))

if rn−1 /∈ L(wn−3) and ψ′(e′) =

((w0, i0), . . . , (wn−3, in−3), (rn−2wn−3, in−3), (wn−3, in−3), (wn−2, in−2))

if rn−1 ∈ L(wn−3). Fix e′ and write ψ′(e′) = (w′
0, i

′
0), . . . , (w′

n, i′n)).

Now we prove that ψ′(e′) ∈ B′(w, y)\B(w, y). Since e′ ∈ B(z, y), the conditions
(8.8.2)k and (8.8.3)k hold for 1 ≤ k ≤ n − 3, (8.8.1) holds and (8.8.4)k holds
for 3 ≤ k ≤ n − 2. To check the other conditions, we distinguish the cases
rn−1 /∈ L(wn−3), rn−1 ∈ L(wn−3).

Suppose first that rn−1 /∈ L(wn−3). Now rn−2 /∈ L(wn−3) = L(w′
n−2) by

(8.8.2)n−2 for e′, rn−1 /∈ L(wn−3) by assumption and so (8.8.2)n−2, (8.8.2)n−1,
(8.8.3)n−2 and (8.8.3)n−1 all hold for ψ′(e′). Also

(8.13.2) w′
nw′−1

n−1 = wn−2w
−1
n−3 ∈

{
{1} (rn = rn−2 /∈ L(wn−2) = L(w′

n))
R (rn ∈ L(w′

n))

and

(8.13.3) |i′n − i′n−1| = |in−2 − in−3| =
{

1 (rn /∈ L(w′
n))

0 (rn ∈ L(w′
n))

so (8.8.2)n and (8.8.3)n are satisfied by ψ′(e′). Now (8.8.4)n−1 holds since
i′n−2 = in−3 + 1 > in−3 = i′n−3. Hence ψ′(e′) ∈ B′(w, y). But ψ′(e′) +∈ B(w, y)
since rn = rn−2, while i′n−2 = in−3 + 1 > in−3 = i′n−1.

Now suppose that rn−1 ∈ L(wn−3); then rn−2 ∈ L(rn−2wn−2) = L(w′
n−2) and

rn−1 ∈ L(w′
n−1) so (8.8.2)n−2, (8.8.2)n−1, (8.8.3)n−2 and (8..8.3)n−1 are all

satisfied by ψ′(e′); moreover, (8.13.2) and (8.13.3) continue to hold, and show
that (8.8.2)n, (8.8.3)n are valid in this case. Also,
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(8.8.4)n−1 holds since !(w′
n−2) = 1 + !(wn−3) > !(wn−3) = !(w′

n−3); hence
ψ′(e′) ∈ B′(w, y). But ψ′(e′) /∈ B(w, y) since (w′

n−3, i
′
n−3) = (w′

n−1, i
′
n−1) and

!(w′
n−2) = !(wn−3) + 1 > !(wn−3) = !(w′

n−1).

Thus, ψ′ induces a function ψ:B(z, y) −→ B′(w, y) \ B(w, y), and θψ is the
identity on B(z, y). To complete the proof of bijectivity of θ, and hence of the
lemma, it will be shown that ψθ(e) = e for any e = ((w0, i0), . . . , (wn, in)) ∈
B′(w, y) \ B(w, y).

Case 1. rn−1 ∈ L(wn−1)

Now (8.8.4)n is false and wn−2 += wn−1, so it follows that (wn−1, in−1) =
(wn−3, in−3) and !(wn−2) > !(wn−1). This gives !(wn−2) > !(wn−3); by
(8.8.2)n−2, wn−2w

−1
n−3 ∈ R and rn−2 ∈ L(wn−2). Hence

wn−2 = rn−2wn−3, in−2 = in−3.

Therefore,

ψθ(e) = ψ((w0, i0), . . . , (wn−3, in−3), (wn, in))
= ((w0, i0), . . . , (wn−3, in−3), (rn−2wn−3, in−3), (wn−3, in−3), (wn, in))
= e as required.

Case 2. rn−1 /∈ L(wn−1)

Here (8.8.4)n is false and wn−2 = wn−1, so it follows that (wn−1, in−1) =
(wn−3, in−3) and in−2 > in−1. Since wn−2 = wn−3, it follows that rn−2 /∈
L(wn−2) and |in−2 − in−3| = 1. Hence

ψθ(e) = ψ((w0, i0), . . . , (wn−3, in−3), (wn, in))
= ((w0, i0), . . . , (wn−3, in−3), (wn−3, in−3 + 1), (wn−3, in−3), (wn, in))
= e.

8.14 This section completes the proof of (8.9).
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By (8.5), we have C′
w = C′

rC
′
x − C′

z and so

C′
wCy = C′

rC
′
xCy − C′

zCy

=
∑

e∈B′(w,y)

τν(e)Cρ(e) −
∑

e∈B(z,y)

τν(e)Cρ(e) by (8.12) and induction

=
∑

e∈B′(w,y)

τν(e)Cρ(e) −
∑

e∈B′(w,y)\B(w,y)

τν(e)Cρ(e) by (8.13)

∑

e∈B(w,y)

τν(e)Cρ(e).

8.15 Remark. If R(w) ∩L(y) += ∅ then B(w, y) = ∅ and so C′
wCy = 0. That

this holds in the Hecke algebra of an arbitrary Coxeter system can be seen as
follows: if s ∈ R, ws < w and sy < y, then (q 1

2 + q−
1
2 )C′

wCy = C′
wC′

sCy =
C′

w · 0 = 0 and so C′
wCy = 0 (because the Hecke algebra is a free A-module and

A is an integral domain).

We now give an explicit formula, similar to (8.9.1), for the polynomials P y
x,w.

Before stating this formula in (8.17), we need to define a function ρw: Wn+1 −→
IN and a set Pw(y, x) ⊆ Wn+1, where x, y, w ∈ W and n = !(w).

8.16 Definition. Fix w ∈ W , and let w = rn . . . r1 be the reduced expression
for w.

(i) For any e = (x0, . . . , xn) ∈ Wn+1, define

ρw(e) = #{ j | 1 ≤ j ≤ n, rj ∈ L(xj−1) }

(ii) For any x, y ∈ W , let Pw(y, x) be the set of those (x0, . . . , xn) ∈ Wn+1

satisfying (8.16.1), (8.16.2)i (i = 1, . . . , n) and (8.16.3)i (i = 2, . . . , n−1) below:

(8.16.1) x0 = y and xn = x
(8.16.2)i xix

−1
i−1 ∈ {1, ri}

(8.16.3)i If ri−1 = ri+1, then one or both of conditions (a), (b) below hold:
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(a) xi−1 += xi

(b) ri−1 /∈ L(xi−1).

The theorem below ([Dy], Theorem 3.8) will be proved in (8.18)–(8.23).

8.17 Theorem. With the notation of (8.16), for any x, y, w ∈ W ,
(8.17.1) P y

x,w =
∑

e∈Pw(y,x)

qρw(e).

8.18 In the case of a universal Coxeter system, the recurrence formula (7.14)
for the P y

x,w may be rewritten, using (8.2), as follows: for x, y, w ∈ W and r ∈ R
with rw < w,
(8.18.1) P y

x,w = qcP y
rx,rw + q1−cP y

x,rw − q
∑

z4rw
rz<z

P y
x,z, where

c =
{

1 (rx > x)
0 (rx < x).

Now (8.17.1) holds if w = 1, and will be proved by induction on !(w). Fix
w ∈ W \ {1} and assume inductively that (8.17.1) holds when w is replaced by
any v ∈ W with !(v) < !(w). To relate the sets Pw(y, x) for varying x, y ∈ W ,
it is convenient to define sets P ′

w(y, x) ⊆ Wn+1 as follows:

For x, y, w as in (8.16) (ii), let P ′
w(y, x) ⊆ Wn+1 be the set of those (x0, . . . , xn) ∈

Wn+1 satisfying (8.16.1), (8.16.2)i (i = 1, . . . , n) and (8.16.3)i (i = 2, . . . , n−2).
Note that the only difference between the definitions of Pw(y, x) and P ′

w(y, x)
is the range of values i may take in the condition (8.16.3)i.

Let w = rn . . . r1 be the reduced expression for w (n ≥ 1) and let rn = r. The
relationship between Pw(y, x) and P ′

w(y, x) is contained in the following

8.19 Lemma. Fix e = (x0, . . . , xn) ∈ Wn+1 and x, y ∈ W . Then

(i) e ∈ P ′
w(y, x) iff (x0, . . . , xn−1) ∈ Prw(y, xn−1), xnx−1

n−1 ∈ {1, rn} and xn =
x

(ii) e ∈ Pw(y, x) iff e ∈ P ′
w(y, x) and, if n ≥ 2 and rn = rn−2, then either (a)

xn−2 += xn−1 or (b) rn−2 /∈ L(xn−2), or both.
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(iii) e ∈ Pw(y, x) iff (x0, . . . , xn−1, rxn) ∈ Pw(y, rx).

Proof Parts (i) and (ii) are immediate consequences of the definitions and (iii)
follows from (i) and (ii).

To prove (8.17.1), we need only show that the right hand side of (8.17.1) is equal
to the right hand side of (8.18.1). Hence it will be sufficient to prove (8.20) and
(8.21) below:

8.20 Lemma. For any x, y ∈ W ,

∑

e∈P′
w(y,x)

qρw(e) = qcP y
rx,rw + q1−cP y

x,rw

where

c =
{

1 (rx > x)
0 (rx < x)

8.21 Lemma. For any x, y ∈ W ,

(8.21.1)
∑

e∈P′
w(y,x)

qρw(e) =
∑

e∈Pw(y,x)

qρw(e) + q
∑

z4rw
rz<z

P y
x,z

The proofs of these lemmas are given in (8.22) and (8.23) below.

8.22 Proof of Lemma (8.20)

The function θ′: Wn+1 −→ Wn which maps (x0, . . . , xn) to (x0, . . . , xn−1) re-
stricts (by (8.19)) to a bijection

θ:P ′
w(y, x) −→ Prw(y, rx) ∪ Prw(y, x).
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Furthermore, if e′ = (x0, . . . , xn−1) ∈ Prw(y, rx) ∪ Prw(y, x), then

ρw(θ−1(e′)) =
{

ρrw(e′) + 1 (rn ∈ L(xn−1))
ρrw(e′) (rn /∈ L(xn−1)) (by (8.16) (i))

=
{

ρrw(e′) + c (e′ ∈ Prw(y, rx)
ρrw(e′) + 1 − c (e′ ∈ Prw(y, x)).

By induction,

qcP y
rx,rw + q1−cP y

x,rw =
∑

e′∈Prw(y,rx)

qρrw(e′)+c +
∑

e′∈Prw(y,x)

qρrw(e′)+1−c

=
∑

e′∈Prw(y,rx)∪Prw(y,x)

qρw(θ′(e′))

=
∑

e′∈P′
w(y,x)

qρw(e) as claimed

8.23 Proof of Lemma (8.21)

If n ≤ 2, or if n ≥ 3 and rn += rn−2, then P ′
w(y, x) = Pw(y, x) (by (8.19) (ii))

and { z ∈ W | z ? rw, rz < z } = ∅ so (8.21.1) holds.

Hence it may be assumed that n ≥ 3 and rn = rn−2. In this case there exists a
unique z ∈ W satisfying z ? rw and rz < z, namely z = rn−2 . . . r1. To prove
(8.21.1), it will be sufficient to show that

∑

e∈P′
w(y,x)\Pw(y,x)

qρw(e) =
∑

e′∈Pz(y,x)

qρz(e′)+1.

In order to do this, it will be shown that the function θ′: Wn+1 −→ Wn−1

defined by (x0, . . . , xn) -−→ (x0, . . . , xn−3, x) restricts to a bijection

θ:P ′
w(y, x) \ Pw(y, x) −→ Pz(y, x)

such that if e ∈ P ′
w(y, x) \ Pw(y, x), then

ρw(e) = ρz(θ(e)) + 1.
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For the proof of this claim, it will be convenient to set

x′ =
{

x (r ∈ L(x))
rx (r /∈ L(x)).

Suppose that e = (x0, . . . , xn) ∈ P ′
w(y, x) \ Pw(y, x). Then (8.19) (i), (ii) yield

rn = rn−2, xn−2 = xn−1, rn−2 ∈ L(xn−2), (x0, . . . , xn−1) ∈ Prw(y, xn−1)
and xn−1 ∈ {x, rx}. These facts imply x ∈ {xn−2, rxn−2} so (8.19) gives
θ′(e) = (x0, . . . , xn−3, x) ∈ Pz(y, x). Hence θ′ restricts to a function θ:P ′

w(y, x)\
Pw(y, x) −→ Pz(y, x). Note also that since xn−2 = xn−1 ∈ {x, rx} and
r ∈ L(xn−2), we must have xn−2 = xn−1 = x′; this observation proves that
θ is injective.

We check that ρw(e) = ρz(θ(e)) + 1. Set e′′ = (x0, . . . , xn−3) ∈ Prz(y, xn−3)
and θ(e) = e′ = (x0, . . . , xn−3, x) ∈ Pz(y, x). Then since rn−1 /∈ L(xn−2) = {r}
but rn ∈ L(xn−1) = {r}, we have

ρw(e) = ρrz(e′′) + #{ j | n − 2 ≤ j ≤ n, rj ∈ L(xj−1) }

=
{

ρrz(e′′) + 1 (rn−2 /∈ L(xn−3))
ρrz(e′′) + 2 (rn−2 ∈ L(xn−3))

while

ρz(e′) =
{

ρrz(e′′) (rn−2 /∈ L(xn−3))
ρrz(e′′) + 1 (rn−2 ∈ L(xn−3))

so
ρw(e) = ρz(e′) + 1 = ρz(θ(e)) + 1.

It remains to check that θ is surjective. Take e′ = (x0, . . . , xn−2) ∈ Pz(y, x).
Since rn−2 = r, (8.19) (iii) shows that (x0, . . . , xn−3, x′) ∈ Pz(y, x′). Now
using (8.19) (i), (ii), it follows that (x0, . . . , xn−3, x′, x′) ∈ Prw(y, x′) (since
if xn−3 = x′, then L(xn−3) = L(x′) = {r} = {rn−2} so rn−3 /∈ L(xn−3)).
Since xx′−1 ∈ {1, r}, (8.19) (i) now shows that e = (x0, . . . , xn−3, x′, x′, x) ∈
P ′

w(y, x). However, e /∈ Pw(y, x) since rn−2 = rn, x′ = x′ and rn−2 ∈ L(x′). So
e ∈ P ′

w(y, x) \ Pw(y, x) and θ(e) = (x0, . . . ,n−3 , x) = e′; hence θ is surjective as
claimed.

We conclude this chapter by exhibiting the polynomials 1 + nq (n ∈ IN) as
Kazhdan-Lusztig polynomials
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8.24 Example.

(i) Consider a universal Coxeter system (W, R) in which R = {r, s, t}. Fix
n ∈ IN and let

w =

n+3︷ ︸︸ ︷
(. . . trstrst), y =

n︷ ︸︸ ︷
(. . . trst) .

For fixed j (0 ≤ j ≤ n) set

yi =






i︷ ︸︸ ︷
(. . . trst) (0 ≤ i ≤ j)

j︷ ︸︸ ︷
(. . . trst) (j + 1 ≤ i ≤ j + 3)

i−3︷ ︸︸ ︷
(. . . trst) (j + 4 ≤ i ≤ n + 4).

Define ej = (y0, . . . , yn) ∈ Wn+4. Then

ρw(ej) =
{

0 (j = 0)
1 (j ∈ {1, . . . , n})

and Pw(1, x) = {e0, e1, . . . , en}.

Hence Py,w = P 1
y,w = q0 + nq1 = 1 + nq.

(ii) Take w = trst in (i). Then Pw(s, s) = {f1, f2} where f1 = (s, s, s, s, s) and
f2 = (s, ts, ts, ts, s). We have ρw(f1) = ρw(f2) = 1, and hence P s

s,w = 2q.
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Chapter 9

UNIVERSAL COXETER SYSTEMS: [P2]

This chapter is devoted to a proof that the Hecke algebra of a universal Coxeter
system satisfies the positivity property [P2] of (7.21). Recall that [P2] asserts
that

T̃−1
x−1 T̃y ∈

∑

z

IN[q
1
2 , q−

1
2 ]Cz.

In contrast to [P1], [P3] and [P4], this involves three separate bases of the Hecke
algebra (the others involve at most two); the proof of [P2] is correspondingly
more intricate. The coefficients in the Laurent polynomials arising as structure
constants will again turn out to be the cardinalities of combinatorially defined
sets, but this time we will not explicitly describe these sets.

9.1 Throughout this chapter, (W, R) denotes a fixed universal Coxeter system,
and we use the notation of (8.1). For the proof of [P2], we will need an ancillary
result that expresses the products T̃−1

x−1Cy (x, y ∈ W ) in terms of the basis
{Cz}z∈W . This result is a restatement of ([Dy], Theorem (3.9)) but we will give
a different proof. Following is some notation required for the statement of this
auxiliary result in (9.3) below.

9.2 Definition.

(i) For any (y0, . . . , yn) ∈ Wn+1, let

γ(e) =
1
2
#{ j | 1 ≤ j ≤ n, yj = yj−1 }

(ii) Let x, y ∈ W , and x = rn . . . r1 be the reduced expression for x. Let
Qx(y, z) ⊆ Wn+1 be the set of those (y0, . . . , yn) ∈ Wn+1 satisfying (9.2.1),
(9.2.2)j (j = 1, . . . , n) and (9.2.3)j (j = 1, . . . , n − 1) below:
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(9.2.1) y0 = y, yn = z

(9.2.2)j yjy
−1
j−1 ∈

{
{ 1 } (rj /∈ L(yj))
R (rj ∈ L(yj))

(9.2.3)j !(yj) ≤ !(yj−1) or !(yj) ≤ !(yj+1)

9.3 Proposition. For any x, y ∈ W with R(x) ∩ L(y) = ∅,

T̃−1
x−1Cy =

∑

z∈W




∑

e∈Qx(y,z)

q−γ(e)



Cz

Proof For any r ∈ R, we have T̃−1
r = Cr + q−

1
2 , so (8.10) gives

T̃−1
r Cw =






−q
1
2 Cw (rw < w)

q−
1
2 Cw +

∑
s∈R

r∈L(sw)

Csw (rw > w)

i.e.

(9.3.1) T̃−1
r Cw =






−q
1
2 Cw +

∑
s∈R

r∈L(sw)

Csw (rw < w)

q−
1
2 Cw +

∑
s∈R

r∈L(sw)

Csw (rw > w)

since { s ∈ R | r ∈ L(sw) } = ∅ if rw < w.

Now let x = rn . . . r1 be the reduced expression for x. For any e = (y0, . . . , yn) ∈
Wn+1, let

δj(e) =






1 (yj += yj−1)

−q
1
2 (yj = yj−1, rj ∈ L(yj))

q−
1
2 (yj = yj−1, rj /∈ L(yj)) (j = 1, . . . , n)

and δ(e) = δ1(e) . . . δn(e).

Note that
(9.3.2) δ(e) = q−γ(e) if e ∈ Qx(y, z)
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Define Ax(y, z) to be the subset of Wn+1 consisting of those (y0, . . . , yn) ∈ Wn+1

satisfying (9.3.3), ( 9.3.4) and (9.3.5) below:
(9.3.3) y0 = y, yn = z
(9.3.4) yjy

−1
j−1 ∈ {1} ∪ R (j = 1, . . . , n)

(9.3.5) If 1 ≤ j ≤ n and yjy
−1
j−1 ∈ R then rj ∈ L(yj).

Using (9.3.1), it follows by induction on !(x) that

(9.3.6) T̃−1
x−1Cy =

∑

z∈W




∑

e∈Ax(y,z)

δ(e)



Cz

We now fix x, y, z and show that

(9.3.7)
∑

e∈Ax(y,z)

δ(e) =
∑

e∈Qx(y,z)

q−γ(e).

For any e = (y0, . . . , yn) ∈ Ax(y, z), define

J(e) = { j | 1 ≤ j ≤ n − 1, yj−1 = yj = yj+1 and rj+1 ∈ L(yj+1) }
∪{ j | 1 ≤ j ≤ n − 1, yj−1 = yj+1, !(yj) > !(yj−1) }.

Now introduce an equivalence relation ∼ on Ax(y, z) as follows: for e as above
and e′ = (y0, . . . , y′

n) ∈ Ax(y, z), write e ∼ e′ iff J(e) = J(e′) and yi = y′
i (i ∈

{0, . . . , n} \ J(e)).

Fix e = (y0, . . . , yn) ∈ Ax(y, z). For any e′ = (y′
0, . . . , y

′
n) ∈ Wn+1, we show

that
(9.3.8) (e′ ∈ Ax(y, z) and e′ ∼ e) iff

{
y′

jy
−1
j = 1 (j ∈ {0, . . . , n} \ J(e))

y′
jy

−1
j ∈ {1, rj} (j ∈ J(e)).

Note firstly that if j, k ∈ J(e) and j += k then |j − k| ≥ 2. Suppose that e′ ∈
Ax(y, z) and e′ ∼ e. Then for any j ∈ J(e), we have yj−1 = yj+1 = y′

j+1 = y′
j−1.

Also, either yj = yj−1 or yjy
−1
j−1 ∈ R, rj ∈ L(yj); since in the latter case we

have !(yj) > !(yj−1) by definition of J(e), it follows that either yj = yj−1 or
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yj = rjyj−1. Similarly, either y′
j = y′

j−1 or y′
j = rjy′

j−1. Thus, the left hand
condition in (9.3.8) implies that on the right.

Conversely, suppose that e′ ∈ Wn+1 satisfies the conditions on the right of
(9.3.8). Let j ∈ J(e). We have either yj−1 = yj = yj+1 or yj−1 = rjyj = yj+1

and rj ∈ L(yj); it follows that rj+1 ∈ L(yj+1) (from the definition of J(e) in the
first case, and (9.3.5) in the other). Now y′

jy
′−1
j−1 ∈ {1, rj} and y′

j+1y
′−1
j ∈ {1, rj};

if y′
j = rjy′

j−1, then rj ∈ L(y′
j) (since rj+1 ∈ L(yj+1) implies rj /∈ L(y′

j−1)).
These facts imply that e′ ∈ Ax(y, z), and that J(e) ⊆ J(e′). Interchanging the
roles of e and e′, J(e′) ⊆ J(e). Hence e ∼ e′ as claimed.

Now for e = (y0, . . . , yn) ∈ Ax(y, z) and j ∈ J(e), we have

δj+1(e)δj(e) =
{
−1 (yj = yj+1)
+1 (yj += yj+1).

It follows that if also e′ = (y′
0, . . . , y

′
n) ∈ Ax (y, z) and e′ ∼ e, then δ(e′) =

(−1)kδ(e) where k = #{ j ∈ J(e) | y′
j += yj }. By (9.3.8), we have now that if

J(e) += ∅, then
∑

e′∈Ax(y,z)

e′∼e

δ(e) = 0, hence
∑

e∈Ax(y,z)

δ(e) =
∑

e∈Ax(y,z)
J(e)=∅

δ(e).

To prove (9.3.7), it need only be checked that

{ e ∈ Ax(y, z) | J(e) = ∅ } = Qx(y, z)

(by (9.3.2)).

Fix e = (y0, . . . , yn) ∈ Wn+1. Suppose first that e ∈ Ax(y, z) and J(e) = ∅.
If 1 ≤ j ≤ n − 1 and (9.2.3)j failed, (9.3.4) and (9.3.5) would give yj−1 =
rjrj = yj+1, yj > yj−1 and so j ∈ J(e), a contradiction. To check (9.2.2)j

for 1 ≤ j ≤ n, it is enough by (9.3.4) and (9.3.5) to show that if yj = yj−1

then rj /∈ L(yj). But if y1 = y0 and r1 ∈ L(y1), then r1 ∈ L(y) ∩ R(x)
contrary to the hypothesis of (9.3). If 2 ≤ j ≤ n yj = yj−1 and rj ∈ L(yj),
then rj−1 /∈ L(yj−1). Thus, (9.3.4) and (9.3.5) imply that yj−2 = yj−1; hence
j − 1 ∈ J(e), again contrary to assumption. Since e satisfies (9.3.3), we have
e ∈ Qx(y, z).

Conversely, suppose that e ∈ Qx(y, z). Then a fortiori, e ∈ Ax(y, z). If j ∈ J(e),
then (9.2.3)j implies that yj−1 = yj = yj+1 and rj+1 ∈ L(yj+1), contrary to
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(9.2.2)j+1. Hence J(e) = ∅, completing the proof of (9.3.7) and hence of the
proposition.

9.4 Corollary. For any x ∈ W ,

T̃x =
∑

z∈W




∑

e∈Q′
x(1,z)

qγ(e)



Cz

where Q′
x(1, z) = { (y0, . . . , yn) ∈ W !(x)+1 | (y−1

0 , . . . , y−1
n ) ∈ Qx−1(1, z−1) }.

Proof Applying the anti-involution
∑

azT̃z -−→
∑

āzT̃−1
z of the Hecke algebra

to (9.3) gives

T̃x−1 =
∑

z∈W




∑

e∈Qx(1,z)

qγ(e)



Cz−1

and the corollary follows on noting that γ((y0, . . . , yn)) = γ((y−1
0 , . . . , y−1

n ))

Following is the main result of this chapter.

9.5 Theorem. Fix y, w ∈ W . Then for any x ∈ W , there is a subset Bx of⋃
z∈W

(Qw(z, x) ×Q′
y(1, z)) such that

T̃−1
w−1 T̃y =

∑

x∈W




∑

(e,e′)∈Bx

qγ(e′)−γ(e)



Cx.

The proof of (9.5) will be given in (9.6)–(9.13).

9.6 If w = 1 then (9.5) is trivial. Henceforward, we assume w += 1. Let
R(w) = {s} (s ∈ R) and write v = ws. Note that T̃−1

s Cx = −q
1
2 Cx if sx < x.
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Hence
T̃−1

w−1 T̃y = T̃−1
w−1

∑

z∈w
e′∈Q′

y(1,z)

qγ(e′)Cz

=
∑

z∈W
e′∈Q′

y(1,z)
sz>z

qγ(e′)T̃−1
w−1Cz

−
∑

z∈W
e′∈Q′

y(1,z)
sz<z

qγ(e′)+ 1
2 T̃−1

v−1Cz

=
∑

z∈W
e′∈Q′

y(1,z)
sz>z

∑

x∈W
e∈Qw(z,x)

qγ(e′)−γ(e)Cx

−
∑

z∈W
e′∈Q′

y(1,z)
sz<z

∑

x∈W
e′∈Qv(z,x)

qγ(e′)+ 1
2−γ(e)Cx

=
∑

x∈W

[ ∑

z∈W
(e,e′)∈Qw(z,x)×Q′

y(1,z)

qγ(e′)−γ(e)

−
∑

z∈W
sz<z

(e,e′)∈Qv(z,x)×Q′
y(1,z)

qγ(e′)+ 1
2−γ(e)

]
Cx

noting that Qw(z, x) = ∅ unless sz > z.

Hence to prove (9.5), it will suffice to prove the following

9.7 Lemma. For any x ∈ W , there exists an injection

θx:
⋃

z∈W
sz<z

(Qv(z, x) ×Q′
y(1, z)) −→

⋃

z∈W

(Qw(z, x) ×Q′
y(1, z))

such that if θx((f, e) = (f ′, e′), then γ(e′) − γ(f ′) = γ(e) − γ(f) + 1
2 .
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(For (9.5) is then satisfied by taking

Bx =
⋃

z∈W

(Qw(z, x) ×Q′
y(1, z)) \ Imθx)

9.8 Let y = r1 . . . rm be the reduced expression for y. It is convenient to write
out the definition of Q′

y(1, z) explicitly:

Q′
y(1, z) is the set of those sequences (y0, . . . , ym) ∈ Wn+1 such that (9.8.1),

(9.8.2)j (j = 1, . . . , m) and (9.8.3)j (j = 1, . . . , m − 1) below hold:
(9.8.1) y0 = 1, ym = z

(9.8.2)j y−1
j−1yj ∈

{
{ 1 } (rj /∈ R(yj))
R (rj ∈ R(yj))

(9.8.3)j !(yj) ≤ !(yj−1) or !(yj) ≤ !(yj+1).

Note that if (y0, . . . , ym) ∈ Q′
y(1, z) and s ∈ R, sz < z then there exists

j(1 ≤ j ≤ m) such that yi = 1 (0 ≤ i < j), yj = s and s ∈ L(yi) for j ≤ i ≤ m.

9.9 Now let w = sn . . . s1 be the reduced expression for w. Suppose z ∈
W, sz < z; let e = (y0, . . . , ym) ∈ Q′

y(1, z) and f = (z1, . . . , zn) ∈ Qv(z, x).

Define j0, k0, l0 as follows:

j0 = max{ j | 1 ≤ j ≤ n, !(zj) < . . . < !(z1) }
k0 = min{ i | 1 ≤ i ≤ m, !(y0) ≤ . . . ≤ !(yi−1) < !(yi) and

!(yj) ≥ !(yi) for all j (i ≤ j ≤ m) }
l0 = !(yk0).

To define, θx((f, e)), the three cases below must be considered separately:
Case 1 l0 > j0
Case 2 l0 = j0 and there does not exist j (0 ≤ j ≤ m) with !(yj) = l0 + 1
Case 3 l0 < j0 or (l0 = j0 and there exists j (0 ≤ j ≤ m) with !(yj) = l0 + 1).

We begin with Case 1.
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9.10 Case 1. l0 > j0

For j = 0, . . . , j0 + 1 let ij = min{ i | 0 ≤ i ≤ m, !(yi) = j }. Then yij =
ri1 . . . rij (0 ≤ j ≤ j0 + 1) and for i ≤ ij0+1,
(9.10.1) yi = yij where j = max{ k | 0 ≤ k ≤ j0 + 1, ik ≤ i }.

Since e ∈ Q′
y(1, z), it follows that

(9.10.2) ij = max{ i | 1 ≤ i ≤ ij+1, ri = rij } (1 ≤ j ≤ j0).

Since f ∈ Qv(z, x) and s1 ∈ L(z1) = L(z),
(9.10.3) si ∈ L(zi) (1 ≤ i ≤ j0)
and since zjz

−1
j−1 ∈ R (2 ≤ j ≤ j0),

(9.10.4) zj = sj−1zj−1 (2 ≤ j ≤ j0)

Now yij0+1 = ri1 . . . rij0+1; for i ≥ ij0+1, y
−1
i yi+1 ∈ {1} ∪ R and !(yi) ≥ j0 + 1.

This implies
(9.10.5) !(yi) = !(yij0+1) + !(y−1

ij0+1
yi) (ij0+1 ≤ i ≤ m).

In particular, we may write, for some x′ ∈ W ,
(9.10.6) z1 = ym = ri1 . . . rij0+1x

′ where !(z1) = j0 + 1 + !(x′)

From (9.10.3), (9.10.4) and (9.10.6), it now follows that
(9.10.7) rij = sj (1 ≤ j ≤ j0).

For m ≥ i ≥ ij0+1, set y′
i = y−1

ij0
yi. From (9.10.5), we have

(9.10.8) rij0+1 ∈ L(y′
i) and R(y′

i) = R(yi) (ij0+1 ≤ i ≤ m).

Note that r1 . . . rij0+1 +≤ s1 . . . sj0−1 (where ≤ denotes Bruhat order) since
!(r1 . . . rijo+1) = ij0+1 ≥ j0 + 1 > j0 − 1 = !(s1 . . . sj0−1).

Let k = max{ i | 1 ≤ i ≤ ij0+1, ri . . . rij0+1 +≤ s1 . . . sj0−1 } and define

y′′
i =






1 (0 ≤ i < k)
rk . . . ri (k ≤ i < ij0+1)
rk . . . rij0+1−1y′

i (ij0+1 ≤ i ≤ m),

e′ = (y′′
0 , . . . , y′′

m) ∈ Wm+1.

Since y′
ij0+1

= rij0+1 , it follows from (9.10.8) that
(9.10.9) e′ ∈ Q′

y (1, y′′
m)
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Now define p0 = j0 and define p1, . . . , pij0+1−k in turn by pj = max{ l | 1 ≤ l <
pj−1, sl = rij0+1−j+1 }; these are all defined since by choice of k, rk+1 . . . rij0+1 ≤
s1 . . . sj0−1. Note also, since rk . . . rij0+1 +≤ s1 . . . sj0−1, it follows that
(9.10.10) sl += rk (1 ≤ l < pij0+1−k).

Now let pij0+1−k+1 = 0 and define

z′i =






zi (n ≥ i ≥ j0)
sj0zj0 (j0 > i ≥ p1)
rijo+1−l . . . rij0+1−1sj0zj0 (pl > i ≥ pl+1; 1 ≤ l ≤ ij0+1 − k)

We now check that (z′0, . . . , z′n) satisfies (9.2.2), (9.2.3).

We have sj0zj0 = sj0sj0−1 . . . s1ym by (9.10.4), so (9.10.6) and (9.10.7) give
L(sj0zj0) = {rij0+1}. It follows that
(9.10.11) L(z′i) = {rij0−l} (pl > i ≥ pl+1, 0 ≤ l ≤ ij0 − k).

Now for pl > i > pl+1, si += rij0+1−l = L(z′i) and z′i = z′i−1. If ij0+1 − k ≥ l > 0
then L(z′pl

) = {rij0+1−l + 1} = {spl} and z′pl
= rij0+1−lz′pl−1. This shows that

(9.2.2)i holds for 1 ≤ i < j0, and, moreover, that !(z′0) ≥ . . . ≥ !(z′j0−1), so
(9.2.3)i holds for 1 ≤ i < j0.

Also, sj0 ∈ L(z′j0) and z′j0−1 = sj0z
′
j0 < z′j0 , so (9.2.2)j0 holds; if j0 < n, then

the definition of j0 implies that (9.2.3)j0 holds. Since (9.2.2)i and (9.2.3)i hold
for i > j0 (because f ∈ Qv(z, x)), we may conclude that
(9.10.12) f ′ = (z′0, . . . , z′n) ∈ Qw(z′0, z′n).

Note that
z′0 = rk . . . rij0+1−1sj0zj0

= rk . . . rij0+1−1(sj0 . . . s1ym)

= rk . . . rijo+1−1y
′
m

= y′′
m

Hence (f ′, e′) ∈
⋃

z∈W
(Qw(z, x) ×Q′

y(1, z)), and we set θx((f, e)) = (f ′, e′).

Now

γ(e′) − γ(f ′) =
1
2
#{ i | y′′

i = y′′
i−1 }−

1
2
{ j | z′j = z′j−1 }
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=
1
2
[#{ i > ij0+1 | yi = yi−1 } + k − 1] − 1

2
[#{ j > j0 | zj = zj−1 }

+ ((j0 − 1) − (!(z′0) − !(z′j0−1)))]

and !(z′0) − !(z′j0−1) = ij0+1 − k. Also

γ(e) − γ(f) =
1
2
#{i | yi = yi−1 }−

1
2
#{ j | zj = zj−1 }

=
1
2
[#{ i > ij0+1 | yi = yi−1 } + (ij0+1 − 1 − j0)]

− 1
2
#{ j > j0 | zj = zj−1 }

and so we have that γ(e) − γ(f) = γ(e′) − γ(f ′) − 1
2 as wanted.

The following observations will show that (f, e) is determined by (f ′, e′).

Firstly, j0 is determined by
(9.10.13) j0 − 1 = max { j | 0 ≤ j ≤ n, !(z′j) ≤ . . . ≤ !(z′0) }.

Then by (9.10.4), f = (z1, . . . , zm) is determined by
(9.10.4) zj = z′j (n ≥ j ≥ j0); zj = sj . . . sj0−1z′j0 (1 ≤ j ≤ j0 − 1).

Now k is determined by the condition
(9.10.15) k = min{ i | 0 ≤ i ≤ m, !(y′′

i ) = 1 }
and then ij0+1 is determined by
(9.10.16) ij0+1 − k = !(z′0) − !(z′j0−1).

By (9.10.7) and (9.10.2), ij0 , . . . , 1, are given by
(9.10.17) ij = max{ i | 1 ≤ i ≤ ij+1, ri = sj (j = j0, . . . , 1).

Now (9.10.1) gives
(9.10.18) for i ≤ ij0+1, yi = ri1 . . . rij where j = max{ k | ik ≤ i }.

The remaining yi, and hence e, are finally given by
(9.10.19) yi = ri1 . . . rij0+1 (rk . . . rij0+1)−1y′′

i (m ≥ i ≥ ij0+1).

When we have finished defining θx the observations (9.10.13–19) will show that
the restriction of θx to the set of pairs (f, e) in Case 1 is injective. In order
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to compare the image of pairs (f1, e1), (f2, e2) belonging to different cases, we
shall also need the following fact (9.10.21). Let

a = max{ j | !(z′j) ≤ . . . ≤ !(z′0) }(9.10.20)
b = !(z′0) − !(z′a)
c = max { i | !(y′′

i ) = 0 }
d = max{ i | !(y′′

c ) < . . . < !(y′′
i ), !(y′′

j ) ≥ !(y′′
i ) for j ≥ i }.

Then
(9.10.21) !(y′′

m) ≥ 1 and 1 + b ≤ d − c.

Here, this follows because a = j0 − 1, b = ij0+1 − k, c = k − 1 and d ≥ ij0+1.

9.11 Case 2. l0 = j0 and for all j with 0 ≤ j ≤ m, we have !(yj) += l0 + 1.

For j = 0, . . . , j0 let ij = min{ i | 0 ≤ i ≤ m, !(yi) = j }. Also, define
ij0+1 = m + 1. Then for f0 ≤ i ≤ m,
(9.11.1) yi = yr1 . . . yrj where j = max { k | 0 ≤ k ≤ j0 + 1, ik ≤ i }.

Since e ∈ Q′
y(1, z), it follows that

(9.11.2) ij = max { i | 1 ≤ i < ij+1, ri = rij } (1 ≤ j ≤ j0).

Since f ∈ Qv(z, x) and s1 ∈ L(z1), we have
(9.11.3) si ∈ L(zi) (1 ≤ i ≤ j0)

and because zjz
−1
j−1 ∈ R (2 ≤ j ≤ j0), it follows that

(9.11.4) zj = sj−1zj−1 (2 ≤ j ≤ j0).

Now
(9.11.5) z1 = ym = ri1 . . . rij0

and so from (9.11.3), (9.11.4) we get
(9.11.6) rij = sj (1 ≤ j ≤ j0)

Note that zj0 = sj0−1 . . . s1z1 = sj0 . Set y′′
i = 1 (0 ≤ i ≤ m) and e′ =

(y′′
0 , . . . , y′′

m). Also, define

z′j =
{

1 (0 ≤ j ≤ j0 − 1)
zj (j0 ≤ j ≤ n)

and f ′ = (z′0, . . . , z′n).
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Then e′ ∈ Q′
y(1, 1) and, noting that f ′ satisfies (9.2.3)j0 (if j0 < n) by definition

of j0, we also have f ′ ∈ Qw(1, z′n) = Qw(1, x).

We set θx((f, e)) = (f ′, e′), and note that

γ(e′) − γ(f ′) =
m

2
− 1

2
[(j0 − 1) + #{ j > j0 | zj = zj−1 }]

=
1
2
(m − j0) −

1
2
#{ j > j0 | zj = zj−1 } +

1
2

= γ(e) − γ(f) +
1
2

as wanted.

The following points show how (f, e) may be reconstructed from (f ′, e′). Firstly,
(9.11.7) j0 = min{ j | !(z′j) > !(z′j−1) }

and then f is given by
(9.11.8) zj = z′j (n ≥ j ≥ j0); zj = sj . . . sj0−1z′j0 (1 ≤ j ≤ j0) (from (9.11.4)).

From (9.11.2) and (9.11.6),
(9.11.9) ij = max{ i | 1 ≤ i < ij+1 ri = sj }

(1 ≤ j ≤ j0) and e is now determined using (9.11.1) as follows:
(9.11.10) yi = ri1 . . . rij where j = max{k | ik ≤ i } (0 ≤ i ≤ m).

For comparison with other cases, this time we need merely note that
(9.11.11) y′′

m = 1.

9.12 Case 3. l0 < j0 or (l0 = j0 and !(yj) = l0+1 for some j with 0 ≤ j ≤ m).

We begin be reformulating the conditions defining this case.

Suppose first that l0 < j0. Since sj0 ∈ L(zj0), we have !(ym) = !(z1) =
!(zj0) + j0 − 1 ≥ j0 > l0. This implies that there exists j (0 ≤ j ≤ m) with
!(yj) = l0 + 1; this also holds (by assumption) if l0 = j0.

Hence we may define p = min{ j | 0 ≤ j ≤ m, !(yj) = l0 + 1 }. Now p > k0

and !(y0) ≤ . . . ≤ !(yp−1) < !(yp), so by definition of k0, there exists p′ > p
with !(yp′) = l0. Take p′ minimal with respect to these two conditions: then
!(yp′−1) = l0 + 1 and !(yp′) = l0.
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This shows that the conditions defining this case are equivalent to
(9.12.1) l0 ≤ j0 and for some j (0 ≤ j ≤ m), !(yj) = l0 + 1 and !(yj+1) = l0.

For j = 0, . . . , l0 + 1, let ij = min{ i | 0 ≤ i ≤ m, !(yi) = j }. Then
(9.12.2) yi = ri1 . . . rij where j = max{ k | ik ≤ i } (0 ≤ i ≤ il0+1).

Since e ∈ Q′
y(1, z), it follows that

(9.12.3) ij = max{ i | 1 ≤ i ≤ ij+1, ri = rij } (1 ≤ j ≤ l0).
Now f ∈ Qv(z, x) and s1 ∈ L(z1), so
(9.12.4) si ∈ L(zi) (1 ≤ i ≤ l0).

This implies, since zjz
−1
j−1 ∈ R (2 ≤ j ≤ l0), that

(9.12.5) zj = sj−1zj−1 (2 ≤ j ≤ l0).

Let p = min{ j | m ≥ j > il0+1 !(yj) = l0 }. Because e ∈ Q′
y(1, z), we have

(9.12.6) p > il0+1 + 1, !(yp−1) = l0 + 1.

Now yil0+1 = ri1 . . . ril0+1 . For il0+1 < j ≤ p − 1, y−1
j−1yj ∈ {1} ∪ R and

!(yj) ≥ l0 + 1, so by induction, we may write, for ilo+1 ≤ j ≤ p − 1
(9.12.7) yj = ri1 . . . ril0+1xj = yil0

ril0+1xj where !(yj) = l0 + 1 + !(xj).

Since !(yp−1) = l0 + 1, it follows that yp−1 = ri1 . . . ril0+1 ; since !(yp) < !(yp−1)
and y−1

p−1yp ∈ R, it follows that
(9.12.8) yp = ri1 . . . ril0

.

But rp ∈ R(yp), and therefore
(9.12.9) rp = ril0

.

Now yil0
= ri1 . . . rilo

, and for j > il0 , !(yj) ≥ l0 and y−1
j−1yj ∈ {1} ∪ R. It

follows that we may write
(9.12.10) yj = yil0

x′
j where !(yj) = l0 + !(x′

j) (j ≥ il0).

Taking j = m in (9.12.10), using (9.12.4) and (9.12.5), we have
(9.12.11) rij = sj (1 ≤ j ≤ l0).

For i ≥ il0+1, let

y′
i =

{
y−1

il0
yi (i < p)

ril0+1ril0
y−1

il0
yi (i ≥ p)

i.e.
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y′
i =
{

ril0+1xi (i < p)
ril0+1ril0

x′
i (i ≥ p)

Now xp−1 = 1 = x′
p, so y′

p−1 = ril0+1 and y′
p = ril0+1ril0

; also, rp = ril0
∈

R(y′−1
p−1y

′
p). For i ≥ il0+1, we have

R(y′
i) =






{ril0+1} (i < p, xi = 1)
R(xi) (i < p, xi += 1)
{ril0

} (i ≥ p, x′
i = 1)

R(x′
i) (i ≥ p, x′

i += 1)

noting that, by (9.12.7) and (9.12.10), ril0+1 /∈ L(xi) (i < p) and ril0
/∈

L(x′
i) (i ≥ p) .

From this, we conclude that
(9.12.12) R(y′

j) = R(yj),L(y′
j) = {ril0+1} (il0+1 ≤ j ≤ m).

The remainder of the argument here is similar to that in Case 1.

Note that r1 . . . ril0+1 +≤ s1 . . . sl0−1, since !(r1 . . . ril0+1) = il0+1 ≥ l0 + 1 > l0 −
1 = !(s1 . . . sl0−1). Let k = max{ i | 1 ≤ i ≤ il0+1, ri . . . ril0+1 +≤ s1 . . . sl0−1 }
and set

y′′
i =






1 (0 ≤ i < k)
rk . . . ri (k ≤ i ≤ il0+1)
rk . . . ril0+1−1y′

i (m ≥ i > il0+1)

We define e′ = (y′′
0 , . . . , y′′

m) ∈ Wm+1 and claim that e′ ∈ Q′
y(1, y′′

m). Firstly,
note y′′−1

j−1 y′′
j = y−1

j−1yj and R(y′′
j ) = R(yj) (j > il0+1, j += p); it follows that e′

satisfies (9.8.2)j (j > il0+1, j += p). But y′′−1
p−1y′′

p = ril0
= rp ∈ R(y′′

p ), so (9.8.2)p

holds, and (9.8.2)j clearly holds for 1 ≤ j ≤ il0+1.

Now (9.8.3)j holds for 1 ≤ j < il0+1. If il0+1 ≤ j < p− 1 or p ≤ j ≤ n− 1, then
!(y′′

j+1)−!(y′′
j ) = !(yj+1)−!(yj); this shows that (9.8.3)j holds for such j (noting

that, in case j = il0+1, then !(yj+1) ≥ !(yj) by (9.12.6) and that, if j = p, then
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!(yj+1) ≥ !(yj) = l0). Finally, (9.8.3)p−1 holds since !(y′′
p ) > !(y′′

p−1). Hence
e′ ∈ Q′

y(1, y′′
m) as claimed.

Now define p0 = l0 and define p1, . . . , pil0+1−k in turn by pi = max{ l | 1 ≤ l ≤
pi−1, sl = ril0+1−i+1 } (these are all defined since rk+1 . . . ril0+1 ≤ s1 . . . sl0−1).
Note that, since rk . . . ril0+1 +≤ s1 . . . sl0−1, s! += rk for all l < pil0+1−k. Set
pil0+1−k+1 = 0 and define
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z′j =
{

zj (j ≥ l0)
ril0+1−l . . . ril0+1zl0 (pl > j ≥ pl+1, 0 ≤ l ≤ il0+1 − k)

Note that
L(zl0) = {sl0} = {ril0

}

and hence that

L(z′j) = {ril0+1−l} (pl > j ≥ pl+1, 0 ≤ l ≤ il0+1 − k).

An argument like the corresponding one from Case 1 now shows that f ′′ =
(z′0, . . . , z′n) ∈ Qw(z′0, z′n). Here, z′n = zn = x and z′0 = rk . . . ril0+1zl0 =
rk . . . ril0+1sl0−1 . . . s1z1; hence y′′

m = rk . . . ril0+1−1ril0+1ril0
y−1

il0
ym = z′0, since

yil0
= s1 . . . sl0 , sl0 = ril0

.

Thus, we may set θx((f, e)) = (f ′, e′). Now

γ(e) − γ(f) =
1
2
[#{ j > il0+1 | yj = yj−1 } + (il0+1 − (l0 + 1))]

− 1
2
#{ j > l0 | zj = zj−1 }

while

γ(e′) − γ(f ′) =
1
2
#{ j > il0+1 | y′′

j = y′′
j−1 } + k − 1]

− 1
2
[ #{ j > l0 | z′j = z′j−1 } + l0 − (l(z′0) − l(z′l0))].

But for j > il0+1, y′′
j = y′′

j−1 iff yj = yj−1, and also l(z′0)− l(z′l0) = il0+1−k +1.
Hence γ(e′) − γ(f ′) = γ(e) − γ(f) + 1

2 as desired.

We now show that (f ′, e′) determines (f, e). Firstly,
(9.12.13) k = min{ j | !(y′′

j ) = 1 }.

Now for il0+1 ≤ i < p,

!(y′′
i ) = il0+1 − k + !(y′

i)
= il0+1 − k + 1 + !(xi)
= il0+1 − k + !(yj) − l0
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and for p ≤ i,

!(y′′
i ) = il0+1 − k + !(y′

i)
= il0+1 − k + 2 + !(x′

i)
= il0+1 − k + 2 + !(yj) − l0.

For il0+1 ≤ i < p, !(yi) ≥ l0+1 so !(y′′
i ) ≥ il0+1−k+1, and for i ≥ p, !(yj) ≥ l0

so !(y′′
i ) ≥ il0+1 − k + 2. Now !(y′′

il0+1
) = il0+1 − k + 1. Since p − 1 > il0+1 (by

(9.12.6)) and y′′
p−1 = rk . . . ril0+1 = y′′

il0+1
, it follows that

(9.12.14) il0+1 = max{ i | k ≤ i ≤ m, !(y′′
k) < . . . < !(y′′

i ), !(y′′
j ) ≥ !(y′′

i ) for all
j ≥ i } and that
(9.12.15) p − 1 = max{ i | !(y′′

i ) = !(y′′
il0+1

) }

Then l0 is determined by the condition
(9.12.16) l0 = min{ j | !(z′j) = !(z′0) − il0+1 + k − 1 }.

Now from (9.12.5), we have
(9.12.17) zj = z′j (j ≥ l0); zj = sj . . . sl0−1zl0 (j < l0)

and so f = (z1, . . . , zn) is determined.

Now il0 . . . , i1, are determined (from (9.12.3), (9.12.11)) by
(9.12.18) ij = max{ i | 1 ≤ i ≤ ij+1, ri = sj } (j = l0, . . . , 1).

For il0+1 ≤ i ≤ m, y′
i is given by

(9.12.19) y′
i = ril0+1−1 . . . rky′′

i

and finally, e = (y0, . . . , ym) is given by

(9.12.20) yi =






ri1 . . . rij , j = max{ k | ik ≤ i } (0 ≤ i ≤ il0+1)
yil0

y′
i (il0+1 < i < p)

yil0
ril0

ril0+1y
′
i (i ≥ p).

Hence (f ′, e′) determines (f, e) as claimed.

In order to compare with other cases, define a, b, c, d as in (9.10.20). Here, we
have a ≥ l0, hence b = !(z0) − !(z′a) ≥ !(z′0) − !(z′l0) = il0+1 − k + 1. Further,
c = k − 1 and, by (9.12.14), d = il0+1. Hence
(9.12.21) !(y′′

m) ≥ 1 and b ≥ d − c.
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9.13 In sections (9.10)–(9.12), we have constructed a function

θx:
⋃

z∈W
sz<z

(Qv(z, x) ×Q′
y(1, z)) −→

⋃

z∈W

(Qw(z, x) ×Q′
y(1, z))

such that if θx((f, e)) = (f ′, e′), then γ(e′)−γ(f ′) = γ(e)−γ(f)+ 1
2 . Moreover,

it has been shown that the restriction of θx to the set of (e, f) ∈ ∪(Qv(z, x) ×
Q′

y(1, z)) lying in each particular case (i.e. Case 1, Case 2 or Case 3) is injective.
To complete the proof of the injectivity of θx, and hence the proof of (9.7), it will
therefore suffice to show that if (f, e) ∈ ∪(Qv(z, x) ×Q′

y(1, z)) and θx((f, e)) =
(f ′, e′), then the case in which (f, e) lies (i.e. Case 1, 2 or 3) is determined
by (f ′, e′). Let f ′ = (z′0, . . . , z′n) and e′ = (y′′

0 , . . . , y′′
m); define a, b, c, d as in

(9.10.20). Then by (9.10.21), (9.11.11) and (9.12.21), the following are the only
possibilities:






!(y′′
m) ≥ 1 and 1 + b ≤ d − c; here (f, e) is in Case 1

!(y′′
m) = 0; here, (f, e) is in Case 2

!(y′′
m) ≥ 1 and b ≥ d − c; here (f, e) is in Case 3.

The proof of Theorem (9.5) is now complete.
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