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ABSTRACT

To any reflection subgroup of a Coxeter system, we associate a canonical set of
Coxeter generators. A geometric criterion is given for a set of reflections to be
the canonical set of Coxeter generators of some reflection subgroup, and used
to classify the reflection subgroups of affine Weyl groups up to isomorphism.

A new proof is given of a theorem of A. Bjorner and M. Wachs stating that
the simplicial complex of an open Bruhat interval is a sphere. By associating a
reflection subgroup to a Bruhat interval, it is shown that the Kazhdan-Lusztig
polynomials P, ,, and Q. ({(w) — ¢(v) < 4) depend only on the poset [v,w]
and have non-negative coefficients.

We describe a construction which produces, from very general data, mutually
inverse elements in the incidence algebra of a locally finite poset. We show
how this construction may be used to produce the polynomials R, , defined by
Kazhdan and Lusztig for elements z,y of a Coxeter system.

Four conjectural positivity properties of the structure constants of the generic
Hecke algebra of a Coxeter group are described. All four properties are proved
by elementary combinatorial arguments in the case of the Coxeter groups which
are free products of cyclic groups of order two.
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LIST OF SPECIAL NOTATIONS

IN; the natural numbers (including zero)
Z; the integers

Q; the rational numbers

IR; the real numbers

IR the non negative real numbers

(™); binomial coefficient

IN [q%,q_%]; Laurent polynomials (in an indeterminate q%); with non-negative
integral coefficients

Msy2(R); 2 x 2 matrices with entries in a (unital) ring R
A?t: transpose of a matrix A

E®rA, E®s A; the A-module obtained by tensoring the R-module E with the
ring A, A being regarded as an R-module via a homomorphism f: R — A (A,
R being commutative rings)

E*; dual of a vector space F
(', ); pairing between a vector space and its dual
|u||?; (u | u) where (-] ) is a symmetric bilinear form on a real vector space

min(A), max(A); the minimum (maximum) element of a subset A of a poset
(when it exists)

A\ B; the set difference of A and B

P(A); the power set of a set A

#A or #(A); the cardinality of the set A

(A); the subgroup of a group G generated by a subset A of G

0z,y; the Kronecker delta



|J; the indicated union is of disjoint sets
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INTRODUCTION

For any Coxeter system (W, R), Kazhdan and Lusztig define in [KL1] a family
P, (v, w € W) of polynomials. These Kazhdan-Lusztig polynomials have deep
connections with algebraic groups, and Lie algebras.

For example, if (W, R) is a crystallographic Coxeter system, then ([KL2], [H])
P, ,, is the Poincaré series of the stalk (at a point in the Bruhat cell correspond-
ing to v) of the cohomology sheaf of the intersection cohomology complex of the
Schubert variety corresponding to w (constructed from an infinite-dimensional
group associated to a Kac-Moody Lie algebra with (W, R) as Weyl group).

As another example, if (W, R) is a finite Weyl group, the values of the Kazhdan-
Lusztig polynomials at 1 are the multiplicities, as composition factors of Verma
modules, of certain irreducible highest-weight modules for the corresponding
semisimple complex Lie algebra ([BB],[BK]).

Finally, we mention that the Kazhdan-Lusztig polynomials are used to define the
(left,right and two-sided) cells of W and thus give rise to certain cell representa-
tions of the generic Hecke algebra of (W, R). In this way, the Kazhdan-Lusztig
polynomials enter the representation theory of algebraic groups ([L3]).

Despite these important applications, very little is known about Kazhdan-
Lusztig polynomials in general. The polynomials P, , are defined purely al-
gebraically, but certain properties (non-negativity of their coefficients, Property
A of cells) expected to hold for general Coxeter systems have been proved only
by exploiting interpretations of the P, ,, such as those described above (and
then only for crystallographic Coxeter systems).

The major part of this thesis has arisen from an attempt to obtain more detailed
information about the Kazhdan-Lusztig polynomials. In virtue of the above-
mentioned facts about the P, ,,, it is to be expected that a better understanding
of these polynomials in general would have important applications.
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Chapter 0 fixes notation concerning Coxeter groups and Hecke algebras, and
recalls the definition of Kazhdan-Lusztig polynomials.

Chapter 1 begins a study of reflection subgroups of Coxeter systems. It is shown
that any reflection subgroup of a Coxeter system has a canonical set of Coxeter
generators. The results are reformulated in terms of a labelled directed graph
naturally associated to a Coxeter system, and we give a characterisation of these
“Bruhat graphs” by properties of their “dihedral” subgraphs.

In Chapter 3, we require a slight extension of the usual geometric realisation
of a Coxeter system. The necessary properties are given at the beginning of
Chapter 2; we also observe that standard properties of the geometric realisation
continue to hold “generically”.

Chapter 3 gives a criterion for a set of reflections to be the canonical set of
generators of a reflection subgroup of a Coxeter system. The condition is that
the inner products of distinct elements from the corresponding set of positive
roots (in a goemetric realisation of the Coxeter system) should all lie in a certain
set. We describe an algorithm which, given a finite set of reflections, produces
the canonical generators of the group they generate.

In Chapter 4, the criterion of Chapter 3 is applied to classify reflection subgroups
of affine Weyl groups up to isomorphism as Coxeter groups. Subsequent chapters
are independent of the results of this chapter.

Chapter 5 contains a new proof of a theorem of A. Bjérner and M. Wachs ([BW])
stating that the simplicial complex associated to an open Bruhat interval is a
sphere; the proof is based on a natural decomposition of the simplicial complex
into cells. We then show that the reflection subgroup generated by the ratios
x 1y of elements x,y of a closed Bruhat interval is actually generated by the
ratios of the elements in some fixed maximal chain.

The first part of Chapter 6 describes a construction which produces, from general
data, mutually inverse elements in the incidence algebra of a locally finite poset.
Under an additional assumption, one obtains an element of the incidence algebra
satisfying the same identity > Rx,yRyyz = 0y,. as the polynomials R, , defined

y
by Kazhdan and Lusztig in [KL1], and one may define formal analogues of
the Kazhdan-Lusztig polynomials in this context. We show how this incidence
algebra construction applied to Bruhat order gives rise to the polynomials R, ,;
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the data required for the construction is obtained from certain special total
orderings of the reflections of the Coxeter system.

In Chapter 7, we begin a study of properties of the structure constants of the
generic Hecke algebra of a Coxeter system. Four conjectural positivity properties
[P1]-[P4] of these structure constants are described:

P1]  C,T, €)Y Nlg>,¢ 2T, (z.ye W)

N|=
=

[P2] T;}lTy € Z IN[¢2,q 2]C, (x,y e W)

P3]  CLCh e IN[g2,q 2]CL  (z,yeW)

P4 CLC, €Y N[g2,q 2]C.  (z,yeW)

Conjectures [P1] and [P2] generalise the conjectured positivity of the Kazhdan-
Lusztig and inverse Kazhdan-Lusztig polynomials, and [P3] is known to hold
for crystallographic Coxeter systems. For finite Coxeter systems, [P1] and [P2]
are equivalent and [P3] and [P4] are equivalent.

The remainder of Chapter 7 is devoted to a number of special results concerning
the Kazhdan-Lusztig polynomials for arbitrary Coxeter systems. We give a
number of equivalent conditions for a Bruhat interval to be isomorphic to an
interval in a dihedral group. It is shown that the Kazhdan-Lusztig polynomials
P, ({(w) —£(v) < 4) depend only on the isomorphism type of the poset [v, w]
and have non-negative coefficients.

In the last chapters, we give elementary combinatorial proofs of [P1]-[P4] for
universal Coxeter systems. Our technique for showing that the Laurent polyno-
mials arising as structure constants have non-negative coefficients is to construct
sets whose cardinalities are these coefficients. The explicit definition of these
sets is quite intricate, particularly in the case of [P2].



Chapter 0

PRELIMINARIES

This brief chapter fixes some notation and terminology concerning Coxeter
groups and Hecke algebras, and recalls the definition of Kazhdan-Lusztig poly-
nomials.

Let (W, R) be a Coxeter system. We say that (W, R) is crystallographic if for
all 7,s € R with r # s, the order n, s of rs is either 2,3,4,6 or oco; (W, R) will
be called a universal Coxeter system if n, ; = oo for all 7,5 € R with r # s.
Thus, a universal Coxeter group is isomorphic to a free product of cyclic groups
of order 2.

The set |J wRw™? of reflections of (W, R) will usually be denoted by T, and
weW
the length function of (W, R) will be denoted by ¢ or /y. It will be convenient

to let N: W — P(T') denote the function defined by N(w) = {t € T | {(wt) <
(w) (w € W) }; some properties of N are given in Chapter 1.

Let A be any commutative (associative, unital) ring and ¢ be an element of A.
The Hecke algrebra H, 4(W) is the (associative, unital) A-algebra generated
by generators T).(r € R) subject to relations

T7’2: (q_l)Tr+Q'1
Ny s Ny s

(LTI, .. )= (T.T,Ts...) (r,s € R, 1 # 5, Ny # o)

As an A-module, H, 4(w) is free with A-basis {1}, } wew and the multiplication
is determined by

[T (E(rw) > £(w))
T. Ty = { )

qTrw + (¢ — 1T (U(rw) < f(w

2



We will generally be concerned with the case when A = Z[q2, ¢~ 2] is the ring
of Laurent polynomials with integral coefficients in an indeterminate q%. For
w € W, we then write g, = (—1)4), qié = ¢t()/2 and denote H, (W)
simply by H(W). Writing T}, = q;%Tw, {T\}wew is an A-basis of H(W) and
the multiplication is determined by

(T, ((rw) > bw))
7,7, = {Tm @D (w) < (w)).

~—

The elements {Tw}wGW of H(W) are invertible, and we define Rmyw € A(x,we
W) by
T =Y RewTs.
zeW

. 11
In the notation of [KL1], Ry » = ¢3¢x > Ry w, Where a — a is the ring involu-

tion of A determined by ¢z — ¢~2. We have the recurrence formula ([KL1])

(0.1) Ry = { BRorur (zr <)
o Rayrwr + Ry r  (z1 > 2)

if r € R and wr < w, Wherea:q_% —q%.

The ring involution a — @ of A extends to a ring involution h —— h of H(W)

defined by > a,Ty+— >, &wf;_ll.
weWw weW

The following fundamental fact is proved in [KL1]:

Theorem For any w € W, there exists a unique element

Cop € Ty + Z q%Z[q%]Tv such that C, = C,. O

v<<w

The Kazhdan-Lusztig polynomials P, ., € A are defined by

1 _
Cw =Y eyewqday PyuwT, (weW).
yeW



For any w € W, let

_1
Cly =Y G’ PyuTy.
yeWw

Then C’, is the unique element of T), + > ¢~ 2Z[q2|T, such that C! = C/,.

v<<w

Finally, we recall that the inverse Kazhdan-Lusztig polynomials @, , € A (for
x and y in W) may be defined by

1
2 /!
T, = E €26y Qs Qu,yCl-
zeW

Chapter 1

REFLECTION SUBGROUPS OF COXETER GROUPS

The main result of this chapter is that any reflection subgroup of a Coxeter
system has a canonical set of Coxeter generators (Theorem (1.8)).

The proof uses the function which maps an element of the Coxeter group to
the set of reflections in the positive roots made negative by that element (in
the standard geometric realisation ([De2])). However, we adopt an abstract
approach here and defer more geometric considerations to Chapter 3.

1.1 Let W be a group and R be a set of involutions generating W. Define the
corresponding length function ¢: W — IN by {(w) = min{n € IN | w € R"}
(weW). fw=mry...1, (r; € Ryn ={(w)) then ry...7, is called a reduced
expression for w.

Theset T = |J wRw™! is the set of reflections of W. The power set P(T) of
weWw
T will be regarded as an abelian group with symmetric difference as addition:

A+B=(AUB\(ANB) (A ,BePT)).

4



Note that there exists at most one function N: W — P(T) satisfying (1.1.1)
and (1.1.2) below:

(1.1.1) N(r) ={r} (r€R)

(1.1.2) N(zy) =y 'N(z)y + N(y) (z,y € W).

This is because the values of N are determined on R by (1.1.1) and then on
(Ry = W by the cocycle condition (1.1.2). The following two lemmas, which

are implicit in [Bo] (Ch.IV, no 1.4), show that such a function N can only exist
if (W, R) is a Coxeter system.

1.2 Lemma. Suppose that N: W — P(T) satisfies (1.1.1) and (1.1.2). Then

(i)  Forany w € W, #N(w) =L(w). fw=ry...7, (r; € R,n={(w)) then
N(w) ={t1,...,t,} where t; =r,...rip1miTiy1...7n (i=1,...,n).

(ii) ForallteT, t e N(t)

(iii) FweW, N(w)={teT |l(wt) <{l(w)}. Foranyte T, {(wt)F# l(w).

Proof

(i) Suppose that w =ry...r, where fori =1,...,nr; € R, and n = (w). Let
ti="Tn...Tig1TiTig1 ... To. I t; =t; (1 > j), then

Ww=7ry...rj—-17Tj+1 ...T‘ntj
:rl---rj—lrj—f—l---rnti

n—2
=T1...Tj-1Tj41---Ti—1Tj+1-.-Tn € w

contrary to /(w) = n. Hence the ¢; are all distinct. By repeated application of
(1.1.2),

N(w) = N(ry) + (ro N(rp—1)rn) + ...+ (rn ... 72N (r1)r2...75)
={t1,...,tn}

so #N(w) =n = l(w).



(i) Let t € T and write t = ry...7—17yTp—1...71 With n minimal. Define
S1,...,82p-1 € Rby

(81, -y Sn—15SmsSntls---382n—1) = (T1y s "1, TnTr—1s--+,71)

and let t; = So,-1...8i418iSi41---San—1 (1 =1,...,2n—1). If 1 < i < n, then

ttz‘t: (7“1...Tn...Tl)(Tl...T‘i...T‘l)(T‘l...T‘n...Tl) :tgn,i

and so to,_; =t if and only if t; =¢. But ¢; # t for : < n — 1 by the assumed
minimality of n. This shows that t; =t if and only if j =n (1 <j <2n—1).
Asin (i), N(t) = {tan—1} + ...+ {t1}, so t € N(t) as claimed.

(iii) Write w =ry...r, with n = ¢(w). Then N(w) = {t1,...,t,} where

ti =Tp. . Ti41TiTi41-.-Tn (ZZ 1,...,”).

Now Wt =71 ... 7-1T41...Tn € wnl

and so f(wt;) <n —1 < ¢(w). Hence if t € N(w) then ¢(wt) < {(w).

Now suppose that ¢ € T and t ¢ N(w). Then t ¢ t"1N(w)t but t € N(t),
sot € t7'N(w)t + N(t) = N(wt). By what has just been proved, f(w) =
0((wt)t) < L(wt). O

1.3 Lemma. The following are equivalent:
(i) (W, R) is a Coxeter system

(ii) There exists a function N: W — P(T) satisfying (1.1.1) and (1.1.2).

Proof The implication (i) implies (ii) is well-known, but can be proved as follows.
Suppose that (i) holds. By ([Bo] Ch IV | no 1.4) there is a representation of W
as a group of permutations of T'x {1, —1} such that r(t,n) = (rtr, (—1)%~tn) (t €
T,ne{l,—1},r € R). Forw e W,let N(w) ={teT|w(t,n)=(wtw™t, —n)
for n = +1}. The above formula for r(t,n) shows that (1.1.1) holds and that
N(ry) = {y~'ry} + N(y) (r € R,y € W); then (1.1.2) follows by induction on
().

Now suppose that N: W — P(T) satisfies (1.1.1) and (1.1.2). To prove (i),
it suffices to show that (W, R) satisfies the “exchange condition” (1.3.1) below
([Bo] Ch 1V, no 1.6):



(1.3.1) if w € W, r € R and f(wr) < {(w), then for any reduced expression
w=r7ry...7Ty, there exists i € {1,...,n} such that r;...7, =7rip1... 757

In fact, the “strong exchange condition” (1.3.2) holds:

(1.32)ifr;, e R(i=1,...,n), t € T and £(ry...75t) < €(ry...r,) then there
exists i € {1,...,n} such that r;...r, =rip1...75t.

For let t; = rp...rigaririz1 ...t (= 1,...,m). I l(ry...rpt) < L(ry...10),
then (1.2) (iii) implies that ¢t € N(ry...r,). But by (1.1.1) and (1.1.2) we have
N(ri...rp) = {tn} + ...+ {t1}. Hence t = t; for some 4, and so r;...r, =
Ti+1 --.Tpt as required. O

4)—(1.27), (W, R) denotes a Coxeter system. We maintain the conventions
) and let N:W — P(T) be the function determined by (1.1.1) and

The following simple lemma will often prove useful; it is equivalent to ([Sp],
Prop. 1).

1.4 Lemma. Lett =ry...r9,41 € T (r; € R) with ¢(t) = 2n 4+ 1. Then
t="1... " n41"n .. .71.

Proof Let x =7, ...7r and y = rpq2...79n41. Then l(z) =l(y) =n<n+1=
Urpi1x) = L(rp41y) and rp iyt = x. By (1.3.2), t = ropq1...75 .. . Topyq for

some ¢ € {n+1,....2n+ 1}, and so * = rp41...Ti_1741-.-Topt1. Since
¢(z) = n, this is a reduced expression for x. Since £(r,412) > £(x), it follows
that i =n+1 and so x = y. Hence t = :z;*lrnﬂy = xilrnﬂa: as required. O

Taking n > 1 in (1.4) immediately gives the following
1.5 Corollary. Ift e T\R, there exists r € R with ¢(rtr) = £(t) — 2. |

1.6 For any subgroup W’ of W, let
(1.6.1) SW={teT | Nt)NW'={t} }.

7



Note that S(W') C W’. If W’ is a reflection subgroup of W, it will be shown in
(1.8) that S(W’) is a set of Coxeter generators for W’. The proof will use (1.3)
and the following

1.7 Lemma. Let W’ be a subgroup of W.

(i) If r € R\ W’ then S(rW'r) = rS(W")r.

(ii) If t € W' NT then there exists m € IN and to, ..., t,, € S(W’) such that
t=t, .. titoty .. tm.

(iii) Forw € W let N'(w) = N(w)NW’'. Thenifx € W andy € W', N'(zy) =
yIN'(z)y + N'(y).

Proof
(i) Let t € S(W'). Then

N(rtr)NnrW'r = ({rtrtr} + rN(t)r + {r}) nrW'r
=r[{trt} + N@t)+ {r}) nW']r
=r[N@t)NW']r  sincer ¢ W' and trt ¢ tW't = W'
= {rtr}

Hence rtr € S(rW'r). This proves that »rS(W')r C S(rW'r). But r € R\rW'r,
so also rS(rW'r)r C S(W') and (i) is proved.

(ii) The proof will be by induction on £(t). If ¢(t) = 1, then t € W/ N R so
N@)NW' = {t}NW’' = {t} and it is sufficient to take m = 0 and to =t € S(W').

Suppose now that £(¢) > 1 and that (ii) holds for all subgroups W” of W and
reflections ¢ € W”NT with £(t") < £(t). By (1.5), there exists some r € R such
that £(rtr) < £(t). Let W’ = rW'r and t” = rtr. By the inductive assumption
there exist m € IN and tg, ..., t, € S(W") such that t"/ = t,,...t1tot1 .. .tm.
There are now two cases to consider.

Case 1. r e W”
Then W/ = rW'r = W"” and N(r)NW" = {r}nW" = {r}. Let t,,11 = r; then

ti € S(W”) = S(W’) (Z = 0,1,,m—i—1) and t = rt’'r :T’tm...tltotl ...tmT’ =
tm—f—l .ottty - .tm+1.



Case 2. r ¢ W”

Let t; = rt;r (i = 0,...,m). Then t; € rS(W")r = S(rW"r) by (i) and
t=rt"r =ty .. titoly .. tyr =t Lt

This completes the proof of (ii).

(iii) If x € W and y € W/, then

= (y IN(2)y Ny 'W'y) + (N(y) N W’) noting W’ =y W'y

as required. O

Recall that a subgroup W’ of W is said to be a reflection subgroup of W if it
is generated by the reflections it contains, i.e. if W' = (W' NT). We may now
prove the main result of this chapter.

1.8 Theorem. Let W’ be a reflection subgroup of W', and set R’ = S(W’).
Then

(i) (W', R’) is a Coxeter system

i) W'nT= | wRw!
weW’

(iii) Forw e W', N(w)NnW' ={te W'NT | {'(wt) < ¢'(w) } where ¢': W' —
IN is the length function of (W', R').

Proof Let W” = (R') and T" = |J wRw™!. Since R" C T N W’ it follows
weWw’
that W’ C W' and TV C TNW'. By (1.7) (ii), TNW' C T’  hence T" =T NW'
and so W/ = (W'NnT)=(T"y C(R') C W'. This shows that W' = (R") = W"
and also that (ii) holds, since TNW' =T"= |J wRw™!.
weW’



Now T" C T and so P(T") is a subgroup of P(T). Define N': W' — P(T")
by N'(w) = N(w)nNnW’'. For v € R = S(W'), we have N'(r') = {r'} by
definition of S(W’). Also, if 2/,y’ € W', (1.7) (iii) implies that N'(2'y’) =
y'"IN'(z")y’ + N'(y’). Since R’ consists of involutions and W’ = (R’), Lemma
(1.3) shows that (W', R") is a Coxeter system, and Lemma (1.2) (iii) then proves
(ii). O

If W' is a reflection subgroup of W, then R’ = S(W') will be called its set of
canonical generators and (W’ R’) will be said to be a reflection subsystem of
(W, R); we then write (W', R") < (W, R).

Some simple properties of reflection subsystems are given below.

1.9 Corollary.

(i) Suppose that (W', R") < (W, R), and that W" is a subgroup of W’ and
R" C W". Then (W”,R") < (W', R') if and only if (W", R") < (W, R).

(i) f (W', R") <(W,R), (W",R") <(W,R) and W" is conjugate to W’ then
the Coxeter systems (W', R') and (W", R") are isomorphic.

Proof (i) Let 7" = T N W’ and N'(w) = N(w) N W' (w € W). Note that
N(w)NW" = N'(w)nW", for any w € W.

Suppose firstly that (W"”, R”) < (W, R). Then W' = (W"NT) =(W"NnW'nN
T)=W'nTYand R ={teT | Nt)NW" ={t}} ={teT | Nt nW" =
{t} }, the last set being the set of canonical generators of W as a reflection
subgroup of (W', R'). Hence (W",R") < (W', R’).

Conversely, suppose that (W” R") < (W', R’). Then W' = (W" NnT")
(W"AT) CW” so W" = (W’'NT). Here R" = {t € T | N'(t)nW" = {t}}
{teT | Nt)NW" ={t}} =SW') so (W' R") < (W,R).

1N

(ii) It suffices to prove this when W’ and W' are conjugate by a simple reflec-
tion, say W’/ = rW'r withr € R. If r € W then W = W” and R’ = S(W') =
S(W")=R",so (W ,R)=W" R"). If rgW" then R" =rR'r by (1.7)(i);
the map x —— rzr is an isomorphism of groups W’ — W' which restricts to
a bijection R’ — R’ i.e. an isomorphism of Coxeter systems. O

10



1.10 Remark. There is a standard partial order on W, the Bruhat order;
this will be discussed in Chapter 5. If (W', R") < (W, R), then the partial
order induced on W' as a subset of W is not generally the Bruhat order of
(W', R"). We now define a directed graph intimately related to the Bruhat order
of (W, R), and prove that the graph associated to any reflection subsystem is a
“full” subgraph of this graph.

1.11 Definition. The Bruhat graph I'y, gy is the directed graph with vertex
set W and edge set Eqy,py = {(z,y) e W x W |27y e T, {(z) < L(y) }.

For any subset X of W, there is a corresponding subgraph I'x with vertex set
X and edge set Ey,r) N (X x X).

1.12 Remark. There is a partial order < on W such that x < y if and only if
there exists a sequence xg, z1, ..., T, of elements of W such that xg = x, 2z, =y
and (z;-1,2;) € Egy,g) for i = 1,...,n. This partial order is the Bruhat order.

1.13 Proposition. Suppose that (W', R") < (W, R). Then

(1) F(W’,R’) = FW/

(ii) Let W' be any left coset of W’ in W. Then W'’ contains a unique
element xg of minimal length. The map 6: W' — xW’ defined by w — zqw
is an isomorphism of directed graphs 'y — ',y For all w € W/,

(1.13.1) N(w) "W’ = N(0(w)) N W’

Proof Let ¢’ denote the length function on (W', R’) and define N'(w) = N(w)N
W' (weW). Let T' =T QW'

(i) Both '/ gy and I'ys are directed graphs with vertex set W’. Hence
it remains to check that they have the same edge set, i.e. that Eqyy gy =
E(W,R) N (W' x W’). Now E(W,R) N(W' x W’

={(z,y) eW' x W' [z7ly e T, l(z) <Ll(y)}
={(z,y) eW' x W' |27y ¢ N(z), 27y € T'} by (1.2)(iii)
={(z,y) eW x W' |27y ¢ N(z), 27y T}

={(z,y) e W' x W' |27y e T ¢'(z) <l (y)} by (1.8)(iii)
= B ry by definition, so (i) is proved.

xz,
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(ii) Choose some zy € W’ with ¢(x() minimal. Then for any ¢t € T, ¢(zot) >
¢(x). This shows that N'(xzg) = N(xo) N W' =0@. It follows from (1.7) (iii) that
N'(w) = N'(0(w) ) for all w € W’; hence (1.13.1) is proved. Now 6 is certainly
a bijection; to prove that it is an isomorphism of directed graphs, it remains to
check that if y, z € W’, then (y, 2z) is an edge of 'y if and only if (0(y),0(2))
is an edge of I'yy» = T'yywr. Fixy, 2z, € W',

Now (y,z) € Eqw,ry N (W' x W) if and only if y 'z € T and ¢(y) < £(z). This
holds if and only if y='2 € T” and y~'2 ¢ N'(y) = N’(6(y) ) by (1.13.1). But
y 1z = (woy) H(woz) = 0(y)10(2), so we see that (y, z) € Eww,ry N (W' x W')
if and only if 6(y)~'0(z) € T’ and 0(y)~'0(z) ¢ N'(6(y)) i.e., if and only if
0(y)~10(2) € T and £(6(y)) < £(6(z)). This last condition is precisely the
condition that (8(y),0(z)) be an edge of T'pyy.

To complete the proof of (ii), it remains to check that ¢(zg) < ¢(zow) for all
w € W\{1}. Let w € W\{1} and write w = ry...7, (r; € R', n = {'(w)).
Let w; =71...1; (1 =0,1,...,n). Then for i =1,...,n, (w;_1,w;) is an edge
of I'tw gy, hence an edge of 'y (by (i)) and, by what has just been proved,
(xow;—1, Tow;) is an edge of 'y~ In particular, £(z¢) = {(zowp) < l(zowr) <
o< lxowy) = L(zow), s0 L(xg) < L(xow).

1.14 Let JC R, Wy=(J)and W’ = {w &€ W | L(wr) > {(w) for allr € J .}
Then (W, J) is a reflection subsystem of (W, R). For such parabolic reflection
subsystems, (1.13) is related to the following well-known facts ([De 1]).

(1.14.1) If w € W, there exist unique z € W7 and y € W with w = xy

(1.14.2) £(xy) = £(z) + L(y) for all z € W7 and y € W. O

We now give a number of simple facts concerning dihedral reflection subgroups
of (W, R). These facts are part of the basis of an algorithm, to be presented
in Chapter 3, for computing the canonical generators of a (finitely generated)
reflection subgroup.

1.15 Lemma. Let (W, R) be a Coxeter system and T = |J wRw™!. Sup-
weW
pose that there exist t,¢' € T (t #t') with W = (¢,t').
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Then #(R) = 2.

Proof Let R’ = {t,t'}; then R’ consists of 2 involutions and generates W, so
(W, R') is a Coxeter system ([Bo] Ch IV, no 1.2). Let ¢, ¢’ be the length functions
on (W, R) and (W, R') respectively. Since £(t),{(t') are odd, it follows that for
all w € W, {(w) is odd if and only if ¢'(w) is odd. Now every element w € W
with ¢/(w) odd is a conjugate of ¢ or t', and hence is conjugate to an element of
R (since t,t' € T'). This shows that T'={w € W | {(w) is odd }.

Suppose that #(R) > 3; let r,s,t € R be distinct. Then ¢(rst) = 3, hence
rst € T. But by (1.4) this implies that rst = rsr, contrary to t # r.

Hence #(R) < 2. Since t,t' € T and ¢ # t’, we must have #(R) > 2. O

By ([Bo] Ch 1V, §1, Ex 8), the assumption that ¢,¢' € T' in the hypotheses of
(1.15) is essential.

1.16 Lemma. Let (W, R) be a Coxeter system, T = |J wRw™! and ¢,t' €
weW
T with ¢ #¢'. Let W' = (t,t').

Then S(W') C |J wi{t,t'}w™! and #S(W') = 2.

weW’

Proof Let R’ = S(W') and ¢ be the length function on the Coxeter system
(W R'). Then t,t' € W NT = |J wRw™'. By (1.15), #S(W’) = 2.

weWw’
Write S(W') = {t1,t2}. As in the proof of (1.15), |J wRw ™' ={we W |
weWw’
U(w)isodd} = |J w{t,t’}w™!, and in particular, t;,to € |J w{t,t'}w™1 .
weW’ weW!’
O

1.17 Lemma. Let W’ be a dihedral reflection subgroup of the Coxeter system
(W, R) (i.e.#£S(W') = 2). Write S(W') = {t1,t2}. Then for any t,t' € W' N T
with ¢/ # ¢t and S(W') # {¢t,t'},

0(t1) + 0(t2) < L(t) + £(t).
Proof Write R’ = S(W’). Suppose without loss of generality that ¢t ¢ {t;,t2}

and that t' # t5. One may choose “paths” (zg,...,x,) (n > 0,29 = t1, z, =

13



tla (miflami) S E(W’,R’) (Z =1,.. '7”) ) and (yo, .- -aym) (m > 1, yo =t2, Ym =
t, (yi_l, yz) € E(W’,R’) (’L = 1, ceey m) ) in F(W’,R’) from tl to t/, and from t2 tot
respectively (since (W', R') is dihedral). By (1.13), (zo, ..., 2,) and (yo, - - ., Ym)
are paths in Iy, gy; hence £(zg) < ... < £(z,) and L(yo) < ... < L(Ym).
Therefore, £(t1) < £(t') and, since m > 1, £(t3) < £(t). O

The remainder of this chapter is devoted to describing an edge-labelling of
the Bruhat graphs and giving a graph-theoretic characterisation of these edge-
labelled Bruhat graphs. First, though, we need some terminology concerning
edge-labelled directed graphs in general.

1.18 For any set w and E C w X w, define E, (o € w) by E, = [{a} x w)U
(wx{a}h]NE.

We will say that I' = (w, E, S, f) is a directed graph edge-labelled by S (via f)
if wis aset, F C wXxw is an antisymmetric set of directed edges, and f: E — S
is a function into a set S such that for all « € w, f |g, : Eq — S is a bijection.

Note that if these conditions are satisfied, then each connected component of
the underlying undirected graph may also be naturally regarded as a directed
graph edge-labelled by S. We will say that a € w is a source if (wx {a})NE = (.

For any Sq C S, we put Es, = f~1(Sp) and let fs,: Es, — So denote the
restriction of f to Fg,. Then I'(Sy) = (w, Es,, S0, fs,) is a directed graph
edge-labelled by Sp.

It will also be convenient to define So C S by So = { f(o, 8) | (o, B) € E; 0, 3
in the same connected component of I'(Sy) }.

Two different notions of isomorphism of edge-labelled directed graphs I' =

(w,E,S, f) and TV = (&', E', S, f) will be required. Firstly, T' and TV will
be said to be strongly isomorphic if

(i) S=5"

and there exists a bijection #: w — ' such that
(ii) (a, () € FE if and only if (6(«),0(8)) € E' (o, 8 € w)
(iii) f(0(a),0(8)) = f(e, B) ((a, B) € E).

14



Secondly, T' and T" will be said to be isomorphic if there exists a bijection
p: 8" — S such that I and (o', E', S', pf’) are strongly isomorphic.

1.19 For the remainder of this chapter, the Bruhat graph 'y, gy will be re-
garded as the edge-labelled directed graph

Cow,ry = W, Eqw,r), T, f)
where f: Eqw, gy — T is defined by f(z,y) =27y ((2,9) € Eqw,r))-

We now illustrate some of the notions of (1.18) with these edge-labelled Bruhat
graphs.

Firstly, for any 77 C T, we have T' = T'N(T"). The vertex sets of the connected
components of 'y, gy (T") are the cosets z(T") (z € W).

Suppose now that 77 = W’ NT for some reflection subgroup W’ of W, and
set R = S(W'). Then the connected components of I'(yy,z)(T") are the graphs
[',w associated to cosets W', with labelling induced from Iy, zy. Now if
(y,z) and (zy,zz) are both edges of I'(yy. gy they receive the same label y~*z.
It therefore follows from (1.13) that

(1.19.1) the connected components of I'(yy, gy (1") are pairwise strongly isomor-
phic, and the connected component containing 1 € W is 'y gr). O

For later use, we mention now the simple

1.20 Lemma. If (z,y) € Eqw gy, v € R and y # xr then (zr,yr) € Euy,g).

Proof Suppose (z,y) € Eqw,r); let x7ly =t Thent € N(y), sortr € rN(y)r+
{r} = N(yr). Hence (yr(rtr),yr) = (zr,yr) € Euw,r).- O

We now state a characterisation of edge-labelled Bruhat graphs; the result was
suggested by ([G], (4.1)).

1.21 Theorem. Let T = (w,FE, L, f) be a connected edge-labelled directed
graph. Then I' is isomorphic to I'(yy, gy for some Coxeter system (W, R) if and
only if (1.21.1)—(1.21.3) below hold:

15



(1.21.1) T has a source 1

(1.21.2) For each z € w, the set {n € IN | J(zg,...,z,) € W (z;_1,7;) €
E(i=1,...,n), xo =1, z, = x } is bounded.

(1.21.3) For each s,t € L (s # t) the connected components of I'({s,t}) are
pairwise strongly isomorphic and each is isomorphic to the edge-labelled Bruhat
graph of some dihedral Coxeter system. O

The proof of (1.21) will occupy the rest of the chapter.

1.22  Suppose that I' is isomorphic to I'(yy, gy; then we may assume I' = Iy )
without loss of generality. Then (1.21.1) holds, and for x € w = W, the set in
(1.21.2) is bounded above by ¢(z). For s,t € L with s # t, {s,t} = (s,t) N T
and #S5((s,t)) = 2 by (1.16), so (1.21.3) follows from (1.19.1).

1.23 Henceforward, we assume that (1.21.1)—(1.21.3) hold. Without loss of
generality, replace I' by an isomorphic edge-labelled directed graph so that if
(1,a) € E, then f(1, ) = a € L (this may be done since L = { f(1,a) | (1,a) €

For any s,t € L with s # ¢, (1.21.3) implies that there exists {t1,t2} C {s,t}
uniquely determined by the conditions t; # to and (x,t;)) € E = x =1 (z a
vertex of the connected component of I'({s,t}) containing 1); 1, t2 correspond
to the Coxeter generators, regarded as labels, of the edge-labelled Bruhat graphs
of a dihedral Coxeter system. Throughout the proof, ¢; and ¢ will be called
the special labels of I'({s, t}).

Let £ = {{z,y} | (z,y) € E} be the edge set of the underlying undirected
graph of I'; this undirected graph is edge-labelled by the function f: E — L
defined by f({z,y}) = f(z,y) ((z,y) € E). If T = (20,...,2,) € W™ and
(zi_1,7;) € E (respectively E) for each i = 1,...,n, then 7 is said to be a path
(respectively, undirected path) from zg to z,, of length n. Note that if 7 is a
path, and xg = 1, then z; # 1 for all ¢ > 0 (by (1.21.2) ).

For any t € L, let 7(t) denote the unique permutation of w such that the orbits
of m(t) are the sets {x,y} € E such that f({x,y}) = t. We write the action
of m(t) as * —— zm(t) i.e. on the right. According to our definition of an
edge-labelling
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(1.23.2) if t,t' € L, v € w and z7(t) = zw(t’), then t = t'.
Note that for s,¢ € L, condition (iii) implies that

(1.23.3) there exists t’ € {s,t} such that 7w(s)7(t)n(s) = w(t’), (this statement
being true for the dihedral Bruhat graphs).

For any ¢t € L, we define ¢'(t) to be the maximum of the set {n € IN |
I(zoy. .. xn) € W (zi_1,2;) € E (i = 1,...,n), xg = 1, x, = t} (the
set is bounded by (1.21.2) and non-empty since (1,¢#) € E). We now let
L'={te L|¢(t)=1}. The crucial step in the proof is the following

1.24 Lemma. If ¢t € L and ¢'(t) > 1, there exist t1,to € L with ¢/(¢;) <
¢(t) (i = 1,2) and

2m—+1

A

7(t) = ;T(tl)ﬂ'(tg)ﬂ'(tl) . .7T(t15 for some m € IN (m > 1).

Proof By assumption, there is a path (zg,...,z,) with xg = 1, z, = t and
n>2. Lett' = f(xp_1,z,) (note t’ # t) and let t1,t2 be the special labels of
I'({t,t'}). Since (xp—1,2y) € Eand (1,z,) € E (1 # x,—1), we have t & {t1,t2}.
Interchanging t; and t, if necessary, it follows from simple properties of the
dihedral groups that there exists a path (yo,...,y2m+1) (m > 1) from 1 to ¢
with
tl 7 odd
Fi1v:) = {t2 Ez eveIZ) (i=1,...,2m+1).

Also there exists a path (zp,...,22p+1) from 1 to t with f(zo,21) = t2, and
p > 1. Then y; = t; and z; = t3, so it follows that ¢'(t) > ¢'(t1) + 2m and
0'(t) > 0'(t2) + 2p. In particular, ¢/(t1) < ¢'(t) and £'(t2) < ¢'(t).

2m—+1
Further, 1%(1&1)7?(152) . .W(tlj =t = 1n(t) and so (1.23.2) and (1.23.3) imply
2m—+1
T(t)m(ts) ... () = m(t). O

The following result follows immediately by induction on ¢'(t).
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1.25 Corollary. If t € L, then there exist r1,...,r, € L' (m € IN;, m > 1)
such that 7(t) = w(r1)...7(ry) ... 7w(r1). O

1.26 Note that «(t) (t € L) is an involution. Let W = (n(t) | t € L) and

R={n(r) | 7€ L'}. Also,let T = |J wRw™!. By (1.23.3) and(1.25),
weW
W = (R) and the map L — W given by t — x(t) (t € L) induces a bijection

p:L—T.
We make use of (1.3) to show that (W, R) is a Coxeter system.
Define a map N: W — P(T') by

N(w) = {=(t)|te L, (lwr(t),lw)e B} (we W).

Lett € L, re L', w e w with ¢t # r. We claim that
(1.26.1) if (wn(t),w) € E then (wn(t)n(r),wn(r)) € E.

To see this, note first that r is a special label of T'({r,t}); for if r were not
a special label, there would exist © € w, x # 1 with (z,r) € E. Letting
t" = f(z,r), we could argue as in the proof of (1.24) that r was not a special
label of T'({r,#'}) and so there would exist a path (1,z1,x2,7), contrary to
¢'(r) = 1. Hence r is a special label of I'({r, t}) and (1.26.1) follows by applying
(1.20) to the connected component of I'({r,t}) containing x (making use of
(1.21.3)).

Note that the preceeding paragraph shows that

(1.26.2) N(m(r)) =m(r) (r € L').

Regarding P(T') as an abelian group under symmetric difference, (1.26.1) shows
that N(wn(r)) = w(r)N(w)n(r) + {n(r)} (r € L', w € W). It follows by
induction on the length of ¢(y) of y in (W, R) that

(1.26.3) N(wy) = y 'N(w)y + N(y) (w,y € W) and so (W, R) is a Coxeter
system as claimed. Further,

(1.26.4) N(w) = {t € T'| £(wt) < £(w) }.
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1.27 To finish the proof, it will be shown that the map 6: W — w given by
w +— lw is a strong isomorphism Iy, gy — (w, E, T, pf).

Firstly, 6 is injective since if (1)v = (1)w (v,w € W) then N(v) = N(w)
and so v = w. The assumption that I' is connected gives the surjectivity of
0 as follows; if (x, .. xn) is any undirected path with xy = 1, then, letting
ti = f(xi—1, ;) (i=1,...,n), we have x,, = 0(n(t1) ... 7(t,)).

Now the edges of I'(yy, gy are the pairs (wm(t),w) with £(wn(t)) < L(w) (w €
W, t € L) and the edges of T' are the (1w (t), lw) with 7(¢t) € N(w) (w €
W,t € L). Hence (x,y) € Egw,g) if and only if (6(z),0(y) ) € E. Moreover, if

(l’, y) € E(W,R)a say ('Tv y) = (wﬂ(t)7w)7 then

pf(0z,0y) = pf(lwn(t), 1w)
= p(t) by definition of the permutation 7(t)

m(t)

LL‘ly

which is the label (z,y) receives as an edge of Eqy ). Hence 6 is a strong
isomorphism as claimed. This completes the proof of (1.21). m]
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Chapter 2

“GENERIC” ROOT SYSTEMS

Chapter 3 contains a criterion for a set of reflections in a Coxeter system to be
the canonical set of generators of some reflection subgroup; the condition is that
the inner products of the corresponding positive roots in the standard geometric
realisation ([De2]) should lie in a certain set.

To determine this set, one needs to know precisely what inner products can
occur between simple roots in a geometric realisation of the Coxeter group if
the resulting root system is to partition into positive and negative roots as
usual. The question is answered by Lemma (2.4) which also summarises all the
properties of geometric realisations of Coxeter groups needed for Chapter 3.

As well as the root systems arising from these geometric realisations, one has,
in the case of crystallographic Coxeter systems, also the various systems of real
roots of corresponding Kac-Moody Lie algebras ([K]). It is of some interest to
see in what generality the standard properties of root systems hold. Thus, after
proving (2.4), we indicate how the usual arguments may be modified to prove
properties of “generic” root systems.

Many of these properties are proved by reducing to the rank two case, and we
begin with some 2 X 2-matrix computations.

2.1 Let A be a commutative IR-algebra, v be an element of IR and ¢'/2, X be
units of A. Define A, B € Myy2(A) by

—1 2v¢'/?X q 0

N
|
Sy
|

0 q 27q1/2X_1 -1
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It follows by induction on n € IN that

" ponta —q" 3 pe, X
2.1.1 B(AB)" = d
O T I
q" T2 papyaX —q"P2n+1
n _n—z X
(2.1.2) (AB)" = ( T )
qn 2p2nX _qnp2n71

where p, € IR (n € {—1} UIN) are defined recursively by

(2.1.3) p-1=—1, po =0, pny1 = 29Pn — Pn—1 (n € IN).

Now the solution of the recurrence equation (2.1.3) is

. (y=1
(1)1 he

(2.14) pn= zﬁ [<7+ m)” _ (7_ m)n] (v >1)
| sinnf (cosf =) (vl <1).

Here are some properties of the p,, and the matrices A, B. Part (i) of the lemma
is particularly important for our applications.

2.2 Lemma.

(i) Conditions (a) and (b) below are equivalent

(a) pnpny1 >0 forallnelIN

(b) y€{cos - |meIN;m>2}U|[l,00)

(ii) If v > 1 then for all m € IN, p,41 > p, > 0 and fﬁ > fﬁ.
(iii) If v =cos - (m € IN, m > 2) then

0=po <p1<"'<pL%J:meT+1J’ meT-HJ > .. > Pm—1 > Pm = 0.
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m m
A

Pn_ — 0 and (... BAB) = (... ABA).

Pm-—1

b2 b3
Also b T gy >

(iv) If ¢ =1, the matrix AB has order

n  (y=cosk™ (k,n €N, 0 <k <n, ged(n, k) =1))
oo (otherwise).

Proof (i) Now pp = 0, p1 = 1, pa = 2. Assume that (a) holds. Then v > 0.

If 0 < v < 1, choose 0 so that 0 < # < 7 and cosf) = . Let m be the

largest integer such that 0 < 6 < 20 < ... < m# < m. If mf < 7 then
7 < (m 4 1) < 27 and hence p,, = S272¢ > 0 p, . = sintmt 18— contrary

sin 6 sin 6
to (a). Hence mf = 7, m > 2 and v = cosf = cos -. This shows that (a)

implies (b). Conversely, if (b) holds then it follows from (2.14) that (a) holds.

The first claim in (ii) holds by induction on n, noting that p,yo — pp+1 =
DPrt1—Pn+(27=2)pp1. The first claim in (iii) follows from (2.1.4). By induction
on n € IN, one has p2 — p,_1pn+1 = 1; the claims in (ii), (iii) concerning the
ratios % follow readily from this. The remaining assertions of the lemma
follow from (2.1.4), (2.1.1), (2.1.2) and analogues for A(BA)™, (BA)". |

2.3 Let V be a vector space over IR equipped with a symmetric bilinear form
(‘). For non-isotropic o € V, let r,:V — V be the corresponding reflection,
defined by

(2.3.1) ro(v) =v —=2[(v | @)/(a | @)« (veV)

Let II be a linearly independent subset of V' such that (a | a) =1 (o € II). Let
R={ro|laecll}, W=(R), ®=WII, ®* ={ > mya € ®|m, >0 for all
acll
al, = =—-0tand T= |J wRw™!.
weW

2.4 Lemma.
(i) The conditions (a), (b) below are equivalent
(a) & = o+ UG~
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(b) For all o, 8 € I with « # 3,

(a|ﬁ)€(—oo,—1]u{—cos%|m€|N, m>2}

(ii) Suppose that conditions (a) (b) of (i) above hold. For w € W, let £(w) =
min{n € N|weR"}, Nw)={aed®" |w(a)ed }and Nw)={teT|
l(wt) < ¢(w) }. Then

(a) The map i: a — 7, is a bijection i: @+ — T and iN(w) = N(w) (w € W).
(b) (W, R) is a Coxeter system and if o, 8 € II, « # S,

m  ((a|B) =—cos - (mecIN, m2>2))
ord(rarg) =
oo ((a]f) <-1)

(c) fwrqw™t =rg (w € W,a, 8 € D) then w(a) € {5, -}

Proof (i) Suppose «a, € II (o # ) and let r = 1o, s = rg. In (2.1), take
v=—(a|fB), A=IR, g2 = X = 1. Then A and B are the matrices representing
the action of r and s (respectively) on the (r, s)-invariant subspace IRa + IR
(with respect to the ordered basis a, ). By (2.1.1) and (2.1.2), the condition
that (r,s)a U(r,s)3 C ®TU®P~ is that p,p,+1 > 0 for all n € IN, so (a) implies
(b) by Lemma (2.2) (i). The implication (b) = (a) follows by a standard
argument (cf. (2.6.3)).

(ii) All these facts follow from (i) (a) as in [Ste|, [De2]. We recall the argument
here. First, W is a group of isometries of V; hence ||wa|? = |a|* for any
a €V, w e W, and if « is non-isotropic, wraw ™! = Tw(a)- This shows that
|a|> =1 and r, € T for all « € ®. If a,3 € ® and r, = rg, then a = k3
for some k € IR, and we must have k € {1, -1} since ||a|* = ||3||* = 1. These
remarks prove (c), and that i: ®* — T is a bijection. Now (i) (a) implies
that for a € II, ro(®" \ {a}) = ®* \ {a}. From this, one may check that
iN:W — P(T) satisfies (1.1.1) and (1.1.2), hence by (1.2) and (1.3), (W, R) is
a Coxeter system and iN = N. The claim about ord(r,rg) follows from (2.2)
(iv) (cf. (2.7)). O

When the conditions (a) and (b) (i) hold, we will say that we have a geometric
realisation of (W, R) on V with simple roots II. As usual, ® will be called
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the root system and the elements of ®*(®7) are called positive (respectively,
negative) roots.

2.5 We now describe certain “generic” root systems corresponding to the root
systems in (2.4). Every root will turn out to be either positive or negative,
the positive roots being linear combinations of simple roots, the coefficients
themselves all being Laurent polynomials with non-negative coefficients.

Let (W, R) be a Coxeter system with Coxeter matrix (m, s), ser (thus, m, s =
ord(rs) € INU {oo}). In (2.6)-(2.10) (ars)rser denotes a fixed real (R x R)
symmetric matrix satisfying

(i) ar,=2(reR)

(ii) aps = —2cos — (mps#00 r,s€R, r#s)

(ili) ars < -2 (mps=o00, r,s € R)
and n:{(r,s) € Rx R | r # s} — {1,—1} is a fixed function satisfying
n(r,s) = —n(s,r) (r,s € R, r # s).

2.6 Let X, s (r,s € R, r # s) and q% be indeterminates such that X, ; =
Xor (r,s€R, 7#5s), A=IR[¢gT/?, XE! be the algebra of Laurent polynomi-
als in ¢'/2 and the X, ,, and K be the quotient field of A. Let V be a K space
on basis {e,}rcr-

For r € R, define X, € Endg (V) by

{Xxe» e,

X (es) = qes — Gr,sql/QXﬁg’s)er (seR, s#r)

It is well-known that there is a representation p: H — Endg (V') of the Hecke
algebra H = H, k(W) such that p(7,) = X, ; for finite W, this is esssentially
the “reflection representation” defined in [CIK]. To check that p exists here,
note firstly that X2 = (¢ — 1) X, + ¢Id. One also needs to see that

(2.6.1) (... X X, Xo)er = (... X, X, X,) e,
when m = m,, is finite (r,s,t € R, r # s). Now taking v = —a, s/2 and

X = X" in (2.1), one sees that A and B are the matrices representing the
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action of X, and X, on the subspace spanned by the basis vectors e, and eg,
so (2.6.1) follows from (2.2) (iii) if ¢t € {r, s}. If t ¢ {r, s}, then one may choose
k,l € K such that X, (e; + ke, + les) = Xq(er + ke, + les) = q(er + ke, + ley)
(since the matrix

n(r,s)

1+gq q2a, X1

—n(r,s)

q?a, s Xrs 1+gq

is non-singular) and (2.6.1) follows since both sides are equal to ¢"(e; + ke, +
m

—_——
les) — (... X X Xs) (ke + les).

Let AT = RT[¢*1/2, X;E! be the set of Laurent polynomials with non-negative
coefficients. Let r,s € R with r # s. Interpreting the matrices A and B as
above, (2.1.1) (2.1.2) and (2.2) (ii), (iii) show that

k
———
(2.6.2) p(... T T, Ts) e, € ATe, + ATes (0 <k <m,5).

We now have

(2.6.3) If w € W, r € R and £(wr) > £(w), then p(Ty)e, € > ATey.
teR

This may be proved by the following standard argument ([De2]). The result

holds if w = 1, so suppose w # 1 and argue by induction on ¢(w). Choose

s € R so that f(ws) < ¢(w); note s # r. Use (1.14.1) to write w = w'w” where

w” € (r,s) and L(w'r) = {(w's) = L(w) + 1. By (1.14.2), {(w) = L(w") + £(w").
k

—
Now w” = (...srs) where 1 < k < m,, (since £(wr) > {(w)). By (2.6.2),
p(Ty)e, € Ate, + Ates, and by induction, p(Ty)e., p(Tyr)e, are both in
5= ATe;. Therefore p(Ty)e, = p(Tw )p(Twr)er € >, ATe; as claimed.

teER teR

2.7 Let X, (r,s € R, v # s) be indeterminates as in (2.6), R = R[X}], L
be the quotient field of R and E be an L-vector space on a basis {e,},cr = I
Define elements e¥ € E* (r € R) of the dual E* of E by (e, e)) =2 and

(es,e)) = arysX;fg’"’s) (seR, s#r).

T
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By specialising the reflection representation p of (2.6) to ¢ = 1, one sees that
there is a W-action on E such that

(2.7.1) (h) = h — (h,e))e, (reR, he k).
The contragredient representation of W on E* is given by
(2.7.2) r(hY) = hY — (e,,hV)e, (re R, hV € E*).

Let RT = R [X 1] be the set of Laurent polynomials in R with non-negative

coefficients, ® = WII and T = { > mqa € ® | m, € R for all a €
acll

I}, & = —d*. By specialising (2.6.3) to ¢ = 1, it follows that
(2.7.3) & = d+ U D~
The following result is an analogue of (2.4) (c).

2.8 Lemma. If w,w’ € W and r,7’ € R satisfy wrw™! = w'r'w’'~!, then

w(e,) = kw'(e,) where £k € (Xrisl> (the subgroup of the group of units of R
generated by the X, ;).

Proof There is no loss of generality in assuming that w’ = 1. Let E’ be the
R-span in E of the elements of IT; thus, E’ is a free R-module with R-basis II,

and E’ is W-invariant. Write w(e,) = > pses (ps € R,s € R), and note that
sER

each p, € £RT.

Regard IR as an R-module by means of the IR-algebra homomorphism f: R —

IR with f(X,» ) =1 (r",s"” € R). Now the induced W-action on E’ @z IR,

given by w-v=(w®1) (v) (v€E ®gIR) is a geometric realisation of (W, R)

with simple roots e; ® 1 (t € R). Since wrw=! = 1/, it follows from (2.4) (c)

that w- (e, ® 1) = £(e,r ® 1). But w- (e, ® 1) = > f(ps) (es ® 1). Since
sER

+ps € RT, we have f(ps) = 0 iff p; = 0. Hence p; = 0 unless s = r’. This
proves that w(e,) = ke,» where k € R and f(k) € {1,—1}. Similarly, one has
w™1(e) = K'e, for some k' € R. Now one sees that e, = w™lw(e,) = k'ke, so
k is actually a unit. Since also f(k) € {1, —1}, it follows that +k € (X, ;) as
claimed. O
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Lemma 2.8 shows that for each ¢ € T, there is a corresponding element of &,
well defined up to multiplication by monomials in the X=}.

As well as the root system ®, one has a dual root system ®V = WIIV in E*,
where 1TV = {eY },.cr.

The next proposition implies that the element of R obtained by pairing a root
with a dual root is either in R™*, or in —R™.

2.9 Proposition. Suppose w € W, r;s € R and {(wr) > {¢(w). Write
wrw~! =t. Then exactly one of (i)—(iv) below holds

(i) t=s

(i) st=ts, £(st)=4L(t)+ 1 and (w(e,), €/) =0

(iii) £(sts) =£(t) +2 and —(w(e,), /) € RT \ {0}
(iv) L(sts) =L(t) — 2 and (w(e,), ey € R\ {0}.

Proof The possibilities (i)—(iv) are clearly mutually exclusive. Note that to prove
the result, it suffices to prove that the same holds with (w,r) replaced by any
other pair (w’,r") € W x R with w'r’'w'~! =t and £(w'r") > ¢(w’) (for then
w'(e,) = kw(e,) for some k € (X;F}), by (2.8)).

Suppose that (i) does not hold, but that st = ts. Then £(st) > £(t), else we would
have ((sts) = £(t) — 2 by Lemma (1.4). Now by (2.8) w(e,) — (w(e,), eY)es =
sw(e,;) = kw(e,) for some k € (£XE1). Write w(e,) = Y. ey, Now if
rER/
k # 1, it follows that a,» = 0 for ' # s. Hence w(e,) = ases. Specialising to the
geometric realisation as in the proof of (2.8), we have w(e, ® 1) = f(as)(es®1),
hence wrw™! = s contrary to the assumption that ¢t # s. Hence k = 1 and so
(w(er), €7) =0 as required for (ii).

Now assume {(sts) = £(t) + 2. First we prove that (iii) holds in the special case
when there exist 7', s’ € R such that r,w, s, € (r’,s"). Let m = m, g .

In (2.1), take A = R, ¢"/2 =1, v = —a,v¢/2 and X = X:,L,(’Z’s/). Then for
n € IN
Sl(rlsl)ne;« = P2n+16€4 +p2n+2X_1es’

/! 1
(T S )ner’ = Pa2n+1€¢’ +p2nX €g’
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Since (e, eY) = —2yX 1, (eg,e¥,) = —2vX we have

/ \Y%

(2.9.1) (s'(r's") e, e)0) = 2p2nt1 — 2VDPan+2 = P2nt1 — P2n+3
((r's")"er,ey) = —27X 'popi1 + 202, X = X_l(pzn — Pon+2)

Now we are assuming that r,w,s, € (r/,s’) and that {(wr) > l(w), {(sts) =
{(t) + 2 where t = wrw™!. By the remark at the beginning of the proof and
symmetry we only need consider the cases

w=s's)", r=r,s=r" (5<(4n+3)+2<m)
w= ('), r=r,s=5 B3<(dAn+1)+2<m)

and the result is true in these cases by (2.9.1) and (2.2) (ii), (iii).

Now we may deal with the general case of (iii); We proceed by induction on
0(t). Let £(t) = 2k + 1, and choose s’ € R with £(s't) < £(t). Write t = zy
with z € (s, s) (note s # s’) and ¢(sy) = £(s'y) = ¢(y) + 1 (using 1.14.1). Now
make use of Lemma (1.4). If /() > k+1, we have t € (s, s) and the remark at
the beginning reduces us to the special case considered earlier. Hence we may
assume £(z) < k, and write y = y’2~1 where £(y) = £(y’) + £(x) (still using
(1.4)). Write v/ = 21'271 (2 € W, 7" € R, £(y') = 2{(z) + 1). By the remark at
the beginning, it will suffice to prove that

—(z2(er),ef) € RT\{0}

or, equivalently, —(z(e, ), x71(eY)) € Rt \ {0} (since it is the case that ¢t =

vy'z™t = xzr’(z2)7! and £(t) = 20(z2) + 1).
p
—
Now since #(sts) = £(t) + 2, we must have z7! = (...s'ss’) where 1 < p <

m (m = mg,g). Also, l(sy") = £(s'y") = £(y') + 1; hence £(sy’s) > {(y’) and
(s'y's’") > L(y'), at least one of these two inequalities being strict because
U(zy'x™t) = 20(x) +£(y"). Moreover, if £(z) = p = m — 1, then sz is the longest

element of (s, s’) and so both of these inequalities above are strict.

Now in (2.1) let A=R,¢"/2 =1, X = X"~ = —q, /2. We have

s,s’



and so by (2.1.1), (2.1.2), for n € IN

(2.9.2) {s'(ss’)”e = pant1e] +PonraX e}

\

S
(ss)"e) = pant1ey +poanX '€y,
even though e and e}, may be linearly dependent.
Now we consider two cases.

Case 1. p+1<m.

In this case, (2.9.2) and (2.2) (ii), (iii) show that z=te) € (RT\{0})eY + (RT\
{0})eY,. By (iii) and the inductive assumption, we have that

—(z(er),ef))  and = (z(ev),e)

are both in R™, and at least one is non-zero. Hence —(z(e,v),x71(eY)) € RT\
{0} as required

Case 2. p+1=m

Here (2.9.2) and (2.2) (iii) give 27 'eY € (RT \ {0})eY U (RT \ {0})e), (de-
pending on the parity of m). By the inductive assumption, we have that both
—(z(ep),e)) and —(z(e,),eY) are in RT \ {0} so —(zz(e,),e)) € RT\ {0}
here also.

Finally, consider the case (iv) ¢(sts) = £(t) — 2. In this case, applying (iii) with
t replaced by sts gives —(sw(e,),eY) € RT\ {0} i.e. (w(e.),el) € RT\ {0}.
(One must note that ¢(sw) < £(swr) but since ¢(wr) < £(w), if this failed it
would follow that sw = wr and s = ¢, contrary to assumption). |

We conclude this chapter with some observations about the specialisations of
the representation given by (2.7.1).

2.10 Let E’ be the R-submodule of E spanned by II; thus, II is an R-basis
of E'. Let 4 (r,s € R, 7 # s) be any family of elements of IR™ \ {0} with
Tys = Ts, and let g: R — IR be the IR-algebra homomorphism with g(X, 5) =
Zrs (r,s € R, r # s). Then E' ®, IR is a faithful W-module with action given
by w.(v) = (w®1)v (w e W, ve E ®,IR).
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For suppose (w®@1)v = v for allv € E' ®,IR. Write w(e,) = > [, ses and note
seER

that +03, s € R™. Thene, ®1 = (w® 1)(e, ®1) = > 9(Br.s)(es ® 1). Since
seR

the z, ; are positive, it follows that (., = 0 for s # r and §,, € RT. Now
specialise to the geometric realisation of W via the homomorphism f: R — IR
considered in the proof of (2.8). We now have (w®1)(e, ® 1) = f(5rr)(er ® 1)
where f(8,,) € IR". Hence w keeps all the simple roots, and hence all the
positive roots, positive and so w = 1. Hence E’' ®, IR is a faithful W-module.

Suppose now that ¢": R — IR is another homomorphism with ¢'(X, s) = yr s €
IR*\ {0}. If 9: B’ ®, R — E’ ®, IR were an isomorphism of W-modules, we
would necessarily have (e, ®, 1) € IR(e, ®, 1); this is because, for any r € IR,
E’' ®4 R is the direct sum of the 1-eigenspace of r and the (—1)-eigenspace, the
latter having (e, ®4 1) as the basis, and 6 would preserve this decomposition.
Now assume that R is finite.

Let X denote the matrix with entries X, , =2 (r € R); X, , = ar,sxﬁg’s)(r, s
€ R, r # s) and let Y be defined similarly using y, s in place of x,. 5. The above
comments imply that E' ®, R and E’ ®4 IR are isomorphic W-modules iff there
exists an invertible diagonal matrix A such that AXA™! =Y.

Thus, if the Coxeter graph of (W, R) is a forest (i.e. all its connected components
are trees) all these specialisations are isomorphic, but if the Coxeter graph
contains a cycle there are uncountably many non-isomorphic specialisations.
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Chapter 3

CANONICAL GENERATORS OF REFLECTION SUBGROUPS

In Chapter 1 it was shown that every reflection subgroup of a Coxeter system
has a canonical set of Coxeter generators. In this chapter, our main result is a
criterion for a set of reflections to be the canonical Coxeter generators of the
reflection subgroup they generate. The condition is that the inner products
of distinct elements of the corresponding set of positive roots (in a geometric
realisation of the Coxeter system) should all lie in the set { —cos~ | m €
IN, m >2} U (—o0,—1].

As an application of this criterion, we describe the canonical generators of re-
flection subgroups of Weyl groups of type A, B and D. Another application is
given in Chapter 4.

We begin by fixing some notation, and then translate some of the results from
Chapter 1 into the language of root systems.

3.1 Let (W, R) be a Coxeter system. We may assume that W is a group of
isometries of a vector space V' as in (2.3), and that R is the set of reflections
determined by a set II of simple roots satisfying the condition (b) of Lemma
(2.4) (i). We adopt without change all the notation and terminology of (2.3)
and (2.4), and also use the following notation for a reflection subgroup W’ of
w.

The set of canonical generators of W’ will be denoted by S(W’) as in Chapter
1. Recall that

(3.1.1) SW)={teT | Nt)nW'={t}}
The corresponding set of positive roots is denoted A(W'). Thus,
(3.1.2) AW =i tSW)={aed® |r, € SW')}.
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We also set
(3.13) (W) ={ac®|r, e W}

(3.1.4) @+(W') = (W) N &+, (W) = &(W') N &~ = —&+(W’) and let
Ly W' —— IN denote the length function of (W', S(W')).

By Lemma (2.4) (ii) (a),

(3.1.5) AW ={a € ®t | N(ry) N®(W') = {a} }.

In our present notation, theorem (1.8) gives the following three facts:
(3.1.6) (W', S(W')) is a Coxeter system

(3.1.7) (W) = W/A(W)

(3.1.8) N(w) N ®(W') = {a € @+ (W) | bw(wry) < bw(w)} (w € W)

We will also need

(3.1.9) if « € T and o, ¢ W', then A(r ,W'ry) = ro A(W).

This follows from Lemma (1.7) (i), noting that r, A(W’) C & since a ¢ A(W').

In (3.2)-(3.4), W’ denotes a fixed reflection subgroup of W and we write ¢’ for
ly. The following two lemmas are directed toward the computation of the
inner products (« | 8) (o, 8 € A(W')) in (3.4).

3.2 Lemma. Let o, € A(W’) with a # § and ord(r,rz) = n. Then for

——~ ——~
0<m<mn, (...rgrorg)a € @t and (...rargre) 0 € 7.

Proof Note that we have {r,,r3} C S(W') and that ¢ is the length function of
(W', S(W")). Therefore, for 0 < m < n,

m m
e - —v
o TETaTR)Te) =m+1>m =0 (...rgrorg).

m

—
Write (...rgrarg) = w. Thena ¢ {y € ®T(W') | £'(wr,) < '(w) }. By (3.1.8),

a ¢ N(w)n®W'). But a € A(W') C &T(W’), so a ¢ N(w). Since a € &,
we have w(a) € ®* by definition of N. The other fact is proved similarly. O
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3.3 Lemma. Let a,f € A(W') with a # § and ord(r,rg) = n. Write

m

—_——
(...rgrarg) @ = cpa + dp

/—/L
(...rarpre) B=c,a+d, 03 (0<m<n)

Then d,,, >0, d,, >0, ¢, >0, ¢, >0for 0 <m < n.

Proof By symmetry, it will suffice to prove that d,,, > 0, d,, > 0. The proof of
this will be by induction on ¢(r,).

Suppose first that ¢(ro) = 1. Then o € II. Write 8 = ) a,y where a, €
yell

IR (v € II). Since § € A(W') C &+, we have a, > 0 for all v € II. In fact,
a~, > 0 for some vy € II\{a}, since otherwise we would have 8 € IRa and so
B = a (because ||3]|? = ||a]|> =1 and «, 8 € ®T).

m

——
Now for 0 < m < n, Lemma (3.2) gives (...7rgror3) @ = cma+ Y. dmayy € T,
yell
The coefficient of ~g in this is d,,a., > 0. Since a., > 0, it follows that d,, > 0.

Similarly, d,, > 0.

Suppose inductively now that the result is true for reflection subgroups W of
W and o/, 5" € A(W") with o # " and £(ro) < £(ry) where £(r,) > 3. By
(1.5), there exists s € R with l(sr,s) = €(ro) — 2. Then £(rys) < £(ry), so
s € N(rq). But since a € A(W'), N(ro)NW' = {r,}. Since s # r,, this shows
that s ¢ W’'. Let W = sW's. By (3.1.9), it follows that A(W") = sA(W')
and therefore sa, s8 € A(W").

Now rsq = 8T8, Tsg = srgs and hence ord(rsarsg) = ord(rorg) = n. Since
Ursa) = L(sras) = U(rq) — 2, the inductive assumption gives

m

——
(...rspTsalsp)(s0) = cm(sa) + d(sP)

m

——t
(- TsaTsprsa)(sB) = C(sa) + d, (s5)

where d,,,,d], > 0 for 0 < m < n. Since ryg = srgs and rs, = s7os, the result
follows on applying s to both sides of these equations. |
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The following result is the first half of our criterion for a set of reflections to be
the set of canonical generators of some reflection subgroup.

3.4 Corollary. For any o, € A(W') with a # 3, let n, g = ord(rarg).
Then

{(a | B) = —cosﬁ (nap €{2,3,4,...})
(a|B) < -1 (Ta,p = 00)

Proof Let ¥ = (r,,r3)Il' where II' = {a, 3}, and set V" = {ca +dB € V¥ |

——~ ——~
c > 0,d > 0}. Now the elements of U are &+ (...7r,rg7ry) 58, £ (...787a78)
(0 < m < ngp). By Lemma (3.3), ¥ = T U —-UT. The conclusion of the
corollary therefore holds by Lemma (2.4) (i), (ii) (b). |

In (3.5)—(3.7), T denotes a fixed subset of ®* such that (a | 8) € (—o0,—1] U
{—cosZ |neciN,n>2}forall a,f €l witha #3, and W = (rq | a € T')
denotes the reflection subgroup generated by the reflections in the elements of
I'. The following sections will show that I' = A(W’).

3.5 Let IV be a subset of T.

Let U be a vector space over IR on a basis II' = {e, }ner’ and define a symmetric
bilinear form (- | -) on U by setting (eq | eg) = (a | B) (o, 8 € I'). Note that
leall?> = [|a]|> =1 for all « € T".

For non-isotropic u € U, let s,,: U — U denote the corresponding reflection,
defined by

su(v) = v =2[(v]u)/(u]u)u  (veU).

Let R = {s, |uell'}, W' =(R), O=W'T, T ={ > chea €V |cy >
ael”
Oforalla € IV}, and ¥~ = —¥™. Since IT’ satisfies the condition (b) of Lemma

(2.4) (i), it follows that (W”, R’) is a Coxeter system realised geometrically on
U with IT as its set of simple roots, and ¥ is the corresponding set of positive
roots.
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Note that, by (2.4) (ii) (b), for a, 5 € I" with a # 8 we have

_Jn (ealeg)=—cosT (n€IN, n>2)
Ord(seaseﬁ)_{oo (ea|eg)g_1

_Jn (a|p)=—cosT (n€lN, n>2)

oo (aff) =1

= ord (ro73)

Since (W”, R') is a Coxeter system, this implies that there exists a homomor-
phism 6: W — W’ such that 6(s., ) =ro (a €I").

Let L:U — V be the IR-linear map such that L(e,) = a (o € TV). We now
claim that

(3.5.1) L(w"u) = 0(w”)L(u) (w"” € W' uel).
To prove (3.5.1), first notice that if o, 3 € I, then
L(se,(e3)) = L(eg — 2(ep | ea)ea)
=0 —-2(0]| a)x since (eg | eq) = (6 | )

=Ta (ﬁ)

= Q(Sea)L(eﬁ).
By linearity, this gives L(s._(u)) = 0(s.,)L(u) (o« € I, u € U). Since W" =
(Se,, | @« € I") and 6 is a homomorphism, the claim (3.5.1) follows by induction

on the length of w” in (W R').

We will need to apply the results in (3.5) twice. The first application is to the
proof of

3.6 Lemma. With the above notation, A(W’) C T

Proof Take I = I'in (3.5). Since O(R') = {ro |a € " }and W' = (r, | a € TV),
it follows that 6 is a surjective.

Let v € A(W'). Choose x € W" with 0(z) =r, € W’'. Let s¢, ...5c,, (i€
I['') be a reduced expression for x in (W”, R'). Note n > 1. Now £"(zs., ) <
0" (x), where ¢" is the length function on (W", R’). Applying (2.4) (i) (a) to
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the geometric realisation of (W”  R") on U, we have z(e,, ) € ¥, say z(eq,, ) =

— Y ca€q where ¢, > 0 for all a € I, Hence
acl”

ry(an) = 0(x)L(eq, ) = L(zeq,,) by (3.5.1)

=L (— Z caea>
ael”
= — Z Co .

But () € ® and each o € I is a non-negative linear combination of elements
of I1, so ry(ay,) € ®~. Since ay, € I C &F(W'), it follows that o, € N(ry) N
®(W’), and so by (3.1.5), v = o, € IV =T. Since v € A(W’) was arbitrary,
A(W’) CT as wanted. o

We are now able to complete the proof of

3.7 Proposition. Let I' C & be such that

(3.7.1) (o | B) € (—o0,—1]U{~cos™ | n € IN, n > 2} for all o, € T' with
a# B,and let W' = (r, |a €T'). Then I' = A(W’).

Proof Take I = A(W’) in (3.5); this is possible by (3.6). Since (W', S(W')) is
a Coxeter system, we know that 6: (W R') — (W', S(W’)) is an isomorphism
of Coxeter systems. In particular,

(3.7.2) V'(O(w")) = " (w") (W’ € W) where ¢ is the length function of
(WH, RI)

Let v € I'. Then r, € W/ N T; by Theorem (1.8), there exist a,,...,ap €
A(W') such that 7o = 7o, .. Ta1TagTay - - - Ta,- SICE Ta, ... Ta;TagTay - - -Ta, =
Tap -+ TayTagTagTag ay - - - Ta,, there is no loss of generality in assuming that
U(ray, - TayTag) > U(Ta, ... Tay). By (3.7.2), this gives £"(sc, ... Se,, Sen,) >
0" (Se,,, - Sen, ) and so by (2.4) (i) (a), B = ¢, -+ Se., (€ay) € UT. Write
8= ases where as > 0 for all § € I'". We now have L() = 7q, ... Ta, (o) =
der

> asd € @1, since IV C &+ and L(B) € . Write 3/ = L(B). Then rg =
ser”
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Tay -+ TayTagTay - --Ta, = Ty. Since v, € ®* and r, = rg, it follows that

y=0" = > asd.

seT

Now suppose that v ¢ A(W’). Then by (3.7.1), (v | J) <0 for all § € IV =
A(W'), and so

L=(v]7) =) as(8]7) <0

oer”

This contradiction shows that the assumption v ¢ A(W') is false. Hence if
v €T, then vy € A(W’) i.e. I' € A(W'). The reverse inclusion is true by (3.6),
so the proposition has been proved. |

3.8 We now combine (3.4) and (3.7) to characterise the sets of reflections
which arise as canonical generators of reflection subgroups. It is desirable to
formulate the result so that it applies directly to classical root systems, so we
now allow roots to have different lengths.

Specifically, let V' be a real vector space equipped with a symmetric bilinear
form (- | -) and II be a linearly independent set of non-isotropic vectors of
V. For non-isotropic a € V, let r, denote the corresponding reflection. Set
R={rq|aell}, W=(R), ®=WIand & ={ > coa € ® | ¢, >0

a€cll
for all o € II}. We make the following assumptions (cf. [Ste]) concerning this

situation:
(i) (o] a) >0 for all @ € IT (and hence for all a € ®)
(i) If o € ® and k € IR, then ka € ¢ iff k € {1, -1}

(i) ® =&+ U(—D).

For a € @, write |a| = (a | a)=.

Then (W, R) is a Coxeter system which is realised geometrically on V', with
I = {|la|"*a | « € II} as the set of simple roots; for R = {rz | 3 € II'}
and ® = WII' = { |la||'wa | w e W,a e T} = {|a|ta| a € ®}, so every
element of WII' is a combination of elements of II' with coefficients all of the
same sign, whence the result by (2.4) (i). The corresponding set of positive
roots is ®'T = {|la|ta | a € ®* }. By (3.4) and (3.7), we have
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3.9 Theorem. Let I' be a subset of ®. Then {r, | « € I'} is the canonical
set of generators S(W') of some reflection subgroup W’ of the Coxeter system
(W, R) iff

(3.9.1) p5ldkr € {—cosZ | n € IN,n > 2} U (=00, 1] for all a, 8 € T with

a # (3. (Of course, if these conditions hold then W/ = (r, | a € I')). O

Note that condition (iii) of (3.8) is equivalent to the validity of (3.9.1) with
I' =1I (by (2.4) (i) and the discussion in (3.8)).

3.10 Corollary. Let (W, R) be a Coxeter system, T'= |J wRw™! its set of
weW
reflections, and N(w) = {t € T | {(wt) < {(w) } (w € W). Then for any subset

T of T, (i) and (ii) below are equivalent:
(i) N@)N(T") = {t} forallt €T’
(il) N(t) N (' t) ={t} for all t,t' € T".

Proof There is no loss of generality in assuming that (W, R) is a group of isome-
tries of a real vector space V as in (3.1); we also use the rest of the notation
there. Now (i) obviously implies (ii). Assume that condition (ii) holds, and let
F=i'T={aed®" |r,eT'}, W ={(T")={(ro, |a€l). Let o, €T
with @ # 8. Then N(ro) N (ra,r3) = {ro} and N(rg) N (rq,rg) = {ra}, so
{ra,r5} = S((ra, 7). By (3.9), 15\ € (=00, =1JU{ —cos = | n € IN,n > 2}.
It now follows by (3.9) applied to I" that 77 = S(W’), and (i) holds by definition

of S(W"). O

It would be interesting to have a direct proof of (3.10) from the definition of a
Coxeter system, in the style of the arguments of Chapter 1.

In (3.15) we will describe a procedure for calculating the set of canonical gener-
ators of a (finitely generated) reflection subgroup of a Coxeter system (W, R).
As a preliminary, we investigate the canonical generators of a dihedral reflection
subgroup.
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In (3.11)—(3.13), (W, R) denotes a Coxeter system realised geometrically as a
group of isometries of a real vector space V as in (3.1), with simple roots II and
positive roots 1.

3.11 Lemma. Let o,3 € ®T with a # 3. Then

ord (rarg) = {n (a] B) = —cos%7T (k,n €IN,0 <k <n, ged (n, k) =1)
“ oo otherwise

Proof This follows from (2.2) (iv) on noting that if —1 < (a | §) < 1, then the
restriction of (- | -) to U = IRa. + IR3 is positive definite, so V' is the direct sum
of U and the orthogonal complement of U. O

3.12 Remark. For any o, € D,
km
(a]B) € (—o0,—1]U{cos— |k,neINn#£0}U[L, o00)
n

(by considering the canonical generators of (r, ), this reduces to checking the
claim for the geometric realisations of a dihedral group). O

Our next result explicitly describes the canonical generators of a dihedral re-
flection subgroup containing a simple reflection of (W, R).

3.13 Lemma. Let a €Il and § € &, with a # 8. Let W' = (r,,75).

(i) If rorp has infinite order, then

{Towrﬂ} (Ta ¢N(rﬁ))
{ra,rarsra} (roa € N(rg)).

S(W') = {

(ii) Suppose (a | B3) = —cosEX (k,n € N, 0 < k < n, ged (n,k) = 1). For
peEIN, p>1sett,=s1...5,_15,5p—1...51 wWhere

s s (p odd)
P ro (p even).
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Choose m1, ms € IN satisfying mik = 1 (mod n), mok = —1 (mod n). Then

{74047745} (n = 2)
S(W,) =4 {rartm,} (M #2, 70 € N(tm,))
{rastm,} (n#2, ro & N(tm,)).

Proof Note that by (1.16), #S(W’) = 2. Also, r, € S(W').

(i) Let R' = {rq,rg}. Then (W', R') is an infinite dihedral Coxeter system, so

any set of two reflections of (W', R’) (i.e. elements of |J wR'w™!) which gen-
weW’
erate W’ is conjugate to R’ in W’. In particular, S(W') is conjugate to R’ (note

SW’)C U wRw by (1.16)) and contains r,, so either S(w’) = {r,,rg} or
weW’

S(W'") ={ra,rargra}. If ro € N(rg), we must have S(W’) = {rq,rar37r4}. On

the other hand, if S(W’) = {rq,rarsra} then rg = ro(rarsrqe)rq is a reduced

expression for rg in (W', S(W")), and so r, € N(rg) by (1.8) (iii).

(i) Write A(W') = {a,v}. Since (o | 3) = —cos EX (0 < k < n, ged (n, k) =
1), #(W') =2n by (3.11). Using (3.9) and (3.11) again, we must have (a | v) =
—cos . The restriction of (- | -) to U = IRa + IRy is positive definite, and we
regard U as a two-dimensional Euclidean space. Let &' = {§ € ® | rs € W'},
since every element of W'NT is conjugate in W' to r, or r.,, @' consists of the 2n
unit vectors which form with (—a) a directed angle of the form Z* (0 < m < 2n)
(the root system of a dihedral group of order 2n, in the standard geometric
realisation).

Let '
o = {ﬁ (j odd)

a (j even) and v = Ta, ... Ta,; (o) (J €IN),

and assume that the plane U is oriented so that § € U makes a directed angle
of X with (—a). Then ~; makes a directed angle of J'“T” with (—«). Now there
are exactly two roots in ®" which make a directed angle of 7 with —a; one is
7, and we denote the other by 4'. Note that ro(y) = =7, s0 ry = raryrq.

Now 7y, (respectively, v,,,) makes a directed angle with —a of the form (j +
%)7? (j € Z) (respectively, (j — %)7? (j € Z)). Hence {ry,r} = {r7m1,r7m2} =
{tm,,tm, }; in particular, S(W’) equals either {rq,t,;, } or {ra,tm,}
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If n = 2, then ®(W') = {£a,+8} so S(W') = {ra,rz}. Suppose n > 3.
If ro € N(tmm,), we must have S(W') = {r,,t;m,}. On the other hand, if
SW') = {ra,tm,} then t,,, = rotm,re is a reduced expression for t,,, in
(W', S(W")) and so r € N(tm,) by (1.8) (iii). O

3.14 Remark. For any reflection subgroup W’ of a Coxeter system (W, R),
we have W/ N R = S(W') N R. It follows from (1.7.1) that for any r € R,

iy JrSWhr (r & S(W"))
SeW'r) = { S (re S

Thus, if one knows S(WW’) one may determine S(W") for any conjugate W of
W'. Taken in conjunction with (3.13), this gives a procedure for calculating
S(W') when W' is any dihedral reflection subgroup of (W, R). |

3.15 Let (W,R) be a Coxeter system, T its set of reflections and 7" be a
finite subset of 7. Following is an algorithm for determining S(W’) where
W =<T >.

Set Ty = T”, and define T7,T5, ... as follows:

If S({(t,t')) = {t,t'} for all t,t' € T; (t # t') set T;+1 = T;. Otherwise, choose
t,t' € T, with t # t' and S({t,t')) # {t,t'}, and define T;41 = (T;\{¢,t'}) U
S({t,t')).

We claim that there exists some i € IN with T; = T; 1, and that S(W') = T;.

For if T; # Tj4+1, then (1.16) and (1.17) show that > £(t) < > £(t); hence

teT; 11 teT;
T; = T;41 for some i € IN. By (3.10), it follows that T; = S((7;)) and the claim
follows on noting that (T;) = (T;-1) = ... = (Ty) = W'.

Note that by (1.16), we have #(T;41) < #(7};) (j € IN) and in addition T} 4; C
U wTjw='(j € IN). Therefore,

weW’

(3.15.1) #(S(W')) < #(T") and

(3.15.2) SWH < U wl'w!
weW’
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3.16 Corollary. For any subset T of the reflections T of a Coxeter system
(W, R), the following hold:

(i) #(SUT"))) < #(T")

i) (InNT= U wl'w!
we(T")

Proof If #(T”) is infinite, (i) follows by a standard cardinality argument, and
the case #(7”) finite in (i) is just (3.15.1). To prove (ii), it suffices to show

that S(W’) C  |J wT’w™! (by (1.8)). Since each element of W' lies inside a
we(T’)
subgroup generated by a finite subset of 7", this follows from (3.15.2). O

A reflection subgroup W’ of (W, R) is said to be a dihedral reflection subgroup if
#(S(W')) = 2, or, equivalently, if W’ is generated by two (distinct) reflections
((1.16)). At one stage, we will need a result on the existence of maximal dihedral
reflection subgroups of (W, R). This is given in (3.18) after a preliminary

3.17 Lemma. Let (W, R) be a Coxeter system realised geometrically on a real
vector space V with positive roots @1, and let U be a two dimensional subspace
of V. Then there do not exist o, 3,7 € @+ NU with (a | ) <0, (a|v) <0
and (8 | v) <0.

Proof Suppose such «, 3,7 existed. There is no non-trivial relation of linear
dependence between «, 3, with non-negative coefficients so we may write, say,
v =aa+bs where a >0, b>0. Then 1 = (v |7v) =ala|v)+b(B]|7) <0, a
contradiction. O

Lemma (3.17) shows that a reflection subgroup of a dihedral Coxeter system is
of rank at most two.

3.18 Corollary. Let W’ be a dihedral reflection subgroup of a Coxeter system
(W, R). Then there is a dihedral reflection subgroup Wi of (W, R) with the
following property:

if Wy is any dihedral reflection subgroup of (W, R) such that W’ C W5 then
Wy C W7,
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Proof Assume that (W, R) is realised geometrically on V' as in (3.17), and write
AW') ={a,B}. Let &1 = &N (IRa + IRG) and Wy = (r, | v € ®1). By (3.16)
(i), ®(W71) € W1®; C IRa+IRS, and so (3.17) and (3.9) show that #S(W7) < 2;
therefore, W; is a dihedral reflection subgroup of (W, R). Suppose Ws is a
dihedral reflection subgroup containing W', and let A(Ws) = {v,d}. Using
(3.1.7), we have {a, 5} € ®(Wy) = WoA(W3) C IRy + IR, hence A(W3) C &4
and Wy C W7 as desired. O

Corollary (3.18) asserts that every dihedral reflection subgroup is contained in
a unique maximal dihedral reflection subgroup. We conclude the chapter with
some examples concerning reflection subgroups of “universal” Coxeter systems,
and of finite Coxeter systems of types A, B, D.

3.19 Example. Let (W, R) be a Coxeter system such that for r,s € R with
r # s, rs has infinite order (a universal Coxeter system). Then the product of
any two reflections is of infinite order (this is easily checked when one of the
reflections is simple, and the general case reduces to this). It follows that every
reflection subsystem of (W, R) is a universal Coxeter system.

Consider now the case #(R) = 3, say R = {r,s,t}. We realise (W, R) geo-
metrically in the standard way; let V' be a 3-dimensional vector space over IR
with basis IT = {«, 3,7}, equipped with a bilinear form such that (§ | §) =
1, (6 | &) = —1 for any §,e € II with 6 # ¢, and identify r, s,t with the re-
flections in «, 3,y respectively. One may check that for any k € Z, (rs)ky =
v+ 2k(2k — 1) +2k(2k + 1. Let T = {(rs)ky | k€ Z}, RF ={rs |6 €T}
and W’ = (R'). For any j,k € Z with j # k, we have ((rs)*y | (rs)7vy) = (v |
(rs)li=Fly) =1 — 8|k — j|> < —1. Thus, (W', R') is a reflection subsystem of
(W, R).

This example is in marked contrast to the case of finite Coxeter systems If (W, R)
is a Coxeter system with # (W) finite, and (W', R) is a reflection subsystem,
then #(R’') <#(R) (this follows from our (3.9) and [Bo] Ch V, no 4.8 and 3.5).

O

3.20 Example.
(i) Let ! > 3 be an integer and V' be a real vector space with basis {e1, ..., &},

equipped with the bilinear form (- | -) determined by (g; | €;) = d0i; (i, =
1,...,1). The finite Coxeter group (W, R) of type B; has a standard realisation
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on V as in (3.2); this is described in ([Bo], page 252). The positive roots &
aree; (1<i<l), g xe;(1<i<y<lI).

We will shortly describe the sets of positive roots corresponding to the canonical
generators of all the reflection subgroups of (W, R). First, we describe some
standard sets of positive roots satisfying (3.9.1).

Let J C{1,...,1},say J = {i1,...,7;} where 1 <4y <iy <...<i; <Il. Define
A(J>:{€ik+1 — Eiy ‘ 1 Skg]_l}
B(J) = AUJ)U{z,) (G=#(1) =

Also, if J' ={ky,....kn} (1 <k <...<k, <l)isanother subset of {1,...,1}
such that JNJ = (), we set

AW, J) = A(T)U A U {es, + ek, } (Gom > 1),

Given a set X of roots, it will be convenient to define its support supp(X) to
be the smallest subset of {€1,...,&;} the linear span of which contains X (thus
supp(A(J)) = supp(B(J)) = supp(D(J)) = {¢; | jeJ } and supp(A(J,J')) =
{e; |ieJUJ }).

It is straightforward to check from (3.9) that a set of roots corresponds to the
set of canonical generators of some reflection subgroup of (W, R) iff it is a union
of disjointly supported sets of roots each of one of the types A(J) (#(J) >
2), B(J) (#(]) > 1), D(J) (#(]) > 2) or A(LJ) (JNJ' = 0, #(]) >
1, #(J') > 1). The expression as a union of such sets is unique except for order
(and the notational ambiguity A(J,J") = A(J', J)).

(ii) The root system of type D; is a subsystem of that of type B;; the positive
roots are precisely the roots ¢; +¢; (1 <4 < j <1). In this case the reflection
subgroups of the Coxeter group of type D; correspond to the unions of disjointly
supported sets of roots each of one of the types A(J) (#(J) > 2), D(J) (#(J) >
2) or A(J,J) (J N =0, #(J) > 1, #(J') > 1).

(iii) The root system of type A;_; is a subsystem of that of type D;; the positive
roots are precisely the roots ¢, —¢; (1 <i < j <1). Here, reflection subgroups
of the Coxeter group of type A;_1 correspond to unions of disjointly supported
sets of roots each of type A(J) (#(J) > 2).
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Chapter 4

REFLECTION SUBGROUPS OF AFFINE WEYL GROUPS

The reflection subgroups of finite Weyl groups are known, up to isomorphism, by
an algorithm attributed to Borel and Siebenthal, and independently to Dynkin
([BS], [D]; see also [Co]). This algorithm is described in [Cal.

The purpose of this chapter is to prove a result which determines all the reflec-
tion subsystems of an affine Weyl group, up to isomorphism as Coxeter systems,
from the isomorphism types of reflection subsystems of the corresponding finite
Weyl group. The proof is an application of the results of Chapter 3. For our
geometric realisation of the affine Weyl group, we use (essentially) the natural
representation on the Cartan subalgebra of the corresponding Kac-Moody Lie
algebra; this has the advantage that the resulting root system relates in a par-
ticularly simple way to the root system of the corresponding finite Weyl group

([K]).

In the proof, we will make use of the classifications of affine Weyl groups and
finite root systems ([Bo]) and generalised Cartan matrices of finite and affine

types ([K]).

We begin by introducing some notation and terminology that will be required
for the statement of the main result, and its proof.

4.1 If Aq,..., A, are Coxeter systems, their direct product will be denoted
by A X ... X Ay; for instance, (Wq, R1) x (Wa, Re) = (W1 x Wa, (R x {1}) U
({1} x Ry)).

For an irreducible root system of type X (either A; (I > 1), B; (1 >3), C; (I >
2),D; (I > 4), Es, E7, Es, Fy or G3) let W(X) denote the corresponding

finite Coxeter system (of type X) and W(X) denote the Coxeter system of
type X ([Bo] Ch VI, 4.1 and 4.3; we write Cy instead of By). Note that for
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1 >3, W(B) = W(C) but W(B;) % W(C;) (where 2 denotes isomorphism of
Coxeter systems).

The following result was conjectured by Coxeter ([Co):

4.2 Theorem. Let X be an irreducible root system (of one of the above types
A, ..., Go).

(i) If W(X) has a reflection subsystem isomorphic to W (X7) x ... x W(X,),
then for any i (0 < ¢ <n), W(X) has a reflection subsystem isomorphic to

W(X1) X ... x W(X3) x W(Xip1) X ... x W(Xy)
(here the X; are root systems of the above types 4;,..., Gy ).

(ii) Every reflection subsystem of W(X ) is isomorphic to one of those described
in (i). O

In [Co], it is shown that (i) holds, and that if W (X) has a reflection subsystem
of type W(Y), then W (X) has a reflection subsystem of type W (Y).A proof of
Theorem (4.2) will be given in (4.3)-(4.14). We begin by recalling some facts
about sets of vectors with negative inner products.

4.3 Let V be a Euclidean space i.e. a finite dimensional real vector space
equipped with a symmetric, positive definite bilinear form (*|"). We will say that
a non-empty set I' = {a, ..., a,} of non-zero elements of V is indecomposable
if I' cannot be expressed as a disjoint union I' = I'y UT's where I'y and I's are non-
empty mutually orthogonal subsets of V. Any finite set of non-zero elements
of V may be partitioned into non-empty indecomposable mutually orthogonal
subsets (its indecomposable components). If T' is indecomposable and satisfies

(v | @) <0 (i # j), then the matrix <2(a"|aj))' - = M (T") satisfies the
i,7=1,...,n

[CHED)

properties (m1)—(m3) of ([K], §4.0) and so is, in the terminology there, either
of finite, affine or indefinite type.

The following lemma recalls the implications of these cases.
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4.4 Lemma. Let I' be as immediately above. Then
(i) M(T) is not of indefinite type

(ii) If M(T) is of finite type, I is linearly independent

(iii) If M(T) is of affine type, the subspace > IRa; has dimension (n — 1).
i=1
There exist ¢; > 0,...,¢, > 0 such that > c;a; = 0. Set ¢ = (¢1,...,¢,)" and
i=1
= (x1,...,2,)" (z; ER, i=1,...,n). Then M(T')z = 0 iff z = Ac for some
A€ lR.

forany z; € IR (i = 1,...,n), Y (o | aj)zizy = || O zeq]]* > 0, M'(T) is
ij=1 i=1

symmetric and positive. The result now follows from ([Bo] Ch. V, no 3.6) and

(K], §4.5). o

Proof The matrix M'(I') = (o | a)i j=1,... » is of the same type as M (I"). Since

Lemma (4.4) has the following simple consequence.

4.5 Corollary. Let IV be a finite non-empty set of non-zero elements of V'
such that (a | 8) < 0 for all a, 3 € IV with a # (. Then either I is linearly
independent or there exist non-negative real numbers ¢, (« € T'), not all zero,

such that »  coa=0.
acl

n

Proof Let I” = (JT'; be the decomposition of I'V into its indecomposable com-
i=1

ponents I';. Since the I'; are mutually orthogonal, I is linearly independent iff

each I'; is independent. The result follows by (4.4). O

4.6 Let (W, R) be a finite Coxeter system realised as a group of isometries of
a real vector space V as in (3.8); in addition to the assumptions there, we now
require that V' be finite dimensional, and that the form (-|") be positive definite.
If W’ is a reflection subgroup of W, let ¥ = {a € ® | r, € W’ }. One knows
that ¥ contains a simple system I i.e. a linearly independent subset I' of ¥ such
that each element of W is a linear combination of elements of I with coefficients
all of the same sign, and that, setting R’ = {r, |a € T'}, (W', R) is a Coxeter
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system. For our purposes, we need to know that the Coxeter system (W, R)
contains a reflection subsystem (in the sense of (1.8)) isomorphic to (W', R’).
Since all simple systems in ¥ are conjugate under the action of W', the following
Lemma shows that (W', R') = (W', S(W")).

4.7 Lemma. Let S(W’) be the canonical generators of W', and A(W') =
{aedt |r, € S(W’)}. Then A(W') is a simple system in W.

Proof Since A(W') C ®*, there do not exist non-negative scalars c,, not all 0,

with >  cqa = 0. By (4.5), A(W') is linearly independent. By theorem
aeA(W?)

(3.9), and the immediately following remark, ¥ = U* U (—¥*) where

\If+:{ Z caae\lf|ca20fora11a€A(W’)}. O
aceA(W’)

4.8 Recall the definitions of a generalised Cartan matrix and its Dynkin dia-
gram ([K]). The Dynkin diagrams of all the indecomposable generalised Cartan
matrices of affine type are given in ([K], pages 48-49) and we adopt the nota-
tion there. We assume that the vertices of each diagram are given a standard
indexing by the integers 0,1,...,[ with 0 designating the leftmost vertex; the
corresponding Cartan matrix A = (a;;)i j—o,...; is reconstructed as in ([K], §4.7).
For:=20,1,...,l 4+ 1 we let a; be the number in the Dynkin diagram adjacent
to the i-th vertex, and a; the number adjacent to the i-th vertex of the dual
diagram (obtained by reversing the directions of all arrows, keeping the same
indexing of the vertices). Thus, A(ao,...,a,)" = 0.

4.9 Let X be one of A;(l > 1),...,G5. Consider the affine Cartan matrix
(aij)ij=0...1 of type X and define a;,a) as in (4.8).

Let V be the real vector space on basis I = {ay, ..., a;} and define a bilinear
form (-|') on V by

(4.91) (a; | ) = aYa; a;; (i,5 =0,...,1). Tt follows from ([K], §6.2) that

(4.9.2) the form (‘|") is symmetric and positive semidefinite, and that, adopting
the notation of (3.8), the assumptions (3.8) (i), (ii), (iii) hold.

l
Now let Vp = > Ray, &9 = 2NV, <I>(J{ = ®T NV, and Il = IINV,. We collect
i=1

together some additional facts from ([K], §6.2 and 6.3) as
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4.10 Lemma.
(i) The Coxeter system (W, R) is isomorphic to /V[7(X ).

(ii) The restriction of (‘|') to Vp is positive definite, and ®q is a root system of
type X in V| with Il as a set of simple roots and <I>(J)r the corresponding set of
positive roots.

I
(iii) Let d = > a;a;. Then (0 | ;) =0 (i =0,...,1), (§|0) =0.
i=0

(iv) The root system @, determines ® as follows:

(4.10.1) @t =®f U{a+nd|a € ®g,n e IN,n>1,}. O

For any «, 3 € ®, we define

a 2(a
(4.10.2) ca,p = Toithr, o, = 152,

el

With the aid of (4.10.1), we immediately reduce the classification of reflection

subsystems of W(X ) to a question concerning sets of vectors in the root system
Dg.

4.11 Lemma. There exists a reflection subsystem of W(X ) with Coxeter
matrix (m;;);.jer iff there exists a family {3;}cr) of elements of & such that

(4.11.1) ¢g, 5, = —cos o (i, € I) (£ =0 by convention). O

Proof Note that if (4.11.1) holds, then §; # 3; for 4, j € I with i # j.

Since {4, a1,...,q;} is a basis of V, we may define a linear map p:V — Vj
satisfying p(0) = 0, p(a;) = o (1 = 1,...,n). We will also let ¢: V) — V
denote the map v — v+ ¢ (v € V).

Now by (4.10.1),

(4.11.2) p(®T) = ®g; q(Pg) C @7,

and by (4.10) (iii), we have
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(4.11.3) Ca,B = Cp(a),p(B) (Oé,ﬂ S (I)Jr); Ca,B = Cq(a),q(B) (Oé,ﬂ S (I)()).

Observe that the Cauchy-Schwarz inequality on V| together with the first part
of (4.11.3) implies

(4.11.4) | cap |<1 (a, 5 € @T).

Now apply (3.9) to show that (W, R) has a reflection subsystem with Coxeter
matrix (m;;); jer iff there exists a family {~; }ier of elements of T satisfying

Cyiy; = — COS (1,5 € I).

mij

Making use of (4.11.2) and (4.11.3), we see that this is equivalent to the existence
of {B; }ier satisfying (4.11.1). o

4.12 Note that since ®( is a root system of type X, it contains roots of at
most two different lengths, and if a € ®¢, then +2a & Py.

From the second fact and the calculations on ([Bo]), pg 148) it follows that for
a, 8 € &y with a # (3,

(4.12.1) cap € { —cos = | m € INU{oo},m > 2} iff ng g <0.

Thus, given a family {3;}ic; of elements of @ satisfying (4.11.1), it follows
that the matrix A = (ng, g,)i jer is a generalised Cartan matrix. By (4.4), each
connected component of the Dynkin diagram of A is of finite or affine type. The
Coxeter graph of the Coxeter matrix (m;;); jer satisfying (4.11.1) is obtained
from the Dynkin diagram of A by replacmg each connected component of type
A(l) or A(Q) by the Coxeter graph of type Al, and removing all arrows from any
multlple bonds on the other components.

4.13 We can now prove (4.2) (ii). Suppose that I' C &y and that n, g < 0

n
for all a, 5 € T with a # 3. Let T' = |JT'; be the decomposition of T' into
i=1
indecomposable mutually orthogonal sets I';. For any non-zero a € Vj, we
denote the reflection in a by s.: Vo — V.

For each i such that M(I';) (defined as in (4.3)) is of finite type, say Y/, w
set V; = Z; =Y/, I, =T, (noting I'} is linearly independent by 4.4 (ii)) R; =
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{sg| pell}and W/ = (R}), @, =W/T',. Then @/ is a root system of type Y;
(in the linear span of I'}), I'; is a simple system in ®, and (W/, R}) = W(Y;).

On the other hand, if M (T';) is of affine type Y, we may write I, = {fo, ..., Bm}
so that the matrix M(I") is the Cartan matrix of type Y; determined by the
standard labelling of its Dynkin diagram; we let b; denote the number adjacent
to the j-th vertex of that Dynkin diagram. By (4.4) (iii),

(4.13.1) >_ b;8; =0, {f1,...,Bm} is linearly independent.
i=0

Now Y, cannot be AéQ) (else 26y + 1 = 0) or A%(I > 2) (since then |3 =
V2||Bi—1|| = 2||Bol|, assuming the vertices are labelled 0,1, ...,I — 1,1 from left
to right).

Let I', = {f1,....6m}, R, ={sp |Bel}}, W/=(R)), &, =W/T.. Since I
is linearly independent, @ is a root system (in the linear span of I'}) and I'; is a
simple system in ®;. The Dynkin diagram of ®; is obtained by deleting vertex
0 of the Dynkin diagram of Y/ ie ®/ is of type Z;, where

7z
G/
Zi={ B (Y} =D (1>2))
Fy
Gy (

We also define

(Z (v =20)
B (Y =A5),(1>3))
Yi=1G (/=D (1>2)
Fy (Y =EB{)
Gy (Y] = Dz(lg))
and note that W(Y;) = W(Z;). By (4.11) and (4.12), W(X) has a reflection
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subsystem isomorphic to P; X ... X P,, where

—~

W(Y;) (Y/ of finite type)
W) (Y/ of affine type)

and every reflection subsystem is isomorphic to one arising in this way from
some set I' satisfying n, 3 <0 for o, 5 € I', a # S.

Let Ro = {Says---sSa,}s Wo = (Ro). Then by (4.10) (ii), (W, Ro) = W(X).
To prove (4.2) (i), it will suffice to show (W, Ry) has a reflection subsystem
isomorphic to W (Y1) x ... x W(Yy,).

n
Let IV = |J I'}; this is linearly independent since the I, are independent and
=1

Z‘_

mutually orthogonal. Let R' ={rg|fel"} = J R;,, W =(R"), o =W'T".
i=1

Since the I, are mutually orthogonal, ® = () ®; and I" is a simple system in
i=1
®’. By (4.6), (Wy, Rp) has a reflection subsystem isomorphic to (W', R"). But
(W',R') = (W{,R}) x ...x (W! R.) by orthogonality of the T;
W(Z1) x ... x W(Z,) since ®; is of type Z;
W (Y1) % ... x W(Y,) since W(Y;) = W (Z,).

I

I

4.14 To complete the proof of (4.2), it suffices to prove that if W(X) has a

reflection subsystem (W', R") isomorphic to W(X;) x...x W(X,), then W(X)
has a reflection subsystem isomorphic to W (X7) x ... x W(X,).

Identify W(X) with (Wy, Ry) where Ry = {Says---»Sa,}, Wo = (Ro). Let
II'={a€®f|r, € R} and ® = WII'. Note II' is linearly independent by
(4.7). By (3.9) and (4.11.4)

(4.14.1) cap €{—cos = |meINU{oo}, m>2} forall a, B €Il', a # f3.

m
Let IT" = | II} be the decomposition of II" into mutually orthogonal indecom-
i=1
posable subsets II). Let R; = {r, | a« € I} }, W; = (R;), ®; = W;II;. The
decomposition of II" into indecomposable components corresponds to the de-
composition of (W’ R’) into irreducible components, so m = n and it may be

assumed that (W;, R;) = W(X;).

52



Suppose that ®; is a root system of type Y; (necessarily one of A, ..., Gs).
Since W(Y;) & (W;, R;) = W(X;), we have either Y; = X; or (Y; = By, X; =
Oli (lz Z 3)) or (Y; = Oli, Xli = Bli (lz Z 3)) Let Tk = (ag?))i,j:()’,,,’lk be the

affine Cartan matrix of type

XV (Xe=Y)

Dl(jll (Y =By, X = Cy,,, lx > 3)

AD | (Y=, X =Byl > 3)

(k =1,...,n), and agk) be the number associated to the i-th vertex of the
corresponding Dynkin diagram.

k k
2(a{”a{")

(k) s
k k -
1 (GE )|a§ ))

We may write II}, = {« ,...,agl’:)} ordered in such a way that

agf) (i,j =1,...,1), and define

Iy
a(()k) =— Z az(-k)agk), I, = {Oz(()k)} U I, .

1=1

One may check from the descriptions of the root systems in ([Bo], pages 250—

275) that in each case, agk)

Dl(jll or Agz—p aék) is the negative of the highest root of ®; corresponding to

the simple system II}) and that the matrix M (Il;) is equal to T. Since IIj is
orthogonal to II; if j # k, (4.12) shows that W(X) has a reflection subsystem
the Coxeter graph of which has as connected components the Coxeter graphs of
type X1,...,X,. This completes the proof of (4.2). O

€ ®;, (in fact, except for the cases where T}, is of type

4.15 Remark We will now describe an algorithm for computing the isomor-
phism types of reflection subgroups of affine Weyl groups, in terms of operations
with their Coxeter graphs. For this purpose, it is convenient to agree that the
Coxeter graph of type B; (I > 3) is also of type C;. We define two types of
operations on Coxeter graphs I' all of whose connected components are of type
Ay ..., Go Ayl G

By a deletion we will mean the removal of one or more vertices, together with
all edges incident with them, from one connected component of I'.
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By a completion, we will mean the replacement of a connected component of I
which is a Coxeter graph of finite type X with one of type X (X = A4;,...,G>).

Also, define a move to consist of a completion of a component of finite type,
followed by a deletion applied to the newly introduced component of affine
type. If X is of finite type Ay, ..., G2, then the Coxeter graphs of the reflection
subsystems of W (X) are precisely those obtained by beginning with a Coxeter
graph of type X and applying a finite number of moves ([Cal).

It follows from (4.2) that the Coxeter graphs of the reflection subsystems of
W(X ) are precisely those obtained by beginning with the Coxeter graph of type
X and applying any finite sequence of completions and deletions. Also, the
reflection subsystems of W (X) are those whose Coxeter graphs arise in this way
and have all their connected components of finite type.

For example, from the Coxeter graph of type ﬁ4 one can_obtain by successive
deletions and completions the Coxeter graphs of type By, B4, Dy,Dy, Ay X Ay X

A1 x A;1.Completing in turn each component of type Aj, one sees that W (Fy)
(of rank 5) contains a reflection subsystem of type W (A1) x W (A1) x W (A1) X

—~

W (A1) (of rank 8).
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Chapter 5

THE SIMPLICIAL COMPLEX OF A BRUHAT INTERVAL

To any Coxeter system (W, R), there is associated a standard partial order on
W, the Bruhat order ([Del]). This chapter begins by recalling some character-
isations of Bruhat order; we then prove two special results that will be used
later.

The main result of the chapter is that the simplicial complex of an open Bruhat
interval is a sphere; this is a consequence of the lexicographical shellability of
Bruhat order proved in [BW], but the proof here depends on a study of a natural
decomposition of the simplicial complex into cells.

Finally, it is shown that the subgroup generated by the ratios z~'y of all pairs of
elements x,y in some closed Bruhat interval is actually generated by the ratios
of the pairs of elements in some fixed maximal chain.

Throughout this chapter, (W, R) denotes a Coxeter system, ¢: /W — IN is the

corresponding length function, and T' = |J wRw™!. Recall the definition of
weW
the Bruhat graph I'(y, gy (see (1.11)).

5.1 Definition. The Bruhat order < on W is the partial order such that
x < y iff there exists a sequence x = xg,x1,...,x, = y of elements of W such
that for each i € {1,...,n}, (2i_1,2;) € Ew,g). In other words, z < y iff there
exists a path in I'(yy, gy from x to y (z,y € W).

5.2 Remark. Let P(W) denote the monoid of subsets of W under the prod-
uct A-B={ablac A, be B} (A,BeP(W)). If r,s € Rand n, s = ord (rs)
is finite, then

E...{1,r}.ﬂ,s}.{1,r})‘: (r, s) :E...{Ls}ﬁ,r}.{Ls})‘.
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It follows by ([Bo] Ch IV, no. 1.5) that there is a function f: W — P(W) such
that f(w) ={1,r1}-...-{1,r,} whenever w=ry...7, (r; € R) and n = {(w).
The first of the alternative characterisations of Bruhat order below shows that
flw)y={veW|v<w}.

5.3 Proposition.

(i) Let v,w € W and write w =ry...7, (r; € R, n = {(w)). Then v < w iff
there exist integers 41,...,%0, with 1 <4 < ... <4y <nand w =r; ...7;
(where < denotes Bruhat order on W).

m

(ii) Bruhat order is the unique partial order < on W such that 1 < w for all
w € W and the following “Z-property” holds:

if x,ye W, r € R and {(rz) < {(z), ¢(ry) < {(y) then conditions (a)—(c) below
are equivalent.
(a) z <y (b) re <y (c) re <ry

(iii) Bruhat order is the unique partial order < on W such that
(a) If x <y, then ¢(x) < /l(y). If x <y and ¢(x) = ¢(y) then x = y.

(b) If A C W has a maximum (minimum) element then for any r € R, {1,7}A
has a maximum (respectively, minimum) element.

Proof Parts (i) and (ii) are proved in [De 1], so we only prove (iii). First, let <
denote Bruhat order. Then (iii) (a) follows from the Definition (5.1). Also, the
Z-property implies that

(5.3.1)if ) # A C W and a = max (A), then

_[a (l(ra) < {(a))
max ({1,7}A) = {ra (U(ra) > l(a)),

and the statement about the minimum is proved similarly.

Conversely, suppose now that < is a partial order on W satisfying (iii) (a),
(b). We show that < satisfies the conditions of (ii). Let w € W and write
w = r711...7, (r; € R). By repeated application of (iii) (b), the set B =
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{1,r,}...{1,r1}w has a minimal element, say x. Since 1 € B, we have x < 1,
hence x = 1 by (iii) (a). Since w € B, 1 < w. Hence 1 < w for all w € W.

Now take x € W. The set {1,r}{z} = {z,rz} has a minimum element by (iii)
(b); using (iii) (a), we have

{a: <rz l(rz)>{(x))

re <z (L(rx) < (z)).

To check the Z-property, take x,y € W and r € R with {(rz) < ¢(z) and
l(ry) < £(y). Then rx < z and ry < y. Hence if x < y, then rz < x < y.
On the other hand, suppose that rx < y. Since rx # y, (iii) (a) implies that
l(rz) < l(y) — 1, hence £(x) < £(y). The set {rz,y} has a maximum element y,
so {1,rH{rx,y} = {rx,ry,x,y} has a maximum element which must be either
x or y (since rz < x and ry < y). In particular, either x < y or y < z. But
0(z) < L(y), so if the latter holds, (iii) (a) shows that z = y. Hence z < y in
either case. Thus, z < y iff r < y. Similarly, rx <y iff r& < ry. Hence (iii) is
proved. |

Henceforward, the Bruhat order on W will always be denoted by <. For any
x,y € W, we define

(2.y) ={weW|z<y<uw}, (xy={weW|z<y<w}et.

5.4 Corollary. Let A C W have a maximum (minimum) element. Then for
any w € W, [1,w]A has a maximum (respectively, minimum) element.

Proof If w =171...7, (n =¢(w)), then by (5.2), [1,w] = {1,r1}...{1,7,}. The
result follows by repeated use of (5.3) (iii) (b). o

Following is an interesting special property of Bruhat intervals of the form [1, w].

5.5 Proposition. For any w € W,
#{reR|r<w} <#{zxzeW|z<w, {z)=~0w)—1}.

Proof For w € W, let c(w) = #{z €¢ W | 2 < w, ¢(z) = ¢(w) — 1} and
alw) = #{re R|r <w}, blw) = c(w) —a(w). We have to prove that
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b(w) > 0; this is the case y = 1 of

(5.5.1) if w = vy where v € W7 and y € W, then b(w) > b(y).

Here J C R and W7, W; are as in (1.14). We prove (5.5.1) by induction
on {(v). If £(v) = 0 then (5.5.1) is trivial, so assume ¢(v) > 1 and (5.5.1)
holds for v of smaller length. There is no loss of generality in assuming that
J={reR|r <y} ([Bo] ChIV, no 1.8). Choose s € R with ¢(vs) < {(v),
and write v = v'v" where v € Wy, and v' € WU st Since ¢(vs) < £(v),
it follows that v # v’. But £(v) = £(v") + £(v"), so £(v") < £(v). By induction,
b(w) = b(v'(v"y)) > b(v"y), noting that v"y € Wjys. Also, a(v'y) < #(J U
{s} <a(y)+1.

Choose r € J U {s} so that £(rv") < £(v"); this is possible since v" € W4}
and v” # 1. Then v = v'v” where ¢(v) = £(v") + £(v") = £(v'r) + £(rv") and it
follows that v € W7, rv” € W7. In particular,

(5.5.2) v"Wy # rv"Wy (by (1.14.1)

Let y1,...,Ym (m = c(y)) be the distinct elements of {x € W | x <y, £(z) =
l(y) — 1}, and consider the elements v"yi,...,v" "y, rv"y of [1,v"y]. Since
" € WY rv" € WY we have £(v"y;) = L(0") + L(y;) = L") +L(y) — 1 =

C(v"y) — 1 and £(rv"y) = £(rv") +£(y) = £(v") +£(y) — 1 = £(v"y) — 1. Making
use of (5.5.2), we see that these elements are all distinct. This proves that
cW'y) = #{zr e W |z <"y, l(z) =L(v"y)—1} > m+ 1. Hence b(w) >
b(v"y) = c(v"y) — a(v"y) > (c(y) + 1) — (a(y) + 1) = b(y) as required. O

We now turn to the consideration of simplicial complexes of Bruhat intervals.
For the statement and proof of our result, we need quite a number of notions
and facts from elementary combinatorial topology and it is convenient to collect
these all together at the outset.

5.6 In this chapter, the word complex will mean finite, abstract, simplicial
complex. Thus, a complex K is a (finite) set of finite sets such that if A € K
and B C A then B € K; if A € K then A is said to be a simplex of K, of
dimension dim A = (#(A) — 1). Note that by our conventions, any non-empty
complex contains the empty simplex ), and () has dimension (—1). A subcomplex
of a complex K is defined to be a subset L of K which is itself a complex. An
n-simplex (n € INU {—1}) is a set of cardinality (n + 1).
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Let K be a complex and A be a simplex. We define the complement, star and
link of A in K to be the complexes

C(A,K)={BeK|BJ2A}
st(A,K)={Ce K|AUC e K}
k(A,K)={Cest(A,K)| ANnC = 0}.

For any L C K, its closure is defined to be the complex
L={B € K| there exists C € L with B C C}.
If M is any other complex with KN M C {0}, define the join of K and M to be

KM={AUB|A€K, Be M}

A complex K is defined to be n-homogeneous if for all A € K there exists

B € K with A C B and dimB = n. If K is n-homogeneous, its boundary }.( is
by definition L, where L is the set of (n —1)-simplexes of K contained in an odd

number of n-simplexes of K, and K=K \ K ( K isnot a complex in general).

5.7 Let K be a complex, A # () a simplex and {a} a O-simplex not in K. Let
P=1k (A, K), Q@ =C(A, K), and note

(5.7.1) K = APUQ, APNQ = AP

Let L = aAP U Q; here, a denotes the complex {{a},0}. (One may regard

L as a “subdivision” of K.) Then we write KXY 1 (K)xea is a family of

subcomplexes of K and K Ay, A (A € A) then we will write

(Aa)~*
—

(K: (K)))—=(L: (Ly)) and (L: (Ly)) (K: (Ky)).

o : Aja)*t . .
Often, one writes just — instead of (4.a), . The equivalence relation on such

pairs (K: (K))xea) generated by the relation — will be denoted ~. (In fact, if
K and L are complexes, then K ~ L iff K and L have simplicially homeomor-
phic subdivisions, but this won’t be needed here.) Note the following simple
properties of —:
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(572) IfK)\ (ﬂ)) L)\ ()\EA) then U)\K)\ (—>) U)\L)\ and ﬂ)\K)\ (ﬂ) ﬂ)\L)\

573 K Y Land K % I then K C K/ iff LC I/

(4,0)° (A,a)*

(5.7.4) If K Land K' 2% [ then K = K’ (e € {~1,1}).

From [A], we have

(5.7.5) Suppose K @ Then K is n-homogeneous iff L is n-homogeneous. If

K is homogeneous, then K ) 7 L.

Aa) .
If K, L are homogeneous complexes, the “elementary move” K (4.9) L is called

internal if (e =1 andAgé}.() or (e =—1 a,ndAgél.}).

5.8 Definition. For n € {1} UIN, let B" denote a complex consisting of an

n-simplex and its subsets, and 8" = B"*1. A complex K is called a (combi-
natorial) n-ball if K ~ B" and a (combinatorial) n-sphere if K ~ S™. We set

= 872 = (). The following proposition lists some properties of balls and
spheres ([A]).

5.9 Proposition.

(i) Let B be an n-ball (n € {—1} UIN) . Then B is n-homogeneous and B is
an (n — 1)-sphere. If {a} ¢ B, then aB is an (n+ 1)-ball and (aB)®* = B U aB.

If A is a p-simplex of B, then lk(A, B) is a (n — p — 1)-sphere if A ¢ é or
an (n —p— 1)-ball if A € B®.

(ii) Let S be an n-ball (n € IN). Then S is n-homogeneous and S =0 K

is a non-empty n-homogeneous subcomplex of S and I.{ = (), then K = S. If
{a} ¢ S then aS is an (n+ 1)-ball and (aS)®* = S. If A # () is a p-simplex of S,
then 1k(A, S) is a (n — p — 1)-sphere.

(iii) If Ey, By are two n-balls such that Fy N FEy = L.?l N E.Jg = Fisan (n—1)-
ball, then F; U E5 is an n-ball and (E; U E3)® = (E.Jl U L.«}'g) \ }?’ O
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The following technical result ([A]) will be used repeatedly

5.10 Theorem. Let B be an n-ball, and J be a complex such that BNJ C é
and {a} be a 0-simplex not in J U B. Then there is a sequence of elementary
internal moves B = Ky — K; — ... — K,, = aé such that K; N J C

[.{i = é for i = 0,1,...,m. Moreover, if in the above K; (4.a) K,y then also
J’ (4.3) J’ for any subcomplex J’ of J. O

This completes our inventory or standard facts from combinatorial topology.

5.11 If P is any finite poset, > P denotes the complex whose simplexes are
the totally ordered subsets (also called chains) of P. For any z,y € P, we define
(x,y)={zePlx<z<y}, [z,y) ={z€ P|x<z<y} etc. The poset P
is said to satisfy the Jordan-Dedekind chain condition if for any x,y € W with
x <y, Y [z,y] is an n-homogeneous complex for some n € IN; we then write
n={(z,y).

In (5.12)—(5.14), X denotes a finite poset, with a maximum element w, satisfying
the Jordan-Dedekind chain condition. We define below a notion of an “X-celled
complex”; this is a combinatorial analogue of a C'W-complex with cells indexed
by X and inclusion relations amongst the closed cells described by the partial
order on X.

5.12 Definition. An X-celled complex is a pair (K: (e;)zecx) where K is a
complex and the e, (z € X) are subcomplexes of K satisfying

(i) e;isa [l(z,w)—1]-ball (X € X)

(i) ex= Ue, (ze€X)

zZ>x
(i) K=1J, €s

(the unions being taken over all elements of X satisfying any indicated condi-
tion).

We need two general lemmas concerning X-celled complexes.

61



5.13 Lemma. Let (K:(e;)) be an X-celled complex and suppose that
(K:(e2)) ~ (L (f2))-
Then (L: (f;)) is an X-celled complex.

Proof It will suffice to prove this in the case where the complexes differ by a
(A,a)°

single elementary move (K:(e;)) — (L:(f.)). Since e, is a [¢{(z,w) — 1]-ball
and e, 2 £, it follows that f, is a [f(z,w) — 1]-ball and &, 2% . Since

A,a)* . ®
Ussa ez(—a)> U.>z f» and €y = U,>g €5, this shows that f, = U,~, f. (z € X).

Suppose that x,z € X and x # z. Then gz N gx = (). That is, (e, \ Ugs.€¢) N

(x \ Utszez) = 0, or, equivalently, e, Ne, € |J e This implies that
t>z
or t>x

£Uf,C U feandso fonf, =0.

t>z
or t>x

Finally, K 29 L U, e, 24 U, f, and K = U, e, imply that L = U, f,.
O

Together with (5.13), the result below shows that the existence of an X-celled
complex is a very restrictive condition on X.

5.14 Lemma. Let (K:(e;)) be an X-celled complex. Then (K:(ez)) ~
(L: (fz)) where f, = > [z,w) (x € W) and L = U, f,.

Proof It will be convenient to abbreviate ¢(x,w) by ¢'(z) (z € X) (recall w is
the maximum element of X).

For m € IN, let X,,, = {z € X | {(z,w) < m} and let K(,,) be the set of pairs
(L: (fz)zex,,) where L is a complex with no vertex in X \ X,, and the f, are

subcomplexes such that L = |J fs.
reEX

If A= (L:(fe)zex,,) € Km), define A= (L (fx)xEX) by setting

fz (r € Xpn)
fo = ZL>Jx Mz, 2)f. (re X\ Xn)
2 (z)=m
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and L = |J f.. We make the following claim:
rzeX

(5141) if Ll,LQ € IC(m) and Ll ~ L2 then IA-Jl ~ £2.
To prove this claim, it will suffice to show that if L, (A.a)® Ly where A is a

simplex with no vertex in X \ X,,, and a ¢ X \ X,, then L; (L) Lo.

Write Ly = (M:(ge)zex,,) and Ly = (N:(he)eex,, ). Note that {a} ¢ M

A, .
otherwise {a} € M and the elementary move (4,) couldn’t be applied to M,

A,a) 7
by its definition). It will be sufficient to prove that g, (4,9) h, for then we also

have M = |J §o — U he = N.
zeX zeX

Now if z € X,,,, then g, = g, (ﬂ)h = h,. If v € X\ X,p, then

C(A,g,) = U Za: 2)C(A, g.)

>
0 (2)=m
st(A, ge) = U Z[Q% z)st(A, g.)
zZ>x
v (z)=m
and
lk(Aagm) = U Z[xaz)lk(Aagz)
>
0 (2)=m
Hence

G LY (A, 52) Ua AK(A, §,)

= U Y2 (C(4g.) Uadlk(4,g.)

zZ>T

0 (2)=m

= U Z[w, z) h,

zZ>x
0 (2)=m
= h,
and so (5.14.1) is proved.
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Now we complete the proof of the lemma. Note that if P (1b40) P’ then P’

does not have b as a vertex. Hence there is no loss of generality in assuming

that K has no vertex in X. We will show by downward induction on m that

Ao ~ Ay, where Ao, = (K:(ez)zex) and A, = < U es: (ex)xexm> € Kim)-
zEXm

If m > max{{(z,w) | € X} then A, = Ay, = As. Suppose inductively that

m > 1 and that Ao, ~ A,,.

Choose any yg € X with ¢/(yo) = m. If y € X,,, and y # yo, then gyo Ney, =

gyo N (Uzsy gz) = () since gyo N 22 = () unless z = yo, and y £ y9. Now make

use of (5.10) applied to the ball B = ey, with a = yp and J = |J ¢, to
YETm
Y#Yo
conclude that

Am ~ ( U e;c: (e/m)CCGXm) where e;: = {em . (‘T # yO)

2€Xm yoeyo (x = yO)

Repeating this for each yo with ¢'(yg) = m, we have

A, ~B= ( U gm:(gx)xexm> where g, =

zEXm

{ex (£'(x) < m)

¢ m).

xe, (U'(x)

Now if ¢/(z) = m and y > x, there exists z with ¢/(z) =m — 1 and y > z > x,
hence e, C e,. Thus,

[ ]
t=Ua= U e
y>x

z2>x
(z)=m—1

Therefore, B = ( U dg.: (g;)xex) where

reX
gr =g = € (¢'(x) < m) and
== | Dllz2e. () =m).
>
0 (z)=m—1
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If ¢/(x) > m, then

= U DYkae= U DXka U =

Ziz>T Ziz>T Yyy>z
v (z)=m v (z)=m 0V (x)=m—1
- U [ U Swae

y:y>x zYy>z>x

V' (y)=m—1 v (z)=m

= U Z[xay)ey

yy>T
' (y)=m~—1

noting that > [z,y) = |  D_[, 2)z since the complex on the right is clearly
zyYy>z>x
0 (2)=m
a subcomplex of that on the left, and every simplex on the left is contained in
a maximal simplex, and this maximal simplex has a vertex z with y > 2z > «,

¢'(z) = m and so lies in ) [z, 2)z.

The above computations prove that B = A,,_; (by definition of the latter).
Using (5.14.1), this gives

A~ Ay ~B=A4,,_,.
Finally, Ao ~ Ag = (L: (f2)zex) where for z € X, f, = S|z, w)e, = Sz, w),

and L= U fa. o
reX

5.15 We are now able to give our main construction. Here X denotes a finite
poset, with a minimum element v and a maximum element w, satisfying the
Jordan-Dedekind chain condition; for z € X, we abbreviate ¢(x,w) by ¢ (x).

Assume that the group {1, 7} has an action on the set X satisfying the following
“Z-property” (compare (5.3) (ii)):

(i) Forallze X, |(/(rz) —V'(x)] =1

(ii) For all z,y € X with ¢/(ra) > ¢'(x) and ¢'(ry) > ¢'(y) the conditions (a)—
(c) below are equivalent:

(a) z <y (b) re <y (c) re <ry

(note that ¢ increases from top to bottom onX).
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The following result gives a construction of a [v, w]-celled complex from a [v, rw]-
celled complex, under the above hypotheses.

5.16 Theorem. Suppose that (K:(ey)yecy) is a Y-celled complex, where Y =
[v,7w]. Let {a} be a 0-simplex not in L. Let L = aK and define subcomplexes
fz (x € X) of L as follows. If z € [v,rw] and rz > z, letf, = ae, and

foo = €x re ¢ [v, rwl
" aer Uey T € [, )

Then (L: (fz)zex) is an X-celled complex.
Proof Note that if x <y, then {(x,y) = '(x) — '(y).

By applying (5.15) (ii) with = y, it follows that for z € X and r € R, ¢'(rx) >
U(x) iff re <z, and ¢'(rz) < ¢'(x) iff re > x. Note (5.15) (ii) shows now that if
y € X, then either ry > y and y < rw, or ry < y and ry < rw; this proves that
fy has been defined for all y € X. In fact, let X, ={x €Y |rz > x}. Then

(5.16.1) X = X, JrXsand Y = X, |J{rz |z € X,, re €Y }.

The proof that (L:(f,)) is an X-celled complex is given in (5.17), (5.18) and
(5.19), corresponding to the three parts of Definition (5.12) to be checked.

5.17 Proof that f, is a [¢(x,w) — 1]-ball (z € X).

If z € [v,rw], re > x and rx ¢ [v,rw], then e, is a [¢(x,rw) — 1]-ball, and so
fra = ez is an [{(rxz,w) — 1]-ball and f, = ae, is a [¢(x,w) — 1]-ball.

Suppose now that = € [v,rw], r& > z, rz € [v,rw). Then e, is a [{(x,rw) — 1]-

ball and e, is a [¢(rz, rw) — 1]-ball. Hence f, = ae, is a [¢(x,w) — 1]-ball. Also,

aer, is a [{(rx,w) — 1]-ball which we now denote by g,. Note that e, O éx =
U ey 2 ery. Hence

yey
y>x
€r NGy =€, Nary = €x NEry = €ry and
° o ° °
e:Ngr=ezN(aerUeny)
= (éx ﬂaém) U (éx Ners)
= (€pNEry)Uerg

= Epg-
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Since e, and g, are both [¢(rz,w) — 1]-balls and e, is a [¢(rz, w) — 2]-ball, (5.9)
(iii) shows that f., = e, U g, is a [¢(rz,w) — 1]-ball. For future reference, note

(5171> }rx = [(aerm). U ém] \gm:

5.18 Proof that ].”m = U f. (z € X).

zZ>T

Recall that X, = {z € Y | ro > = }. Suppose that z € X, and rz ¢ Y. If
z € X* and rz € Y, we cannot have z > x or rz > x for these would imply
rw > rx i.e. rr € Y contrary to assumption. Hence z > rx and rz > rx are
also impossible (since rx > x).

Ifz,z€ X.,rz2¢ Y and z # z, then z > © <= rz > x <= rz > rz. Therefore,
for z € X, with rx ¢ Y, (5.16.1) and the above comments give

fw:(aecc).:aéxu €x = (a U ey>U€az

yey
y>x
= U (ae,Ue,) Uey
z€X«
rz¢Y
z>T
= U (fzufrz)ufrm: U fy
z€X yeX
rz¢Y y>x
z>T
and
o °
fm::em: Uey: U € = U frz: U fy
yeyY z€X . z€X. yeX
y>z rz@Y rz¢Y y>rx
z>x zZ>T

Now consider the case when © € X, and rz € Y. Note that for any z €
X.\{z}, rz > x if and only if z > . Hence

U fz: U (fzufrz)ufr:c

z€X z€X4
Z>x zZ2>T
= U (ae,Ue,) U U (ae, Uae,, Ue,) U (aep, Uey)
z€X z€X«
rz¢Y rzeY
z2>x z2>T

67



= U ae, U U (ae, Uae,, U(ae,, Uey)

z€X« zeX,
rz¢Y rz€Y
z>x z2>x
° [ ] [ ]
= U aeyUe, =aey, Uey = (aey)® = fr.
yey
y>x

Also, since if rz > z then rz > rz if and only if z > x, it follows that

U = U fuv | £

zeX zeX, zeX,
z>rT zZ2>x z>rx
= U e, U U (ae,,Ue,)U U ae, U U ae,
z€X z€X z€X 4 z€X
z2>x zZ>T Z>rT Z>rT
rz¢Y rz€Y rz¢Y rz€Y
- U wu U o
yeY yey
y>rx y>x
YyF#rT
Sy ew)oen)o Y it U )
yeyYy yey yey
y>re y>x Yy>re

5.19 Proof that a K = |J f..
reX

Let 2 € X.. Then fo={{a}UA|Acé,}, and
. {ém (re ¢ Y)

N {{G}UA‘AGgrm}Ugergx (T.I'EY)
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(for if ro € Y, then

fra = [aers Ues] \ [((aere)® UE,) \ €2,] by (5.17.1)

aeq; Ueyg) \ ((aerg)® U ém)] U gm since gm C aeyy
[ ) o)
aers)®\ €ax]Ueq\ (aerg)®]Ue g

o o] o]
aepz)’Ue,Ue,

= [
=
= (

noting (ae,,) Ne, C (aer,)® N ém)

Since the gy (y € Y) are pairwise disjoint, so are thef , (x € X). Also,

U }m: U (}mu.]%rm>: U(gyU{{a}UA]Aegy}):aK.

zeX reX, yey

This completes the proof of Theorem (5.16). m]

We can now prove

5.20 Theorem. Let (W, R) be a Coxeter system, and z,y € W with x < y (in
the Bruhat order) and ¢(y) > ¢(x)+2. Then > (z,y)is a (¢(y) —£€(z) —2)-sphere.

Proof First we prove by induction on ¢(y) that there exists a [1, y]-celled complex
(K:(ez)zeq,y)- Ify =1, onesets K = {(}} = e; and the result holds. If £(y) > 1,
choose r € R with £(ry) < ¢(y). The interval [1, y] satisfies the Jordan-Dedekind
chain condition (e.g. from [Del]) and the action of {1,r} on [1,y] satisfies the
Z-property in the sense of (5.15) (i) and (ii). By induction, there exists a [1, ry]-
celled complex, and so (5.16) produces a [1, y]-celled complex (L: (fz)ze[1,y); in
fact, there exists such a complex in which L is a (¢(y) — 1)-simplex. Using
(5.13) and (5.14), we see that (K:(ez)ze[1,y]) is a [1,y]-celled complex, where
ez =y lt,y), (I1<zx<y)and K= |J e,.
z€(1y]

In particular, if z < y and ¢(y) > ¢(z) + 2, then e, is a (¢(y) — £(z) — 1)-ball,

so €, is a (((y) — £(x) — 2)-sphere. But e, = |J S[z,9) = > (z,y), hence
z:x<zly
the result O
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5.21 Remark. Theorem (5.20) is a special case of a result of Bjorner and
Wachs ([BW]). They prove that for any subset J of R, the simplicial complex of
an open interval in the set W, with order induced by Bruhat order, is either a
combinatorial ball or a combinatorial sphere. We wil need the following simpler
result ([Del], [BW]):

(5.21.1) If w,w’ € WY and w < w’ then all maximal chains v’ = wo > w; >
... > w, = w have the same length n = {(w’) — {(w). O

We conclude this chapter with a result which associates to any Bruhat interval
in (W, R) an isomorphic Bruhat interval of some reflection subsystem (W', R’)
of (W, R).

5.22 Proposition. Let (W, R) be a Coxeter system, and z,y € W satisfy
x<y. Let t =29 <21 <...<x, =y be a maximal chain from x to y (thus,
n = ly) —€(z)). Let W' = (x;'x;_1 | 1 < i < n). Then W' is a reflection
subgroup of W. Let R’ be the set of canonical generators of W', <’ denote the
Bruhat order on (W', R"), and z denote the element of 2TV’ with minimal length
0(2). Set 2’ = 27 tx, y' = 27y and let I (resp. I’ ) denote the interval [x,y] in
the Bruhat order of (W R) (resp. [z’,%'] in the Bruhat order of (W’ R’)).

Then there is an isomorphism of posets 0: I’ — I such that §(w) = zw (w € I')

Proof Since z;—1 < z; and ¢(z;) = ¢(z;—1) + 1, Definition (5.1) implies that
e, 1 €T (i=1,...,n). Hence W' = (W'NT), so W' is a reflection subgroup
as claimed. Let # be the length function on (W', R'). Since x; 'z;_1 € W' NT
and £(z;_1) < £(z;), (1.13) (i) and (ii) imply that ¢/ (2~ tx;_1) < ¢'(2~'x;); since
(z71z) Y (z7ta;_1) € W/ NT. Definition (5.1) now gives that 2’ = z71zg <’
z7ley <o < 27 e, = o/ In particular, ¢/(y') — £'(2') > £(y) — £(z).

Now let w € [2',y]. Let 2’ = wo <’ w1 <’ ... <" w,, =y’ be a maximal chain
from z’ to 3/, containing w. By (5.1), w;lwi_l € W'NT, and so by (1.13) again,
it follows that £(zwq) < £(zw1) < ... < £(zwy,). Since (zw;) 1 (zw;_1) € T, (5.1)
gives © = zwp < zw; < ... < 2w, = y. In particular, m = ¢'(y') — ¢/(z') <
U(y) — (z).

The above shows that there is a strictly monotone map 6: I’ — I such that

f(z) = zw (w € I'), and that ¢'(y') — ¢'(2’) = £(y) — (z) = n. Now if n < 1,
then 6 is obviously an isomorphism of posets, so assume that n > 2. Let
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L' = > (a',y) (respectively L = > (z,y)) be the simplicial complex of the
interval (z’,%’) in the order <’ (resp. of the interval (z,y) in the order <). By
(5.20), both L' and L are (n — 2)-spheres.

Now if A = {ag,...,ar} is a k-simplex of L', then 0(A) = {0(ag),...,0(ar)} is
a k-simplex of L. Hence K = {#(A) | A € L' } is a subcomplex of L, isomorphic
to L' as a simplicial complex. In particular, K # (), K is (n — 2)-homogeneous

and K = 0. By (5.9) (ii), it follows that K = L. Therefore 6 induces an
isomorphism of the open intervals (z/,y’) and (z,y). But § maps the minimal
element z’ of I’ to the minimum element x of I, and similarly for ¢’ and y, so
f is an isomorphism of posets. O

As an immediate consequence of (5.22), we have

5.23 Corollary. Let notation be as in (5.22). Then for any z, 2’ € I we have
27l e W |

5.24 Remark. In (5.22) and (5.23), it is possible that W’ = W. This cannot
happen if £(y) — ¢(z) < #(R). Later, we give conditions under which (W', R’)
is a dihedral reflection subsystem.
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Chapter 6

THE POLYNOMIALS Ry y

This chapter begins with a construction that produces pairs of inverse elements
of the incidence algebra (over the ring Z[u,u™!], u an indeterminate) of a lo-
cally finite poset. Under an additional assumption, the inverse of one of these
elements is obtained simply by applying the ring involution of the incidence
algebra extending the involution u —— u~! of Z[u,u™!], and one may define
formal analogues of the Kazhdan-Lusztig polynomials in this context.

We then turn to the consideration of the polynomials R, , defined for elements
x,y of a Coxeter system by Kazhdan and Lusztig ([KL1]), and show how these
polynomials R, , arise from our incidence algebra construction; the data re-
quired for the construction is obtained from certain total orderings of the reflec-
tions.

We begin by recalling the definition of the incidence algebra of a poset ([Ai],
Chapter 1V).

6.1 Let P be a locally finite poset (i.e. all intervals in P are finite) and 4 be
a commutative ring. The incidence algebra A 4(P) is the set

{f:P?— A| f(z,y)=0ifz £y}

regarded as an A-module in the usual way, and equipped with the convolution
product * defined by

(frg)(my)= Y flx,2)9(zy) (f,9€ As(P)).

z:ix<z<ly

This is an associative A-algebra with the Kronecker delta §, defined by

5w = {5 e

0 otherwise,
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as identity. An element f of A 4(P) is invertible iff f(z,x) is a unit of A, for
all z € P.

For our purposes, we assume given a fixed element « of A, and a ring involution
of A, written a —— @, such that @ = —a. Then there is an induced ring
involution of A 4(P), which we also denote by f +—— f, such that

f(z,y) = f(z,y) (f € Aa(P), z,y € P).

6.2 We now fix an arbitrary subset C; of {(z,y) € P2 | z < y}, and for
n € IN, define C,(z,y) = {(zo,...,2,) € P"™ | (x;_1,2;) € Cy for i =
1,...,n, € =0, y =, }. Also, set C(z,y) = |J Cn(z,y) (a finite set by the
nGlN
local finiteness of P) and C,, = |J Cp(z,y) (n € IN).
(z,y)€P?

One could regard C; as the set of edges of a directed graph with vertex set P,
and then C),(x,y) is the set of paths of length n from z to y. For 7 € C,,, write
1) =n.

For any subset I of Cy and 7 = (g, ...,z,) € C,, we now define
(621) d](T) = {l’z ‘ 1<:<n-— 1, (.772'_1,2172',1'“_1) c I},
and set ar(7) = de,\1(7).

If one calls the chains of I decreasing chains and those of C5 \ I increasing, then
dr (1) could be called the descent set of 7 and a;(7) its ascent set. This termi-
nology is motivated by the situation in which the elements of C; are labelled by
elements of a poset, and I is the set of paths (x,y, z) in Cy such that (z,y) has
a greater label than (y, z) (e.g. see [BW]).

We now define an element r! of the incidence algebra; on an interval [z, y] of
P, r! is essentially the generating function for the numbers of increasing paths
of lengths 0,1,2,... .

6.3 Definition. For any subset I of Cs, define r! € A 4(P) by

(6.3.1) rl(z,y) = Z oM (z,y € P)
TeC(x,y)
dr(T)=0
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More generally, for p € IN let 7“11; € A 4(P) be defined by

(6.3.2) r,{(x,y) = Z o) (z,y € P).
Te€C(x,y)

#d;(1)=p

The following proposition describes the inverse of 7.

6.4 Proposition. Let I be a fixed subset of Cy and r = 7!, s = r®2\| Then

r*«s5=35%71r =240

Proof It will suffice to show that r *x § = ¢ That is, we must show that for

T,y € P,
(6.4.1) Zpr(x, z2)8(z,y) = é(z,y).

zE
This is clear if z = y or z £ y, so suppose z < y. For any z € [z,y], we
have an operation of concatenation of chains; if 7 = (zg,...,z,) € Cy(x, 2)
and 7o = (Tp, -, Tpam) € Cm(2,y) we have 11 - 79 = (2o, -+, Tpy+ + +, Typn) €

Crnam(z,y). Note that £(7y - o) = £(71) + £(72).

For any 7 = (zg, ..., z,) € C(x,y), we abuse notation and write z € 7 if z = x;
for some i € {0,...,n} (in this case, i is uniquely determined). If z = z;, we
then define 71(2) € C(x,2) and m(z) € C(z,y) by 71(2) = (xo,...,z;) and
7-2(Z> = (xiv s 7xn>'

Supressing I from the notation, let

S1={(o,p,2) | z€ P, 0 € C(x,2), pe C(z,y), dlo)=0, a(c) =0}
and
So={(r,2) | T€C(x,y), z€T, d1(2)) =0, a(r2(2)) =0}.

There are maps S; — S and Sy — Sp given by (o, p, 2) — (0 - p,z) and
(1,2) — (11(2), 72(2), 2) respectively, and these are inverse bijections.
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Therefore

ZT(%Z)E(z,y)=Z[ > o/“’)H 3 @am}

zeP 2€P  ¢eC(xz,z2) pEC(2,y)

d(o)=0 a(p)=0

— Z (1)) ot (o) +£(p)

(o,p,2)€S1

— Z (=1)4m2(2) o 4(7)

(1,2)€S2

- ¥ [ 3 (_1)e<r2<z>>]o/<f>

T =0
a(t2(2))=0

and it needs only be checked that if z # y and 7 € C(z,y), then

(6.4.1) S (—1)fmE) =g

z€F (1)
where F(1) ={z e 7 |d(n(z)) =0, a(r2(z)) =0}.
Write 7 = (xg,...,z,) (note n > 1). Then

F(r) ={z: [ (0<i<n)(zjr,2520) ¢ 1 (1<) <i—1),
Tj1,%5,2j41) €L (i+1<j<n-1)} .
One sees that either F'(7) =0, or F(7) = {x;m—_1, T} for some m (1 < m < n).

In either case, (6.4.1) is satisfied. |

Here are two special cases of this result.

6.5 Examples.

(i) Let C; ={(z,y) € P?|x <y} and I ={. Then

1 =y
@y)=<a z<y
0 otherwise
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and 7 (z,y) = 3. 7). Taking our ring A to be the polynomial ring
TeC(z,y)
Q[a] with the involution & — —cq, then specialising « to 1 in the identity

gives the well-known formula pp(z,y) = ¢ H(z,y) = > (=147, where pp
TeC(z,y)
is the Mobius function on P and ¢ denotes the zeta function of P (see [Ai]).

(ii) Take A = Q[a] as in (i), and suppose that P satisfies the Jordan-Dedekind

chain conditon (all maximal chains from = to y have the same length, denoted
l(z,y)). Let

(z,y) € P> |z <y and thereisno z with z < z <y}
(z,y) € P? |z < yand £(x,y) =1}

Suppose that I C Cj is such that if z,y € P and < y then 7/(z, y) = /@)
(for example, P could be a lexicographically shellable poset in the sense of [BW],
and [ the set of chains of length 2 with label decreasing from top to bottom).
Specialising « to 1 in the identity

(1)~ = )
gives pp(z,y) = (=1)*@Y) #{1 € O(x,y) | ar(r) = 0 }. More generally, one

has a similar result to ([BW], Theorem 3.4) concerning the values of the Mébius
function on a rank-selected subposet of P.

6.6 We assume as in (6.5) that A = Q[a] is a polynomial ring, and & = —a.
For any m € IN and f € A 4(P), define dcfx—mmf € A 4(P) in the obvious way:

[fa—mmf } (0.) = o [f(@,v)] (z.9) € P).

Our next result expresses the 7] (p € IN) in terms of ' (implicitly).
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6.7 Proposition. For any subset I of C; and any n € IN, n > 1,

n—1
(6.7.1) (rh)" = Z:Oﬁ—dam (@™ 1)

Proof Evaluate both sides of (6.7.1) at (x,y) € P2 The right hand side of

(6.7.1) gives
n—1 Z (m+€(7)) A7)

SRS SRS | CLAED SR SR

(20,...,zn)eP™ L Ti€C(2i-1,2;) =1 T7€C(zy) m€C(i=1,...,n)
20=1,2n=Y d(r;)=0 d(r:)=0
(i=1,...,n) T=T1 .. Th
where C' = |J C(x,y) and 71 - ... 7, denotes the chain obtained by con-
(z,y)eP?
catenating 71,...,7,. Now if 7 =71 -... 7, where d(r;) =0, (i = 1,...,n),

then #d(7) <n — 1.

Hence to prove (6.7.1), it suffices to show that if 7 € C(z,y) and #d(7) =
n—1—m, where 0 < m <n—1, then

(6.7.2) #{(11,...,m) € C" | d(r;) =0 (i =1,...,n), T=T1 ... Ty} =
&t

Suppose 7 € Cp(z,y), say T = (xo,...,2p), and that d(7) = {x;,,..., x4, . .}
where 1 <iy < ... <ip_m-1 < p (thus ¢(7) = p).

Let {(11,...,7m) € C" |d(r;) =0 (i=1,...,n), 7 =71 ... -Tp } =
(T1,...,7) € K, then there exist integers kl,... k,_1 such that 0 <

. < kp_1 < p, and, with kg = 0 and k, = p, TJEC(ka 1 Tk;)
1,...,n). Moreover, since {z;,,...,x;,_ .} =d(m ... Tp), we must have
{i1,.  yin—m-1} C {kl,...,kn,l}.

K.
k1
(7

|| I/\,_'—‘h

On the other hand, suppose given integers kl, coykpog with 0 < b < ... <
kn_1 < p and {21,...,zn_m_1} C {ki,...,kn—1}. Set kg = 0, k, = p, and
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T = (Tr,_,, Th,_y41,--»Tk,) (i=1,...,n). Then 7 =711 -...-7, and d(7;) =
D (j=1,...,n).

The preceding two paragraphs prove that there is a bijection of K with the
set of non-desceasing functions f:{1,...,n— 1} — {0,1,...,p} such that the
(n—m—1)-set {i1,...,9p—m—1} is contained in the image of f. Call this set of
functions L.

Suppose given f € L. For k = 1,....n—m —1, let jy = min{j | 1 <
j<n-—1, f(j) =ix}. Let hp:{1,...,m} — {1,...,n — 1} be the unique
strictly increasing function such that jj is not in the image of hy, for all k =
1,...,n —m — 1. Then the map f —— f o h; is a bijection between L and
the set M of non-decreasing functions g: {1,...,m} — {0,1,...,p}. The map
g—{g(1), g(2)+1,...,9(m)+m — 1} is a bijection between M and the set
of m-subsets of {0,1,...,m + p — 1}, of which there are (m;?’). Hence

#00) = () = 00 = (") = (M),

m m

completing the proof of (6.7.2) and hence of the proposition. O

Now the coefficient of 7, on the right of (6.7.1) is 1, so one may solve in turn
for v, ri,rl ..., in terms of powers of r{. This implies

6.8 Corollary. If I,J are subsets of Cy and r! =7/, then rf; = Tp‘] (p € IN).
O
We will not make any essential use of (6.7) or (6.8), but give one application

here.

6.9 Example. This is a continuation of Example (6.5) (ii), and we maintain
the notation in force there. We need an identity involving binomial coeffi-

cients. For non-negative integers m,n (m > 1), we have diﬂ:,;ll [z"(1 + x)™] =

kz—:o (") %x’””“_m. Putting = —1 and rearranging, one obtains
- n+k\ (n+1 0 m>0

6.9.1 —1)* - {

(691 S (") )= mzh

k=0
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Fix z,y € P with £(z,y) = n, and for i € IN, let ; and (;+1 denote the values
of rl(z,y) and (r1)*1(z,y) at a = 1 (thus, ;11 = (" (z,y) is the value of a
power of the zeta function).
The identity (6.7.1) gives
7 /n + k
Gj+1 = kZ:O ( i ) Yi—k  (J€NN)

and it is clear that one may solve uniquely for 7; in terms of (j41, ..., (1. Indeed,

(—1)" (THZ_ 1) Cj—kt+1-1

= i i(—l)m_k (n;—k) (:;:2) Cir1-m

41 by (6.9.1) and so
J
n+1
=Y (1) ( i ) Cit1—k-

In particular,

S (T a2 0 G em)

k=0

(the left hand side being zero for j > {(z,y)). O

6.10 Henceforward we assume that A = Z[u,u"!] is the ring of Laurent
polynomials in an indeterminate u, that the involution a —— a of A is the
one determined by %@ = u~!, and that @« = v~ — u. We also define another
involution a — a of A such that 4 = —u.

We continue to let A 4(P) denote the incidence algebra of a fixed locally finite
poset P. The involutions ¢ — a and a —— a have extensions to A 4(P)
which we denote by f ~— f and f —— f respectively (where f(z,y) =

~

f(x,y), f(z,y) = f(z,y) (f € Aa(P),z,y € P)).
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Assume that there exists an element r € A 4(P) satisfying
(6.10.1) r*7=7F%r =29
(6.10.2) r(xz,z) =1 (z € P)

After a preliminary remark, the following sections describe some formal conse-
quences of these two conditions.

6.11 Remark. Here are three situations in which such an element r exists.

(i) If (W, R) is any Coxeter system, take P = W equipped with the Bruhat
order. For z,y € P, let r(x,y) = u*@W—*@ R, (u2) where R, , is the polynomial
defined in [KL1]. Here, one also has

(6.11.1) r(x,y) is a polynomial in (u~?

—u) = a.

(ii) More generally, let P = W be the set of shortest coset representatives of a
parabolic subgroup W of W. In [De 4], Deodhar defines polynomials R;Iya and

(6.10.1), (6.10.2) are satisfied with r(z,y) = ué(y)_é(x)R;[’y(u% (z,y € WY).
However, r(x,y) cannot in general be normalised here so as to satisfy (6.11.1).

(iii) Suppose given C; as in (6.2), and a subset I of C3 such that, in the
notation of (6.3), 7! = r®2\ . Set r = !, Then (6.10.2) and (6.11.1) hold, and
so does (6.10.1) (by (6.4)). It will be seen later that the element r defined for a
Coxeter system in (i) is produced by this construction.

Corresponding to the element r € A 4(P), we now define elements p, ¢ = A 4(P);
in case r is as in (6.11) (i), the p(z,y) (z,y € P) are, up to normalisation, the

Kazhdan-Lusztig polynomials of the Coxeter system (W, R), and the ¢(z,y) are
the inverse Kazhdan-Lusztig polynomials (to within normalisation).

6.12 Proposition.

(i) There exists a unique element p € A 4(P) satisfying
(a) p(z,z) =1 (z € P)

(b) p(z,y) € u ' Zu™'] (v,y € P #y)

(c) p=r=p
(ii) There exists a unique element g € A 4(P) satisfying
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(a) q(z,x) =1 (x € P)

(b) q(z,y) € uZu" (z,y € P, z #y)

(c) g=qxr

(iii) If for all z,y € P, r(x,y) is a polynomial in o = u~™! — u, then p* § =
gxp=20

Proof (i) The proof here is by a standard argument ([L 1]). Set p(x,z) =1 for
all z € P. Given z,y € P with = < y, one may suppose that p(z,y) (x < z <
y) exists and is uniquely determined by the conditions p(y,y) = 1, p(z,y) €

u'Zu"] (2 #y) and p(z,y) = Y r(z,w)p(w,y).

w:z<wly

Let B(x,y) = >, r(z,2)p(z,y). One must show that there exists a unique
z:x<zly

element p(z,y) € u~ ! Z[u™?] satisfying p(x,y) — p(z,y) = B3(x,y). This will be

the case provided f(z,y) = —((z,y). But

Blz,y)= Y r(x,2)p(zy)

= — Z r(x,w)p(w,y) by (6.10.1) and (6.10.2)

w:z<w<y

:'_ﬁ@%y)

so (i) is proved, and (ii) is proved similarly.

7, and that the involutions — and " of A 4(P) commute.

—~
—
—

S~—
Z
o
=
@
S

I
Qi
wn
o
=
I

*
3>
*

qg*p

I
Q1 QT Q)
> *
=
*
kO3

I
—
=

*
3
—

*
]l

0]
—_



Now (¢ *p)(x,y) =1 if x =y, and (¢ *p)(z,y) € u"*Z[u"!] otherwise. Hence
)(z,y) =0if z # y, and so G*p = 0 ie ¢ is a left inverse for p. This implies
(p is invertible since p(z,x) = 1 is a unit in A for all z € P). O

Y

6.13 Remark. For f = > b,u", define supp(3) = {n € Z | b, # 0}.
nGZ
One could define a different element of A 4(P) satisfying (6.12) (i) (a), (i) (c)

and the following in place of (6.12) (i) (b): p(z,y) € N[u,u™1]; supp(p(z,y)) N
supp(p(z,y)) = 0 (z,y € Pz # y). u

We now reinterpret the above facts as statements about a Z-module involution
on a certain A-module defined in terms of the poset P, and make some sim-
ple remarks concerning the structure of the sets of invariant and anti-invariant
elements.

6.14 Let h(P) be the set of formal A-linear combinations 3 agty (az € A)
zeP
of a family {t¢, }.cp of symbols, such that for each x € P there exist only finitely

many y € P with a, # 0 and y > . Regard h(P) as an A-module in the obvious
way.

By (6.10.1), there is a Z-module involution § of h(P) such that (3" azty) =

zeP
Yo (> r(z,y)ay)ty. Note that by (6.10.2)
reP yeP

(6.14.1) if ¢ = 3 agty € h(P) (ap € v 'Z[u™'] for all z) and 0(c) = ¢, then
zeP
c=0.

In this context, (6.12) shows that for z € P, there exists a unique element
. € h(P) satistying
(6.14.2) 6(c,) =5 i €ta + > u  Z[u" ey,

yeP
and that in fact, ¢, = > p(y, z)t,, so
yeP
(6.14.3) ¢, € tp + > u  Z[u" e,
y<x

From (6.14.3), one sces that h(P) can also be regarded as the set of fomal A-

linear combinations > a.c., such that for each z € P there exist only finitely
zeP
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many y € P with a, # 0 and y > z.
Now one sees that for any h € h(P) there exists a unique element ¢ (h) of h(P)
satisfying
(6.14.4) (' (R)) = (h); (h) € h+ Y u 1 Z[u™t,.
yeP
In fact, if h = Y a.c, € h(P), set d(h) = S [(1 — Nagy + Nag)c, where
zeP zeP
N( Y apu™) = > apu™; then (6.14.4) holds and (6.14.1) gives uniqueness.

neZ n<0

Now define A: h(P) — h(P) by A( Y axty) = 3 N(az)t, and note that

zeP zeP
if a, € > apu™, then N(azt,) € > At,. It follows from this that for any
n<0 y<x

h € h(P) and y € P, the element t, occurs with non-zero coefficient in only

finitely many of the elements (A0)"(h) (n € IN). This shows that for h € h(P),
the series > (A0)"(h) converges (in an appropriate sense) to an element of
nE'N

h(P), and thus that 1 — \@ is invertible in Endg (h(P)). Similarly, (1 — )~

~

exists in End g (h(P)).
Now take h € h(P); we compute

(1= X0)c'(h) = ' (h) — \oc' (h)
d(h) — X' (h)
=(1=X)(h)=(1-Nh

and conclude that ¢/(h) = (1 — X\0)~1(1 — A\)h. Since 0(c/(h)) = ¢/(h) it follows
that
(6.14.5) (1 —60)(1 —X0)~ (1 —X) = 0.

Now (6.14.5) is equivalent to each of (6.14.6)—(6.14.8) below

(6.14.6) (1 — \)(1—6)N)~L(1—0)=0

(6.14.7) (1 —=X0)"'(1—-N+(1-6N"1(1-0)=1

(6.14.8) (1—0)(1—X0) "'+ (1—-N)(1-6N"1=1

(the equivalence of (6.14.5)—(6.14.8) holds if 6, A are elements of any initial ring
and (1 —6\), (1 — A@) are both invertible).

Now (6.14.8) gives a canonical decomposition of an element of A(P) as a sum

of an f-anti-invariant element, and an element of h(P) in > Z[ult,. Also,
zeP
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(6.14.7) gives a representation of an element of h(P) as a sum of a f-invariant

clement and an element of 3" w 1Z[u"t,, in h(P).
zeP

Similarly, one could show that there is a unique element ¢(h) of h(P) such that

0(c(h)) = c(h) and ¢(h) € h+ > uZ|u]t,, and prove analogous results for it.
yeP

Applying these constructions in the situation (6.11) (i), one obtains (essentially)
the elements C,, Cl (z € W) of the corresponding Hecke algebra ([KL1]). Ap-
plying the construction to the reverse poset produces the elements D,, D/, ([L2]).

This completes our discussion of the formal consequences of the existence of an
element r € A 4(P) satisfying (6.10.1) and (6.10.2), and we turn now to the
justification of the remark in (6.11) (iii) that the polynomials R, , for a Coxeter
system are produced by our incidence algebra construction.

For the remainder of this chapter, (W, R) denotes a Coxeter system, and T =

U wRw™!. The data required for the incidence algebra construction will be
weW
obtained from certain orderings of T

6.15 Definition. A partial order < on T is called a natural order if for any
dihedral reflection subgroup W' of W, either

r=TrSr<...<Srs=<s or §<8rs<...<rsr<r
where {r, s} = S(W’).

Here, for example, » < rsr < ... < srs < s means that

( 2m-+1 2n-+1
R e (1<2m+1<2n+1<ord(rs))
2m—+1 2n—+1
o3 <5r.9 (1<2n+1<2m+1<ord(rs))
2m—+1 2n+1

\mjm (1<2m+1, 2n+1 < ord(rs)).
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6.16 Remarks.
(i) A natural order is a total order on T
(ii) The reverse of a natural order on T is a natural order on T.

(iii) Let < be a natural order on T', and (W', R’) be a reflection subsystem of
(W, R). Then the restriction of < to W/ NT is a natural order of the reflections
of (W', ') (by (1.9) (i)).

(iv) Suppose that (W, R) is a finite Coxeter system, and write T = {t1,...,t,}
where n = #(T'). Then it may be shown that the partial order < on 7" such

that t; < t3 < ... < t, is a natural order iff there is a reduced expression
wo =711 ...7r, for the longest element wy of W, such that t; =ry...7;...7m1 (i =
1,...,n). O

To show that natural orders exist we make use of the root system of (W, R).

6.17 Lemma. Suppose (W, R) is realised geometrically on a real vector space
V with positive roots ¥T. Let W’ be a dihedral reflection subgroup of W and
write S(W') = {t,s}. Let < be the order on W’ NT such that ¢t < tst < ... <
sts < s, and set Ut = {ae¥™ |r, € W'}

If a,3,v€ U and ro < rg < 7y then 8 = ca + dvy for some ¢ > 0,d > 0.

Proof Let §,6 be the unique elements of ®'* satisfying rs = t, r. = s, and
let p, (n € INU{—1}) be the real numbers defined by the recurrence relation
(2.1.3), with v = —(d | ) (note that v € {cos = | m € IN,m > 2} U[l,00) by
(3.9)).

Define an inner product on U = IR + IRe so § and ¢ form an orthonormal basis
of U, and regard U as a two-dimensional Euclidean space. Every element of
®’'t is a non-negative linear combination of § and ¢, and so makes an angle of
between 0 and % (inclusive) with §; write o < 8 (o, f € ') if the angle made
by the vectors o and ¢ is less than that formed by £ and §.

2m—1

—~
Now note that if ord(rs) = m is finite, then W/ NT = {¢,tst,...,ts...t} and
2m—1

e N . .
t <tst<...<ts...t. Whether ord(rs) is finite or not, (2.1.1) and (2.1.2) show
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2n+1

—~
that the positive root corresponding to ts...t (0 < n < ord(ts)) is pn+10 + pPne,
2n—+1
. ﬂ\ . .
and that corresponding to st...s (0 < n < ord(ts)) is pnd + pni1e. Making

use of the parts of (2.2) (iii), (iv) concerning the ratios pp: -, it follows that for

a, 3 € &', we have a < 3 iff ro, < rg. The assertion of the lemma is clear from
this characterisation of <. O

6.18 Proposition. There exists a natural ordering of the reflections T of
(W, R).

Proof Suppose (W, R) is realised geometrically as a group of isometries of a real

vector space V, with simple roots IT and positive roots ®*. Let U = { > cpa €
acll
V| > ca =1, } be the affine hyperplane spanned by II, and ¥ = {5 € U |
acll
is non-isotropic and rg € T'}. The map p: ¥ — T defined by 8 — 13 (5 € ¥)

is a bijection (if 3= Y. coa € T, then p~(rg) = (> ca)18).
a€cll a€cll

Let A be a set of linear functions V' — IR separating the points of ¥ (if R
is finite, A could be chosen to be a singleton set; in general, A can be taken
as the set of all linear functions V' — IR). We suppose that A is given some
well-ordering, and define a relation < on T by the condition t < ¢ iff t = ¢/
or (t # ¢ and p(p~'(t)) < @(p~'(t')) where ¢ = min{f € A | f(p~'(t) #
fl H ) 1) (.t € T).

The relation =< is evidently reflexive and anti-symmetric. To show that < is
transitive, it will suffice to show that if ¢,¢',t” € T are all distinct and t <
t't <t thent < t'. Let ¢ = min{f € A| f(p~1(t)) # f(p~*(t))} and
¢ =min{ f € A| f(p~'(t') # f(p~'(t")) }. Setting ¢ = min{p, ¢'} we have
Flp7 () = f(p'(t") = f(p~'(t")) if f € Ais less than ¢, and " (p~'(t)) <
O"(p71(t")), so t < t". Hence < is a partial order on T, in fact a total order.

Let W’ be a dihedral reflection subgroup of W, and write S(W') = {s, ¢} where
t < s. Let =’ be the total order on W/ N T such that ¢t <’ tst <’ ... <" sts <’ s.
To show that < is a natural order, it will be sufficient to prove that the restriction
of <toW'NTis <.
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Setd = p~l(t), e=p~l(s), ¥ =p {(W'NT) and p =min{ f € A| f(p~'(t) #
f(p~'(s)) }. Tt follows from (6.17) that if a, 3,y € ¥’ and r, <’ rg <’ r, then
for some ¢ € IR with 0 < ¢ < 1, we have § = ca + (1 — ¢)y. This shows
firstly f(6) = f(6) = f(e) for all 5 € U if f € A is less than ¢, and that
0(0) < (B) < ¢(e) for all fe¥’\ {d,e}. By a second application of the above
consequence of (6.17), it follows that if o, § € ¥" and r,, <’ 15 then p(a) < ©(5).
Hence if ¢/, € W/ NT and ¢/ <’ ¢, then ¢/ < t"'. Since < and <’ are total
orders, <’ is the restriction of < to W/ NT. O

In (6.20), we show how to construct new natural orders from a given natural
order. First, we need the following simple

6.19 Lemma. Let < be a natural orderon T, r € Randt € T (t #r). If
t < r then rtr <r. If r <t then r < rtr.

Proof Write S((t,r)) = {r,t'}. Suppose t’ <r. Then t’ <t'rt’ < ... <rt'r <r.
Hence t < r and rtr < r. Similarly, if » < ¢’ then r < ¢ and r < rtr. O

6.20 Proposition. Let < be a natural order on T, and » € R. Then the
relation <’ on T defined by

tl =T
tq j/ ty iff ¢ or (tl 7é r,r <ty and t; < tg)
or (t1 #r,to <7 and rtyr S rtor)  (t1,t2 € T)

is a natural order on T

Proof We first check that <’ is a partial order. Now =<’ is clearly reflexive. To
check that <’ is anti-symmetric, suppose that t1,t, € T and t; =/ t9,ts =<' t3.
If t1,to < rorr < ty,ty or r € {t1,t2}, the definition of <" implies that t; = ts.
Otherwise, we have, say, t; < r < to. By (6.19), rt1r < r < rtyr contrary
to to =’ t1. Hence this last case cannot occur, and =<’ is anti-symmetric. To
prove that =<’ is tranmsitive, it will suffice to show that if t1,t2,t3 € T and
t1 <’ to,to <’ t3 then t; <’ t3. Note that r ¢ {to,t3}, so that » <’ t3. Hence
we may assume that ¢; # r. If t3 < r, then by (6.19) and the definition
of =/, we have rtor < rtsr < r, hence to < r. From t; <’ t5, we now get
rtir < rtor < rtzr and so t1 <’ t3. If r < t9 and r < t3, then t; < to < t3
so t; <" t3. The remaining case is to < r < t3. Here t; <’ ty and (6.19) give
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rt1r < rtor < r, hence t; < r < t3 and t; <’ t3. Therefore <’ is a partial order
as claimed.

Now fix a dihedral reflection subgroup W’ of W, and write S(W') = {t, s} where
t < s. We must check that either t <" tst <’ ... <" sts <’ sor s <" sts <’ ... <’
tst <’ t. Consider the following cases.

Case 1t <7 < s Thent <tst <... < sts <s. Now S(rW'r) = {rtr,rsr} by
(3.14) and rtr < r < rsr by (6.19), so rtr < rtstr < ... < rstsr < rsr. Noting
that if t; < r < to, then t; <’ to, it follows that t <’ tst <’ ... <’ sts <’ s.
Case 2t < s < r Now S(rW'r) = {rtr,rsr}, so either rtr < rtstr < ... <
rstsr < rsr or rsr < rstsr < ... <rtstr < rtr. Since t <tst < ... < sts < s <
r , we have either ¢ <" tst <’ ... < sts <’ sor s <’ sts <" ... <" tst <" t.

Case 3r <t <sHerer <t<tst<...<sts<ssot=<"tst=<'...< sts=<s.
Casedt=rHerer <rsr <...<srs<ssor <'rsr<'...<" srs<s.

Case b5 s=r Heret <trt<...<rtrtr <rtr <rsor < rtr <’ ... <" trt <'t.

Hence =<’ is a natural order as claimed. O

6.21 Remark. The natural order <’ defined in (6.20) will be called the lower
r-conjugate of <. Define the upper r-conjugate <" of < to be the reverse of the
lower r-conjugate of the reverse of <. Thus

t2 =T
tq j” to iff or (tg 7é r,t1 <rand t; < tg)
or (tg #r,r <ty and rtyr S rtor)  (t1,t2 € T),

and <" is a natural order.

Note that the upper r-conjugate of the lower r-conjugate of < is equal to the
upper r-conjugate of <. O
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6.22 Let P be the poset W equipped with Bruhat order, A = Z[q%,q*%] be
the ring of Laurent polynomials in an indeterminate q% and o = q*% — q%.
Let C1 = E(w,r) be the edge set of the Bruhat graph T'(y, gy and adopt the
notations of (6.2).

Let < be a fixed natural order on T'. We define a correponding element r~ of the
incidence algebra A 4(P) as follows using (6.3); 7= = r! where I = { (z,y,2) €
Co |y~ tz < 27ly}. Thus, for any z,y € W, r=(z,y) is a polynomial in «, the
coefficient of o™ being the cardinality of the set

{(z0,. ., Tm) € Con(z,y) | wg ey <27 20 <2t jom )

Recall the definition of the ny(x, y € W) from Chapter 0. We may now state

6.23 Theorem. Let < be a natural order on the reflections of the Coxeter
system (W, R). Then for all z,w € W,
(6.23.1) 7™ (x,w) = Ry 4- O

Theorem (6.23) will be proved by induction on ¢(w) in sections (6.24)-(6.26). If
w = 1, the result is trivial. So assume ¢(w) > 1 and that (6.23.1) holds with w
replaced by any element of W of length less than ¢(w), for any natural order <.
In (6.24)—(6.26), w is fixed and s denotes a fixed element of R with £(ws) < £(w)

6.24 For any natural order <, we define three elements f~, ¢~ , h~ of A 4(P)
as follows. Let =’ be the upper s-conjugate of <, and for z,y € W and n € IN,
define

Xn(x,y) ={(z0,...,xn) € Cp(x,y) | s =< xglacl < ... =< x;ilxn}
Yn('ray) = { (y07 .. '7yn) E Cn(xuy) | S j y()_1y17y()_1y1 -</ ct —</ y;ilyn}
Zn(,y) = { (20, -y 2n) € Onl(x,y) | 2521 < ... = 2, 120 < 5}

We set
Ry =Y #Xa(@y)a”
nGlN
g (x,y) = > #u(z,y)a”
nGlN
W (x,y) =Y #Zn(x,y)a"
nE'N
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Note that
{(z0,...,xm) € Cru(z,y) | xglxl < ... =< x%{lxm}
= 0 {Zoy. - yxm) | (o, ..., xn) € Zp(,2),
n=0
(T ooy Tm) € Xon—n(Tn,y) }

It follows that
(6.24.1) r= =h= % f=,

For similar reasons
(6.24.2) r=' = h= % g=. O

6.25 Lemma. For any y,z € W we have
() f7(y,2) =97 (ys, 2s) (ys <y,zs < 2)
(i) g7 (y,2) — ag™(y, 25) = [T (ys, z5) — af " (y, 28) (ys <y, zs < z2)
(i) g7(ys,zs) = [~ (y,2) —af~(ys,2) (ys >y, 25 < 2)
(iv) f7(y,2) =97 (ys,zs) —ag™(ys,z) (ys <y,zs > z)
Proof For y,z € W, and n € IN, let
Un(y,2) = {(z0,...,20) € Cp(y,2) | s <2 21 < ... <2, 12, }

and define u=(y,z) = > #U,(y,z)a"™. Now note that X, (y,z) = Uy(y, 2) if
nE'N
ys <y, and that if ys > y, then

Xn(y7 Z) = Un(y7 Z) U{ (ya Yo, .-, ynfl) | (y07 sy ynfl) € anl(ys, Z) }

It follows that

(6.25.1) u™(y,2) = {fﬂy’ Z; —af*(ys, z) Ezz i Z;
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Similarly, define

/. —1

={(z0,...,7n) € Cpn(y,2) | s < 2y w1, a5'zr <" ... < 21 2, < s}

and v=(y,2) = Y, #Va(y,z)a™. Here, we have
nGlN

Now note that by (1.20), (6.19) and the definition of <’, the map W"™! —
W+t defined by (zg, ..., Tn) — (205, ..., T,s) restricts to a bijection

Un(y, z) — Vi (ys, 2s).

It follows that
(6.25.3) u=(y,2) = v>(ys, zs8) (y,z € W)

The assertions (i)—(iv) all follow from (6.25.1)—(6.25.3). O

We may now complete the proof of (6.23).

6.26 Let < be any natural order on T', =’ be its upper s-conjugate and <" be
the lower s-conjugate of <. Define f= g~, h~ as in (6.24).

We first show that f~(z,ws) = g~(z,ws) (x € W) by descending induction

on £(z). If £(z) > £(ws), both sides are zero. Note that 7=(z,ws) = Ry ws =
7= (z,ws). Hence by (6.24.1) and (6.24.2), for any 2 € W we have

[z, ws) = r™(z,ws) Zfﬁ z,y)f(y, ws)

y>x

= r=' (&, ws) Zfﬁ z,9)g~(y,ws) by induction
y>x

=g~ (z,ws).
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Now we make use of (6.25) to show f~(z,w) = g~ (z,w)(z € W).

If zs > z, then g~ (z,w) = ag™(z,ws) + f~(zs,ws) by (6.25) (iv)
= ag™(z,ws) + g~ (zs, ws)
= af(xs,w) + g~ (xzs,ws) by (6.25) (i)

= f=(z,w) by (6.25) (ii).
If zs < s, then f~(z,w) = g~ (zs,ws) by (6.25) (i
= f*(zs,ws)
= g~ (x,w) + a(f~(z,ws) — g~ (z,ws)) by (6.25)(ii)
=g~ (z,w).

For x € W, r~(z,w) = Zh<($,y)f<(y,w)
=Y h ¥ (z.9)97(y w)

= r='(z,y) by (6.24.1), (6.24.2) again.

We have shown that
(6.26.1) r~(x,w) = r~ (z,w) if X" is the upper s-conjugate of <.

Since <’ is also the upper s-conjugate of <", we have r=" (r,w) = r</($,w).
Hence 7= (z,w) = r= (z,w), and to show 7=(z,w) = R, ., it suffices to show
=" (z,w) = Ry.w. Since T has a minimum element s in the ordering <", it
follows that there is no loss of generality in assuming that s is the minimum

element of T" in the natural ordering <.

But then f< =7r=, g~ =r<" so

< _ = _ J 97 (zs, ws) (s < s)
@ w) = (e w) = {gﬁ(a:s,ws) + ag™(z,ws) (zs > z) by (6.25)

_ r= (zs, ws) (xs < x)
= (xs,ws) + ar= (z,ws) (xs> s)

_ Rms,ws (s < x)
Rysws + @Ry s (x5 > 1)

= Ry by (0.1).

This complete the proof of (6.23). m]
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6.27 Remark. Let J be a subset of R. It may be shown that there is a
natural order < of T" such that ¢t < ¢’ forallt € W;NT and t' € T\ W;. Using
(6.23), it may be shown that if the maximal chains (xo,...,z,) of the relative
Bruhat interval [z,y] N WY (x,y € W) are labelled by the successive ratios
(xglzy,...,z;  2,) € T™, one obtains an L-labelling in the sense of ([BW],
Definition 3.2) (except that here the labels lie in a totally ordered set rather
than IN). O

6.28 We conclude this chapter by mentioning one application of (6.23). Adopt
the notation of (5.22). Let I'; (respectively I';/) be the full subgraph of Iy, g)
(respectively, 'y gy) with vertex set I (respectively). Attach to an edge
(x,y) of Ty or 'y the label x7'y € T. The map 6: 1" — I of (5.22) is an
isomorphism of directed graphs I'y — I'y and 0(x)~10(y) = 2~y for any edge
(z,y) of I'ys. Using (6.16) (iii) and (6.23), it follows that for v,w € I, we
have Rvyw = Rg(v)7,9(w), hence P, . = Py(v),0(w) Where the left-hand sides are
computed in (W', R") and the right-hand sides in (W, R). Note that by (3.16)
(), #(R) < ((w) — (v).

Now consider the case when (W, R) is a finite Weyl group. Every reflection
subsystem of (W, R) corresponds to some Weyl group: now the only Kazhdan-
Lusztig polynomials which occur for intervals of length 3 in finite Weyl groups
of rank at most 3 are 1 and 1+ ¢ ([Sh],pages 20 and 23). It follows that for any
v,w e W with v <w and ¢(v) = {(w) — 3, either P, , =1or P, ,, = 1+g¢. O
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Chapter 7

POSITIVITY PROPERTIES OF HECKE ALGEBRAS

This chapter is devoted to a study of properties of structure constants of the
Hecke algebra of a Coxeter group, taken with respect to various standard bases.

After giving a number of formal properties of these structure constants, we
introduce four conjectural positivity properties. These hold for dihedral groups,
and in Chapters 8 and 9, it will be shown that the structure constants of the
Hecke algebra of a universal Coxeter system satisfy all four positivity porperties.

For general Coxeter systems, only isolated special cases of these positivity prop-
erties have been proved, and this chapter concludes with a number of such
results. A criterion is given for a Bruhat interval to be isomorphic to a Bruhat
interval in a dihedral group, and used to prove that the Kazhdan-Lusztig poly-
nomials P, ,, (/(w) — ¢(v) = 3 or 4) have non-negative coefficients.

7.1 Let (W, R) be a Coxeter system and H(W) the corresponding Hecke alge-
bra over A = Z[q% , q_%] where ¢? is an indeterminate; we adopt our standard
notation concerning (W, R,) and H(W), and, for the moment, find it particu-

larly convenient to work with the A-basis {T, }wew of H(W).
As in [L2], we let H(W) denote the set of formal A-linear combinations

Z awTh (ay €A, weW).
weW

This is in a natural way a H(W)-bimodule; for example

= Z CLrwirw + Z (arw + (q% - q_%>aw)fw (aw S A7 re R)7



the action on the right being defined similarly.

Let 7: H(W) — A denote the A-linear map such that

T(Z awfw) =a.

From [L2], one has the following properties of
(7.1.1) 7(T,Ty) = 0y y—1 (z,y € W)
(7.1.2) 7(h1h) = 7(hhy) (hy € H(W), h € H(W))

We will require the following fact when W is finite.

7.2 Lemma. Let (W, R) be a finite Coxeter system with longest element wy

If he H(W) and hTy, = 3 aywT, (w € W), then
veW

Efw = Z Towg.wwo ﬁ, (we W)
veW

Proof First we prove that for any h € H(W),
(7.2.1) 7(h) = T(TyyhTw, )-

For this, it will be sufficient to prove

(7.2.2) 7(kTw,) = 7(Tw k) (k € H(W)).

Then (7.2.1) follows on setting k = hT,,,. Note that both sides of (7.2.2) are A-

linear as functions of k. Hence it suffices to check (7.2.2) when k =T, (x € W).
But then

T(ToTwo) = T(T 4 Towy)
= T(wao)

- 51,xw0

= Oy, -1

= 7(T, T).

Replacing h by T, 'hT ", in (7.2.1) gives
(7.3.1) 7(Ty-1hTw) = T(Twuwg)- hTwws) (B € H(W), v,w € W).
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Now by (7.1.1),

kT, = Z T(fv—lkfw>fv (we W);
veW

taking k = h, then k = h in this and using (7.3.1) gives the result. m|

7.3 We return to the case of an arbitrary Coxeter system.

For y,w € W, define E’y7w7Qy7w € A by the formulae
(7.3.1) Coy = X eyew Py Ty
y

(7.3.2) T = 3 Q,.uCy.
)

Thus, for y,w e W
1 1

(7.3.3) Py = q;iq‘glpy’w

~ 11

(7-3-4> Qy,w = quw 26]?;2 Qy,w

where P, , and @, . denote the Kazhdan-Lusztig polynomials and inverse
Kazhdan-Lusztig polynomials respectively.

In this notation, we have

(7.3.5) Cl, =" P, T,
Y
(7.3.6) Doy = 3° Quy Ty
(7.3.7) D, = zyjeyew@y,wfy
where D,,, D{Uye H(W) are defined in [L2].

We recall that
(7.3.8) T(Cny> = T(C;D’y) = 5m7y71 (x,y e W)

Also, from ([L3], 5.1) we have the following

7.4 Lemma. If W is finite with longest element wq, then
(74.1) D, = Cfuwozwo = TwOCQ’UOw and
(7.4.2) D!, = CyuwyTwo = TwyCuwow- O
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7.5 Define elements sz € A by

(75.) TN\ T.= Y R:,T, (w,zeW);

_ ~yEVV ’
note that R ,, = Ry (y,w € W). We now define analogues of the polynomials
P, ., and @, ., as follows

(7.5.2) C. T, = ZW Pz T, (w,z € W)
ye

(7.5.3) T, 1, T, = ZW Qz ,Cy (w,z € W).
ye

We remark right away that the ]5;7“) are, up to some normalisation, the same

as the P}, defined in [Dy] but that the ijw are quite diferent from the Q7 ,
defined there.

Note that by (7.3.5) and (7.3.2), we have
(7.5.4) By = L, (y,w € W)

(7.5.5) Qy’w = ~?1j7w (y,w e W)

We also have the following two facts
(7.5.6) P2, = > RZ Py, (z,2,w W)
y

(75.7) Q2 = 2. Qo2 (y,2,wEW).
For example, (7.5.6) is proved by the computation
C,T.=> PyuT,\T.
)
Y (ST
x Y

and the proof of (7.5.7) is similar.

It is convenient to note at this point the following inductive formula for com-
puting R7

7.6 Lemma.

(i) R?

y,1

=0y, (y,z€ W)
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(i) If z,y,w € W, r € R and wr < w then

DY __ R;ywr B (Ty < y)
| RyYy, + aRY L, (ry > ),

_1 1
where a = q¢72 — q2.

Proof (i) follows tr1v1ally from the definition, and (ii) follows by a computation
on writing T Ty T( - 1T 1T O

7.7 It follows easily from (7.6) that
(7.7.1) Réw = syszswﬁzyw and that

(7.7.2) f?;w(l) = 5yz1_1’w where sz(l) denotes the value of the Laurent poly-
nomial R? ,, when ¢2 = 1.

From (7.5.6), (7.5.7) and (7.7.2) we have
(7.7.3) Py, (1) = Ppo-1,0(1)

(7.7.4) Q2 (1) = Q,, wz( )

The following proposition gives some simple symmetry properties of these struc-
ture constants.

7.8 Proposition. For any y, z,w € W, we have

(7.8.1) R; ,, = RY .,
(7.8.2) P —Py ot
(7.8.3) Q :lz

Proof Note that, from (7.1.1) and (7.3.8), we have
(7.84) Rz, = 7(T 1T T, )

(7.8.5) PZ = r(C! T, T,)

(7.8.6) = (T4 T.D,)

Now there is an A-algebra anti-involution ¢: > azTy — > axfx_l of
zeW zeW
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H(W), which takes C;, to C! _,. Hence

Pz, =71(CLT.T,1) = 0(T,T.1Cl )
= T(C;uflfyfz—l) by (712)
= ~y 1y

proving (7.8.2), and (7.8.1) is proved similarly using (7.8.4).

To prove (7.8.3), note that the involution h +—— h of H(W), applied to (7.5.3),
gives

Tsz__l1 = > ~§ w Cy- Applying 1, we obtain

o yew '

T7'Ty-»= > Q2,Cy and (7.8.3) follows on comparing with (7.5.3).
yew

In case (W, R) is a finite Coxeter system, we have a number of additional sym-
metry properties

7.9 Proposition. Let (W, R) be a finite Coxeter system with longest element
wo. Then for y, z,w € W, we have

(791> ~Z,w = ~P1i;w,w0y
(7.9.2) sz,w = P;ﬁg}w

NWwo z

(793) ~Z’Z = Wy, wwo

Proof From (7.8.6), we have

y7w —

Tw,) by (7.4.1)
TuwgwT?) by (7.1.2)

s0 (7.9.1) holds.
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Using (7.2), we have
c\T, =3 ﬁ;way = Y Ppwo T, since C! = C',, hence (7.9.2) is proved.

y y
Finally, (7.9.1) and (7.9.2) give (7.9.3) as follows:

z  _ pz ! — pzlwo — HWoZ
Yy, w — T wow,woy ~ ~ WoWWo,WoYy Yy, wwo

Our next result gives some information about the “supports” of these structure
constants.

7.10 Proposition. If y,z,w € W then

(i) R;w =0 unless y < wz and yz~! <w and z < w™ly.
(ii) ﬁ;’w =0 unless yz~! <w

(iii) ~§7w =0 unless y < wz.

Proof (i) Suppose Rgz;,w # 0. We first show that y < wz by induction on ¢(w).
Ifw=1,then y = 2 < wz. If w+# 1, choose r € R so wr < w. Then by
(7.6), either R;,Zwr # 0 (whence y < (wr)(rz) = wz) or rz > z and R;}W #0
(whence y < wrz). But if rz > 2, then 271rz € N(2) + 27 N(w)z = N(wz),
so wrz = (wz)(zrz~!) < wz. Hence y < wz. The claim that z < w1y follows

from this and (7.8.1).

To prove that yz=1 < w, write w = r; ...r, (reduced). Then fy can only occur
with non-zero coefficient in TJLTZ if there exist i1,...,0m, (1 <i1 < ... <1y, <
n) such that y = r;, ...7; 2z, and in that case, y2=* =r;, ...7; < w by (5.3)

(ii). This proves (i).

Now P, = 0 and Q,.,, = 0 unless y < w, so (ii) and (iii) follow from (i), (7.5.6)
and (7.5.7). |
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7.11 Remark. If (W, R) is any Coxeter system in which the Kazhdan-Lusztig
polynomials P, ., have non-negative coefficients (e.g. if (W, R) is Crystallo-
graphic, or finite) then (7.10) (ii) and (7.7.3) prove that P?iw # 0 iff yz2=1 < w;
a similar remark applies to sz

Now we have some orthogonality relations for our structure constants.

7.12 Proposition. The following relations hold in H(W); for any z,w € W
(i) %%5?}52}?;;]:2;@ =00 (2 €W).

(ii) steyezp =0 (yEW).

(iii) zzjgxsysz()%f; PV =6 (yEW).

Proof The involution ) awT — > awsmT takes O to 5yC’ ; applying it to
(7.5.3) gives

T .T, = E Eyezstf/,wCy
Y
_ Nw ™t Cl
= EyezEuw®y-1 .10y
Yy

Using the involution v defined in the proof of (7.8), we have

F—1 _ Nzt /
T,.T," = E eyezew®@y 10y
y

Hence, replacing z by 2= and w by y~ !,

T, = stEyEZQZT;C’T _
- Z nggyé:ZQz rt w zl)~

which is equivalent to (ii).

Properties (i) and (iii) are proved by similar arguments. o
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7.13 In some situations, it will prove more convenient to use the following
notation

_1
(7.13.1) C,T. = qu* > P; Ty (z,w € W).

y
Comparing this with (7.5.2), we see that

(7.13.2) P;., = ¢ *qu’qg PZ, (y,z€ W).

The following formula permits calculations of the P; .
7.14 Lemma.

(i) Ify,z€ W then P;, =4,

(i) Ify,z,we W, re€ R and rw < w then

1
P =4P 0+ d P~ Y, e rw)eie TPy,

zeW
rex

[N

where

C:{l (ry >y)
0 (ry<y)

and p(z, rw) is the coefficient of ¢(“(W)=¢@)=2)/2 in P, ., (u(z,rw) is zero unless
x < rw).

Proof (i) is trivial and (ii) follows simply from the formulae ([L3], 5.1)

(7.14.1) C!, = C.CL, — ZW p(x,rw)Cl and C = ¢~ 2 (T +1). 0
xe
rex

This recurrence formula implies in particular that Py, is a polynomial in ¢

7.15 Remark. It follows from (7.14) that for any y, z, w € W, the polynomial
P? , has degree at most £(w). Fix z € W. One sees that there is, for any w € W,
a unique y € W such that the coefficient of g, in P, is non-zero; denoting this

y by a(y), we see that Py w = @w and that a(l) = z,

otw) = {280

rw) < a(rw))
ra(rw) (ra(rw) > a

) > a(rw))

if rw < w (r € R). It follows from (5.3.1) that a(w) is the maximum element
of the set [1,w]z (in the Bruhat order). Similarly, for fixed z, there is for any
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w € W a unique element b(w) of W such that the coefficient of ¢° in Py w 18
non-zero; we have P, =1 and b(w) is the minimum element of [1, w]z. |

7.16 It is known that if (W, R) is a crystallographic or finite Coxeter system
then the Kazhdan-Lusztig polynomials P, ., (.. have non-negative coeffi-
cients, and that if (W, R) is a crystallographic Coxeter system, the structure
constants of H(W) with respect to the A-basis C), of H(W) are Laurent poly-
nomials with non-negative coefficients (e.g. [KL2], [L2],[A1]). In view of (7.7.3)

and (7.7.4),it is natural to ask whether the PZ, and Q?Z,, also have non-negative
coefficients.

With these remarks as motivation, we now list four conjectural positivity prop-
erties [P1]-[P4] of the Hecke algebra of an arbitrary Coxeter system. We recall
that
Ng®,¢ 2] ={ ) ang? |an, e N (neZ)}.
nGZ

The fou}“v properties are N

Pl CiT, € Y NjgF,q=|T.  (z.yeW)
zeW

P2 T 4T, € S IN[gz,¢"2]C.  (z,y W)

zeW

P3| CiCy e X WNlghg=]CL  (ayeW)
ze

[P4] C.Cy € > IN[g
zeW

7], (x,ye W)

=

Conjectures [P1] and [P2] assert the positivity of the Laurent polynomials
Pg’z(x, y,z € W)

and
A (z,y,2€ W)
respectively. In terms of the function 7 introduced in (7.1), [P1]-[P4] may be
reformulated as follows, using (7.1.1) and (7.3.8):
[P1] 7(CiT,T2) € Nlg?,q™2] (25,2 € W)
[P2] 7(T,\T,D:) € N[g?,q~2] (x,y,2 € W)
[P3] 7(CLCyDL) € N[gZ,q 2] (z,y,2 € W)
[P4) 7(C,C, D) € N[g2,q72] (,y,2 € W).
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Many other variants may be given; for instance, the last formulation of [P1]
shows that [P1] is equivalent to the statement

~ o~ —1
T,T.€ > Ng>,q7 D,
zeW
where the right hand side is the set of infinite linear combination of the elements
D! with non-negative coefficients (such linear combinations converge, in an
appropriate sense, to elements of H(W).)

The rest of this thesis is devoted to a study of these positivity properties and
related facts. For finite Coxeter systems, only two of the properties [P1]-[P4]
are independent of one another:

7.17 Proposition. If (W, R) is a finite Coxeter system, then [P1] is equivalent
to [P2] and [P3] is equivalent to [P4].

Proof The equivalence of [P1] and [P2] follows from (7.9.1). Let wy be the
longest element of W. By (7.4), for any z,y,z € W,

7(CLC! D) = 7(CLChCluyTuy)
= 7(C} Coug Ty C)
= 7(C}, Crwy D)
which shows that [P3] and [P4] are equivalent. o

7.18 Remark Lascoux and Schiitzenberger have given a combinatorial proof
that the Kazhdan-Lusztig polynomials have non-negative coefficients for certain
pairs of elements in symmetric groups ([LS]); in the following chapters, [P1]-
[P4] will be proved for universal Coxeter systems by elementary arguments. In
other cases where positivity properties are known, the proofs depend on a study
of the intersection cohomology of varieties constructed from algebraic groups;
even using the “infinite-dimensional” groups associated with Kac-Moody Lie
algebras, these methods only apply to crystallographic Coxeter systems.

For general Coxeter systems, only isolated results have been obtained. In the
remainder of this chapter, we prove a number of such facts concerning the
coefficient of ¢ in polynomials P, ,, and @y .. O
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7.19 For the remainder of this chapter, (W, R) denotes an arbitrary Coxeter
system, and we adopt our usual notation concerning (W, R) and its Hecke alge-
bra H(W). We begin with some properties of the polynomials R, ,,.

Recall the definition of the Bruhat graph Iy, ry of (W, R) (see (1.11)). An
element 7 = (zq, ..., 2,) of W™t will be called a path in Cow, gy if (zi-1, ) €
Ew,ry (i =1,...,n); 7 is then said to be a path from zg to x,, and we say
that n is the length of 7.

The next result gives more evidence for close connections between the polyno-
mials R, , and the Bruhat graph.

7.20 Proposition. For x,y € W, m € IN the coefficient of o™ in ny is
non-zero iff there is a path of length m in Iy, gy from z to y.

Proof If the coefficient of o™ is non-zero, then (6.23) ensures the existence of
a path of length m. The converse will be proved by induction on £(y), being
trivial for ¢(y) = 0.

Suppose £(y) > 0 and that there exists a path (wo, w1, ..., wy) in Iy,zy with
wo = = and w,, = y. Choose r € R so that yr < y. If w;r # w;_; for all
Jj =1,...,m, then by (1.20), (wor,w17,...,wy,r) is a path in Iy gy from zr
to yr. By induction, the coefficient of o™ in fimyr is non-zero, and (0.1) shows
that the coefficient of o™ in vay is non-zero.

The other possibility is that w;r = w;_; for some j € {1,...,m}; suppose
without loss of generality that j is the largest element of {1,...,m} with w;r =
wj_1, and consider cases as follows:

Case 1. ar < zx

In this case, (1, = wo, w1, ..., Wj—1 = W;T, Wj41T, ..., Wy, = yr) is a path in
[ (w,r) from xr to yr of length m, so the coefficient of ™ in Ry, is non-zero,
hence so is that of o™ in R, , (by (0.1)).

Case 2. xr > x
Here (x = wo,w1,...,wj—1 = W;r, Wj417, ..., Wy,r = yr) is a path of length
m — 1 from z to yr, so the coefficient of ™! in R, ,, is non-zero, and so is

that of o™ in R, (by (0.1)). O
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7.21 Proposition. Let z € W, t € T and suppose that (z,zt) € Eqy, g)
(i.e. zt > x) and that ¢(xt) — £(z) > 3. Then there exist t' € T and t1,ta,t5 €
(t,t") NT such that (z,xt1, xt1ta, vt1tatz) is a path in Iy, p) from z to xt.

Proof Let y = xt (note ¢(y) > 1). We prove the result by induction on £(y).
Choose r € R so that yr < y, and consider cases as follows:

Case 1. ar > x

Note that ¢ # r; hence (zr,yr)) € Egw,gr) by (1.20). Take t' =17, t; =t3 =1
and to = rtr to obtain the required path (x, zty, xtits, xtitats) = (x, zr, yr,y).

Case 2. ar < x.

Here yr = xr(rtr) > xr and ¢(yr) — {(xr) > 3 so there exist ¢ € T and
1, 15,15 € (rtr,t') NT such that (zr,zrt], zrtyth, ort|tyts) is a path in Ty g
from xr to yr. Note that t3 # r (since yrtz < yr)

Case 2a. r ¢ {t},t5}.

By (1.20), (z, xt1, xt1to, xtitats) (where t; = rtjr, i = 1,2,3) is a path in Iy g)
from x to y, and we have t1,to, t3 € (t,rt'r).

Case 2b. r =1t}

Here, (z,xth, xthth, xththr) is a path in Iy py from z to y, and th,th,r €
2, Llalz, Tloly (W,R) 273
(rtr,t"y NT, so th,th,re (t,rt'ryNT.

Case 2c. r =t
By (1.20),(z, xt1) € Ew,r) where t; = rtyr. Note t; = rtit;. Hence
(x, xty, wtity, ot t5T)

is a path in I'(y, gy from xr to yr. We have t},r,t3 € (rtr,t'), hence t1,15,7r €
(t,rt'r). O
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7.22 Corollary. If z,y € W and there is a path of length in I'w, r) from =
toy (m < L(y) — £(x)) then there is a path of length m + 2 from z to y in

U'w,r)- O

In ([De 3], Prop 5.3), Deodhar proves the corresponding fact about the coeffi-
cients of R, .

7.23 Let 2,y € W with 2 < y. Then the coefficient of a*@~*) in Rm,y is
1, and (7.20) implies that f{xy = o'W =4®) iff (2,2t € [x,y] and t € T imply
|0(2t) — £(2)| = 1). We now investigate the other extreme, when R, , is as large
as possible.

Define polynomials R,,(n € IN) as follows:
Ro = 1, Rl = Q, RQ = 062, Rn+1 = OéRn + Rn—l (TL 2 2)

From (0.1), it follows that for x,y € W with z < y, Rg(y)_g(x) — ny is a
polynomial in a with non-negative coefficients.

7.24 Lemma. Let z,y € W with x < y and /(y) — £(z) = n > 2. Then
Ryy =R, if W = (v"'w | v,w € [z,y]) is a dihedral reflection subgroup of
(W, R).

Proof Recall that W’ is always a reflection subgroup of (W, R); in fact, if
(zo,...,2y) is a path in Iy, g) from = to y, then W' = (z7'zi1(i=1,...,n))
(by (5.23)).

If n = 2, then R,, = o> = Ry and W’ is dihedral (by the preceeding remark)
so there is nothing to prove.

We now assume ¢(y) — ¢(z) =n > 3 and proceed by induction on £(y). Choose
r € R so that yr < y.

Case 1. ar < zx

By (5.21.1), there is a path (z(, z,...,2;,) in Iy, gy from zr to yr, such that
(xlr) > l(x}) (i = 0,1,...,n). Then (z{r,...,z,r) is a path from z to y,
and W/ = (ra} ‘2 _yr (i = 1,...,n)) = vW"r where W" = (2 2,y (i =
1,...,n)) = (v™lw | v,w € [zr,yr]). Hence W’ is dihedral iff W” is dihedral.

P
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Also, nyy = me by (0.1), so Rmyy = R, iff me = R,,. The result follows
by induction.

Case 2. zr > x

Suppose Rmyy = R,,. It follows by (0.1) and the definition of R,, that Rm,yr =
R, 1 and Ry yr = R,_2; in particular, xr < yr, since R,_s # 0.

Choose a path (wo, ..., wn—2) in I, gy from zr to yr. Then

(z,2r = wo, ..., Wnp_2)
is a path from z to yr, and so by induction, W" = (r, w;lwi_l (1<i<n-2))
is dihedral (since Ry yr = Rp—1). But (z,2r = wo, ..., Wn_2, Wy_or = y) is a
path from z to y, so W/ = W" is also dihedral.
Conversely, suppose that W' is a dihedral reflection subgroup of (W, R). By

(6.28), Ry .y = Ry for certain 2.y’ € W’ with ¢/(y') — ¢/(2") = n (where ¢/
is the length function on (W', S(W’)) and R, is computed in (W', S(W"))).

The result follows since R, ,» = R, (W', S(W’)) being dihedral). O

Recall that for any subset X of W, I'x denotes the full subgraph on the vertex
set X of the Bruhat graph Iy, ). It will be convenient to say that a subgraph
Liyw] (v,w € W, v <w) is an interval of the Bruhat graph.

We now give some equivalent characterisations of intervals of “dihedral type”
in the Bruhat order.

7.25 Proposition. Let z,y € W with x < y and ¢(y) — ¢(x) > 2. Then
conditions (i)—(vi) below are equiivalent:

(i) [z,y] has 2 atoms
(ii) [z,y] has 2 coatoms
(iii) [z,y] is isomorphic to a Bruhat interval in a dihedral Coxeter system.

(iv) T,y is isomorphic to an interval in the Bruhat graph of a dihedral Coxeter
system.
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(v) (vlw|v,w € [z,y]) is a dihedral reflection subgroup.
(vi) Ry, = R, where n = £(y) — {(z).

Proof By (7.24), (v)<(vi). We show that (v)=-(iv) =(iii) =(i)=(v).
Assume W' = (v™lw | v,w € [z,y]) is dihedral, and let z be the minimum
element of xW'. By (5.23), [z,y] C zW’, and (iv) follows by (1.13) (i) and
(ii). Hence (v)==(iv). Now (iv)==(iii) by definition of Bruhat order, and the
implication (iii)== (i) holds since an interval of length at least 2 in a dihedral
group has two atoms.

Now suppose that [z, y] has exactly two atoms x1, 22, and let W’ be the maximal
dihedral reflection subgroup containing W” = (z~txy, 2 1z2) ((3.18)). Since
any relfection subgroup of W containing W and contained in W’ is itself dihe-
dral, it will suffice to show that

(7.25.1) if (v, w) is an edge of I'f, ) and £(w) = £(v) + 1 then v~ 'w € W'.

This claim will be proved by induction on n = ¢(v) — £(z). If n =0, then v =z
and w € {x1, 22} by our assumption on [x,y] so v"lw € W’ C W'.

Now assume that n > 0 and (7.25.1) holds for v, w with ¢(v) — ¢(z) < n. Take
(v,w) to be an edge of I', ,; with £(w) = £(v) + 1 and £(v) — £(z) = n. Choose
z € [z,v] with £(z) = ¢(v) — 1. Then [z,w] is an interval of length 2 in the
Bruhat order and so has 2 atoms (by (5.20), for example) of which one is v; let
v' be the other atom of [z, w]. Since ¢(z) — ¢(x) < n, the inductive assumption
implies that the dihedral reflection subgroup W"" = (z71v, 27’} is contained
in W’. But by (5.23), the dihedral reflection subgroup (v~1w,2~!v) contains
W' since W' is contained in a unique maximal dihedral reflection subgroup,

it follows that (v™1w, 271v) C W', In particular, v=1w € W’ as required.

The proof of the implications (iii)==(ii)==(v) is entirely similar. O

The following result shows that the edges (v, w) of I'(w,ry with {(w) —£(v) =3
are determined by the Bruhat order alone.

7.26 Corollary. Let v,w € W with {(w) = ¢(v) + 3 and v < w. Then
(v,w) € Ew,p) iff the Bruhat interval [v, w] has 2 coatoms.

Proof Suppose first that (v,w) € Ey, g); then w = vt for some t € T'. By (7.21),
there is a dihedral reflection subgroup W’ and reflections tq,ts,t3 € W/ N'T
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such that (v,vty,vtite,vtitats) is a path in Iy gy from v to w. By (5.23),
(x7Yy | 2,y € [v,w]) is a dihedral reflection subgroup, and so [v,w] has 2
coatoms by (7.25).

Conversely, suppose [v, w] has 2 coatoms. Then I', ,, is isomorphic to an inter-
val of length 3 in the Bruhat graph of a dihedral Coxeter system (W', R'); but
(2',y") € Eqwr gy iff £/(y") — £/ (2") is an odd positive integer (z’,y" € W') where
¢" is the length function on (W', R'). Hence (v,w) € Eqw,g) as required. O

Proposition (7.25) also gives our first general positivity property.

7.27 Corollary. Let z,y € W with x <y be such that the interval [z, y| has
2 atoms (or 2 coatoms). Then P, , = Q,, = 1.

Proof Let W' = (v lw | v,w € [z,y]) and R’ = S(W'); then (W', R’) is a
dihedral Coxeter system. By (6.28), P, = P, , for some z’,y € W' with
V'(z") < 0'(y'), where ¢ is the length function on (W, R) and P,/ , is computed
in (W’,R"). Since the non-zero Kazhdan-Lusztig polynomials in a dihedral
Coxeter system are all equal to 1, P, , = P,/ ,» = 1. Similarly, @, , = 1. O

We now need some information about coefficients of some powers of « in par-
ticular polynomials R, ,.

For z,y € W let a[z,y] = #{w € [z,y] | {(w) = L(z) + 1} and c[z,y] = #{w €
[z,y] | £(w) = £(y) — 1} be the numbers of atoms and coatoms of the interval
[z,y]. Also, let 71[z,y] (respectively pi[z,y], qi[z,y]) denote the coefficient of
atW)—t=)=2 4 R, , (respectively, of ¢ in P, ,, of ¢ in Q).

7.28 Lemma. (i) Ifz,y € W and z <y, {(y) — fx) > 2 then
(7.28.1) p1[z, y] = clz,y] + ri[z, y] — £(y) + {(z)
(7.28.2) qi[z, y] = alz,y] + ri[z,y] — L(y) + {(z)

(ii) For any y € W, @1, =1 and
(7283> pl[lv y] = C[lv y] - G[l,y]

_1
2

Proof (i) Recall that if < z f{x,z_is a polynomial in a(= ¢~ 2 — ¢2) of degree
l(z) — £(z), and that for z < y, ﬁz,y € q%Z[q%]; by [KL1], the coefficient of
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1 1

1 _ 1 = 1 1
¢z q- % in P, ) is 1(z < y). Now py[z,y] is the coefficient of ¢, 2¢Z ¢ in

Poy—Poy= 3 RlP

ZY-
zix<z<ly

Let n = £(y) — £(x). Then p;(x,y) is equal to the coefficient of
—(n—2) ~
gz inRg,+ Z

zix<z<ly
0(x)=t(y)—1

9% R,

2

and therefore to that of ¢

n

N

(7% —¢*)" +rfz,y] (¢

=

1 _ 1 1 1 _
_q2)'fl 2]+ Z q2(q 2_q2)n 1
zix<z<ly
(z)=L(y)—-1

ie. pi[z,y] = ri[z,y] + c[z,y] — n, proving (7.28.1). The proof of (7.28.2) is
similar.

(ii) By [KL1], for w € W and r € R,

—(q7 + ¢ 2)C,

(rw < w)
CrCy =9 Crp+ X plz,w)C, (rw>w).
z<w
rz<z

In particular, C,.C,, € > AC,. Since T, r=0Cp+ q%, it follows by induction on
z#1
¢(y) that

fﬁ,Eq;Cﬁ4—§:VAC;.
z#1
~ = ~ _ 1
But T, = ZvayCm, hence Q1,4 = ¢y > and Q1 , = 1.

Hence p1[1,y] = p1[L, y] — a1 [L,y] = c[1,y] — a[l, y] by (i)
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7.29 Lemma. Let z,y € W with z <y. Then

(i) The coefficient of o in R, is

{ 1 (z7'yeT)
0 (z7ly¢T)

(i) The coefficient of a? in R, is 3#{z | (z,2) € Egw.r), (2,y) € Ew.r) }-
Proof Now (i) follows from (6.23).

To prove (ii), note that the coefficient of o in R, , can be non-zero only if
{(y) —£(x) is even and there can only exist a path (x, z,y) in I'w, gy if £(y) —£(x)
is even. Hence we may suppose that £(y) — £(z) is even. We have, for x #
Yy, S Ry.R., =0; by (7.7.1), this gives

SIS
zix<z<y
Since R, .,R.., € aZ|a] for z # x,y, (ii) follows from (i). o

It is known ([KL1]) that for x,y € W with {(y) —¢(z) <2 and z <y, P,, =1;
in fact, for x <y, the constant term of P, , is always 1. The following settles
the positivity of P, , in the next simplest cases, when ¢(y) — ¢(z) = 3 or 4.

7.30 Proposition. (i) For z <y with ¢(y) — {(z) = 3,

Px,y =1 + ma’X(Oa C[ma y] - 3)(] = Qx,y

(ii) For x < y with ¢(y) —¢(x) = 4, P, , and @), have non-negative coefficients.

Proof We will only prove (i) and (ii) for P, ,; the proofs for @, , are essentially
the same arguments, applied to the reverse poset.

(i) We P, , =1+ pi(x,y)q where
pl[x7y] = C['Tvy] -3+ Tl[l',y],
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and (o1 )
1 (z7'yeT
xr =
1[z,y] {0 (x—1y¢T)
by (7.29) (i). Now c[z,y] > 2 and 271y € T iff ¢(z,y) = 2, by (7.26). Hence the
result.

44 rifz,y] and mlz,y) = i#{z |z <2<y, 7'z €T, 27'y € T}. Now
clz,y] > 2, and if c[z,y] = 2, then P, , = 1 by (7.27). If c[x,y] > 4 then
pi[x,y] > 0, so we need only consider the case c[x,y] = 3.

(ii) Here, Py, = 1+ pi(x,y)q where by (7.29.2), (7.28.1) p1[x,y] = c[z,y] —
7.

Let ay,as,as be the 3 coatoms of the interval [x,y|, and let z1,...,x, be the
atoms of the interval [z, y| (n > 2). Note that n > 3 (for if n = 2, then c[z, y] = 2
by (7.25)). Also, write {z € [z,y] | £(2) = l(x) +2} = {z1,...,2m, } (where

Z1y. .., Zm are distinct).

Now for any v, w € [z,y], we have pw (v, w) = (—=1)* =) where py denotes
the Mé&bius function on W (with Bruhat order) (e.g. see [Del]). It follows that

K .
(7:30.1) 325300y (=1)7 (2, 9) = 0
where h;(z,y) = #{z € [z,y] | {(z) = j} (e.g. [Ai]. Prop. 4.10; another way
of seeing this is to compute the Euler characteristic of the sphere of dimension

l(y) — £(x) — 2 by using the decomposition of the simplicial complex > (z,y)

into cells > (x, 2] (z € (x,y))).

In any case, (7.30.1) gives 1 —n+m — 3+ 1 =0, hence m = n + 1. Similarly,
in each interval [z, a;], the number of atoms is equal to the number of coatoms
(1=1,2,3).

We show that we cannot have z; < a; foralli € {1,...,n} and j € {1,2,3}. For
if a; >x; (i =1,...,n), then the interval [z, a;] has n atoms, hence n coatoms,
and so there is exactly one zx, (1 < k; < m) with 2, € [z, a;]. If a; > z; for all
jeA{1,2,3} and i € {1,...,n}, choose k € {1,...,m} such that k # kq, ka, k3
(this being possible since m = n+ 1 > 4); then z; € [z,a4] (j = 1,2,3), so
a; € [zk,y] (y = 1,2,3). This states that the interval [z, y], of length 2, has
three coatoms a1, as, ag, which is absurd.

Hence there exist i, with «; £ a; (1 € {1,...,n}, j € {1,2,3}). This means
that the interval [x;,y] has two coatoms.

Since £(y) — £(x;) = 3, it follows by (7.26) that z; 'y € T. But 2~ 'x; € T since
r<z;and £(z;) =4(z)+ 1. Hence z; € {z |z <2<y, 'ze€T, 27lyeT}
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and since ri[z,y| is an integer, r1[z,y] > 1 (in fact, r1[z,y] = 1 by (7.25) but
we don’t need this). Hence p1[z,y| = c[z,y] — 4+ ri[z,y] = r[z,y] —1 > 0 as
required. O

7.31 Remark. It is interesting to note that, if z < y and ¢(y) —¢(z) < 4, then

Ry y, Pry, Qu,y depend only on the (isomorphism type of the) poset [z, y], O

We finish this chapter with one more positivity property; this one follows im-
mediately from (7.28.3) and (5.5).

7.32 Proposition. For any w € W, the coefficient of ¢ in P, is non-
negative. O
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Chapter 8

UNIVERSAL COXETER SYSTEMS: [P3], [P4] AND [P1]

In the following chapters, it will be shown that the Hecke algebra of a uni-
versal Coxeter system satisfies all four positivity properties [P1]-[P4] defined
in (7.16). Recall that these conjectures state that certain Laurent polynomi-
als in q%, arising as the structure constants of the Hecke algebra with respect
to various combinations of bases, have non-negative coefficients. Our general
technique for proving non-negativity of the coefficients is to explicitly construct
sets whose cardinalities are the coefficients in question. The proofs thus in-
volve only elementary combinatorics, and provide explicit information about
the coeflicients.

In this chapter, we give proofs of [P3], [P4] and [P1]. The proof of [P2] will
be given in Chapter 9. We begin with some facts needed in the proofs of all
properties [P1]-[P4].

8.1 In all this chapter, (W, R) denotes a fixed universal Coxeter system. Thus,
for any r, s € R with r # s, rs has infinite order, and W is therefore isomorphic
(as a group) to a free product of cyclic groups of order two.

If w € W, then w has a unique reduced expression w = 71...7r, (n = {(w)).
We set
(8.1.1) L(w) ={r € R | {(rw) < l(w)}, R(w) = L(w™!) (w € W). Note that
either

(8.1.2) (w=1, L(w) =R(w) =0) or (w# 1, #L(w) = #R(w) = 1).

We adopt the notation concerning the Hecke algebra H(W) of (W,R) from
Chapter 0. For z,y € W, we let u(z,y) denote the coefficient of ¢(¢()—¢@)=1)/2
in the Kazhdan-Lusztig polynomial P, ,; thus p(z,y) is an integer which is zero
unless x < y and ¢(y) — ¢(z) is odd.
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It is convenient to let < denote the relation on W defined by the condition
(8.1.3) y < wiff y <w and ¢(y) = (w) — 1.

The next simple lemma ([Dy]) is fundamental for our proofs of [P1]-[P4] for
universal Coxeter systems.

8.2 Lemma.

(i) Suppose z,y € W, p(x,y) # 0 and L(z) € L(y). Then x = sy where
L(y) = {s}. In particular, z < y.

(ii) Suppose y € W\ {1}; let L(y) = {s} (s € R). Then u(sy,y) = 1.
Proof

(i) Since p(z,y) # 0, we have z < y and so y # 1. Let L(y) = {s} (s € R).
Now L(z) # 0, so L(x) = {r} for some r € R. Since L(z)  L(y), we must have
r # s. Hence sy <y, sx >z and u(x,y) # 0. By ([KL1], (2.3.€)), x = sy. The
claim (ii) also follows from ([KL1], (2.3.e)). O

In (8.4), we will give an explicit formula for the products C|C!, (v,w € W) in
the Hecke algebra which will make it obvious that the positivity property [P3]

cicl e > IN[q%,q_%]Cg’J (v,w € W) holds. For the statement of (8.4), the
yew
following notation will be required.

8.3 Definition. If w € W has reduced expression w =7ry...7, and 2 < 7 <
n—1, let

w(J) =Trire...7j-1"j4+2...7n

and note that this is a reduced expression for w; if rj_1 = r;11. Define
elements C’'(w,i) (w e W, 0 <i < /{(w)) recursively as follows:

Chy +C'(wey,i—1) (2<i<n-—1andri=riu)
0 (otherwise)

O’ (w, i) = {
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8.4 Theorem. For any v,w e W,

(8.4.1)
oo — { C! .+ C'(vw,n) + C'(vw,n+1)  (L(w) NR(v) = 0)
T T U(gE 4 g )[C,, + Clorw,n)] (L(w) NR(v) = {r}, r € R)
where n = {(v). -

This is a restatement of ([Dy], Theorem (3.12)). The proof will occupy (8.5)—
(8.7). The formula (8.4.1) holds if ¢(v) = 0 or {(w) = 0; the next lemma deals
with the case /(w) =1 or ¢(v) =1 .

8.5 Lemma. Letr e R, and w € W have reduced expression w =1y ...7,.
Then

(¢ +¢~2)C, (n>0and r=r)
CC,=1Cl. . +Cl ...t (n>2andr,=r)
(G- (otherwise)

There is a similar formula for C!,C/.

Proof The result follows from the formula ([L3], (5.1.15))

(g7 +q2)C, (rw < w)
cc = / /
rw Clo+ > wly,w)C;, (rw>w)
yry<y
and (8.2). O

8.6 In this section, we prove (8.4.1) when L(w) N R(v) = (). The proof is
by induction on ¢(v). By (8.5), we may assume ¢(w) > 2, {(v) > 2 and write
v=21vrs (v eW, rseR, L(v)=L0")+2),w=""sdw (W eW s R
and £(w) = ¢(w') + 2); inductively, assume (8.4.1) holds with v replaced by v'r
or v'. There are four cases to consider.

Case 1. s ¢ R(v'), s # s.
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Now C'(vw,n — 1) = 0 since s ¢ R(v') and C'(vw,n + 1) = 0 since s # s'.
Hence
cc =c.,c.C, (by (8.5), since s ¢ R(v'))
=C,.Cl, (by (8.5), since s # s')

=Cl,+C'(vw,n—1)+ C'(vw,n)
=), +C (vw,n)+ C'(vw,n + 1)

Case 2. s ¢ R(v'), s=s.
Here, C'(vw,n — 1) = 0 since s ¢ R(v'), C'(vw’,n — 1) = 0 since s ¢ R(v'),
and C'(vw,n+1)=C) , + C'(vw',n) since s = ¢'.

Therefore
C,C,, = Cp,.CsCy, (by (8.5))

= Oy (Co + Clur) (by (8.5))

=C,,+C (vw,n—1)+ C'(vw,n) + C,,,
+ C'(vw',n — 1) + C'(vw', n)

=C., +C'(vw,n) +C'(vw,n + 1).

Case 3. se R(V'), s # ¢'.

In this case, C'(vw,n—1) =C), , +C'(v'w,n —2) since s € R(v'), C'(v'w,n —
1) =0 since s’ ¢ R(v') = {s} and C’(vw,n+ 1) = 0 since s = s’. So
C,C = (Cy, O = CLE, (by (8.5))
= Cp, Cgp — Gy G, (by (8.5))
=C!,+C (vw,n—1)+C'(vw,n)
-, +C'Ww,n—2)+ C'(vw,n—1)]
=Cl,+Cl.,+C0Wwn-—2)+C(vw,n)—[Cl.,+C'0wn—2)
=C!,+C (vw,n)+ C'(vw,n + 1)

Case 4. se R(v') s =
Now C'(vw,n+1) = C! ., + C'(vw',n) since s = &',
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C'(v'w,n —1) = Cyprr + C' (V"' ,n — 2) since s' € R(v')
C'lvw',n—1)=0Cl,, +C'(Ww',n—2)  since s € R(v') and
C'(vw,n—1)=0C.,,+C'(vw,n—2) since s € R(v).

So C,C,, = [Crr Cs = Gy, (by (8.5))
= Cpy [l + L] = C G, (by (85))
=Cl,+C(vw,n—1)+C'(vw,n)+ C., +C'(vw',n—1)

+ C'(vw',n) = [CL,, + C'(W'w,n —2) + C'(v'w,n — 1)]
=Cl,+Cl.,+CWwn-2)+C(vw,n)+C.,,
+Cl o +C' (W n—2)+ C'(vw',n) —[C,, + C'(vVw,n —2)
+C +C' (VW' n— 2)]
=C,,, + C'(vw,n) + Cy . + C'(vw', n)
=C), +C'(vw,n)+ C'(vw,n + 1)

Hence (8.4.1) holds if L(w) NR(v) =0 O

8.7 This section proves (8.4.1) when L(w) N R(v) = {r} (r € R). If {(v) =1,

(8.5) gives the result. Hence assume ¢(v) > 2 and write v = v'sr where v’ €

W, s € R and £(v) = £(v') + 2. Write w = rw’ (w’ € W). Assume inductively
that the result holds with v replacing v. This time there are two cases.

Case 1. 7 ¢ R(v').
Here C'(v'sw,n — 1) = 0 since r € L(w) and r ¢ L(v'), so
C,C, = Cy s C1C,, (by (8.5))
= (¢ +q 2)C},,C, (by (8.5))
= (g% + ¢ %)[Clyy + C'('sw,n — 1) + C'('sw,n)] (by (8.6))

= (¢% + ¢ %)[C),, + C' (vrw, n)]

Case 2 7 € R(v')
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In this case, C'(v'sw,n — 1) =C,,. + C'(v'w',n — 2). Therefore,
C,C = 1CyCr = CLIC,, (by (8.5))
= (4% +472)C,,,C,, = CL.C,
= (¢ +q 2)[C 0y + C'(Vsw,n— 1) + C'(Vsw,n)]
—(q% + ¢ 2)[C’,., +C'(v'rw,n—2)] (by (8.6) and induction)
= (4* + 47 #)[Clyy + C'(vrw,n)].

This completes the proof of Theorem (8.4) O

We turn now to the investigation of the coefficients arising when the products
C!C,, are exposed as A-linear combinations of elements {C,},cw. In (8.9), we
give a formula for these coefficients involving certain sequences of elements of
W x IN, defined in the next section.

8.8 Definition.

(i) Fore = ((wo,i0),---, (wWn,in)) € (W xIN)*™ (n € IN) define v(e) = i, € IN
and p(e) = w, € W.

(ii) Let y,w € W and w =1, ... (n = {(w)) be the reduced expression for
w. Let B(w,y) C (W x IN)"*1 be the set of those e = ((wo,i0), - - -, (Wn,in)) €
(W x IN)™*1 satisfying (8.8.1), (8.8.2); (k =1,...,n), (8.83); (k= 1,...,n)
and (8.8.4), (k=3,...,n) below:

(881) Wy =Y, io =0

{1} (re ¢ L(wg))
R (Tk € E(wk))
it — ik—1| = { bor & Llw)
0 (Tk c E(wk))

(8.8.2)y wpw; !t € {
(8.8.3)
(8.8.4) If ry =712 and (zk—1,ik—1) = (Tk—3,ik—3), then either

(a) K(xkfg) < K(wkfl) or

(b) Tpo = Tp—1 and ip_o < tp_1. O
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We may now state

8.9 Theorem. For any y,w € W,

(8.9.1)
Coly= D Tl
e€B(w,y)
where for i € IN, 7, = q% + ¢ = + ...+ ¢~ = + ¢~ % and the other notation is
as in (8.8). O

Sections (8.10)—(8.14) contain a proof of (8.9).

8.10 Lemma. Forse€ Rand x € W,

—(q% + ¢ V*)C, (1 € L(2))
Crcgg = Z Csm (T ¢ ‘C(m))

TER
reLl(sx)

Proof This follows from (8.2) and the formula (][L3],(5.1.12))

—(q* + ¢ V2)C, (r € L(x))
Crle =19 Cpp + 2 ply:0)C (¢ L))

8.11 In order to facilitate comparison between the various sets B(w,y) we
now define sets B'(w,y) C (W x IN)"*! (n = £(w)) as follows:

For y,w as in (8.8) (ii), let B'(w,y) C (W x IN)"™! be the set of those e =
((wo,70), - - -, (Wn,in)) € (W x IN)"T satisfying (8.8.1), (8.8.2)x (k=1,...,n),
(8.83), (k=1,....n) and (8.84); (k=3,....,n—1).

Note that the definition of B'(w, y) differs from that of B(w, y) only in the range
of values which k£ may take in the condition (8.8.4).
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The proof of (8.9) will be by induction on ¢(w); note that (8.9) holds trivially
for w = 1. Suppose that w € W, ¢(w) > 1 and assume inductively that

CLCy= > TeCh
e€B(v,y)

for all v € W with £(v) < {(w).

Let L(w) = {r} (r € R) and set x = rw. Write w =r,, ...71 (n = £(w)).

8.12 Lemma. With the above notation,
ClCLCL =" > Tye)Cue)-
e€B’ (w,y)

Proof Note that for any m € IN

_ Tm—1 1+ Tm+1 (m > ]-)
(8.12.1) 1T = {71 (m = 0),

that C’. = C,4(¢2 +¢~2) and so C'.C, = 0if r € £(z) (by 8.10). By induction,
we have

C;CmCy = Z Ty(e’)CTCp(e’) + Z TlTV(e/)CP(e/)
e’ eB(x,y) e€B(z,y)
r¢L(p(e")) r¢L(p(e"))
= Z Tu(e’) Z Csp(e’)
e'€B(z,y) SER
réL(p(e")) reL(sp(e’))
+ Y e Fe-1lCouen+ >, TCpe
e’ eB(x,y) e'€B(z,y)
r¢ L' (p(e)) r¢L(p(e’))
v(e)>0 v(e')=0

- Z Z Tu(((zw(e).e) Op(((z(e) e))

e’ eB(x,y) zeW
zp(e/)"TER
rel(z)

+ Z Z Tu(((p(e)),e) Cp(p(er).i).e)

e'eB(z,y) ielN
r¢L(p(e")) |i—v(e)|=1

= > 7©Cue)

e€B’ (w,y)
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since every element of B'(w,y) is uniquely expressible in one of the forms
(@) d) (¢ €Blay).z e W,zp(e) ™ € R, r e £(2))
((p(e"),i),€') (" € B(z,y), r ¢ L(p(e')),i €N, |i —v(e)] =1)

and each such element of (W x IN)X*)*1 is in B'(w,y). (When convenient, we
identify (W x IN)"™t and (W x IN) x (W x IN)™). O

Now if n < 2 or (n > 3 and 7, # rn—2 (n = £(w))), then C.C, = C/, and
B (w,y) = B(w,y) so (8.9.1) holds. Hence we may assume for the remainder of
the proof that n > 3 and r,, =r,_o. Let z =1, _o...71.

8.13 Lemma. With the above notation

> Tu@Cote) = Y To(e)Caler)

eeB’ (w,y)\B(w,y) e’'eB(z,y)

Proof It will suffice to show that the map 6’: (W x IN)* )+ — (T x IN)¢(w)—1
defined by ((wo,%0),- .-, (Wn,in)) — ((Woyi0), .., (Wn—3in—3), (Wn,in)) re-
stricts to a bijection 0: B'(w,y) \ B(w,y) — B(z,y) such that v(f(e)) = v(e)

and p(6(c)) = p(e) (e € B'(w,y) \ Blw, y)).

But for e € (W x IN)“®)+1 " ,(¢'(e)) = v(e) and p(#'(e)) = p(e) so we need only
check that 6’ restricts to a bijection as claimed.

Before checking this claim, it is convenient to note the following:
(8.13.1) if ((wo,0),-- -, (Wn—1,in—1), (Wn,in)) € B(w,y) and (w),,i,) € W x IN
then ((wo,%0), .- (Wn_1,tn_1), (w,,i)) € B(w,y) iff
- { {1} (rn ¢ L(wy,))
ww, 1 €
R (rp € L(w))
and
i = [ (o8 000
o 0 (rn€ L(w))).

Let e = ((wo,i0),-- -, (Wn,1n)) € B (w,y) \ B(w,y). Then ((wo,ig), ..., (wp—2,
in72)) € B(z,y) and (wnflainfl) = (wnfi’ninf?:), S0
1 _1 {1} (Tnf2 =Tn ¢ E(wn))
w,_1 € {R

WnWp—3 = Wn (rp_o =1my € L(wy))

123



and ( ¢ L(wy))
. . TR . 1 Tn—2 =Tn & L(wy
|Zn - Znf3| - |2n Z”*1| - {0 (Tn,Q =T, € »C(wn))

By the claim (8.13.1), it follows that 6’(e) € B(z,y); hence 8’ restricts to a map
0:B'(w,y) \ B(w,y) — B(z,y).

To show @ is a bijection, define a map 9’: B(z,y) — (W x IN)“®")*+1 as follows.
For ¢/ = ((wo,i0), ..., (Wn—2,in—2)) € B(z,y), set ¥'(e/) =

((w07 iO)? ey (wn—?n /L.n—?))v (wn—?n in—S + 1)7 (wn—?n in—3)7 (wn—27 in—2>)

if r,—1 ¢ L(wy—3) and ¢'(e') =

((U)(), iO)v sy (wn—37 in—3)7 (Tn—2wn—37 in—3)7 (wn—37 in—3)7 (wn—27 in—2>)
if r,—1 € L(wp—3). Fix €' and write ¢/(e') = (w(, iy), - . ., (wl,),)).

Now we prove that ¢/(e’) € B/ (w,y) \ B(w,y). Since € € B(z,y), the conditions
(8.8.2) and (8.8.3)) hold for 1 < k < n — 3, (8.8.1) holds and (8.8.4); holds
for 3 < k < n — 2. To check the other conditions, we distinguish the cases

Tn—1 ¢ /v‘(wnf?))a Th—1 € E(wn73)~

Suppose first that 7,1 ¢ L(w,—3). Now 7,9 ¢ L(w,—3) = L(w),
(8.8.2),— for €, r,—1 ¢ L(w,_3) by assumption and so (8.8.2),_2, (8.8
(8.8.3),—2 and (8.8.3),,—1 all hold for ¥’(¢’). Also

—2) by
2 n—1,

roo—1 -1 {1} (rn=rn_2 & L(wp—2) = L(w},))
(8.13.2) w,w, | = Wp_ow, 45 € {R (rm € L))

and
(8.13.3) i, = fn_1] = lin—2 — in—s| = {é

so (8.8.2),, and (8.8.3), are satisfied by #'(e’). Now (8.8.4),,—1 holds since
oy = s+ 1> ins = i,_g. Hence /(¢') € B'(w,y). But ¢/(e') ¢ Bw,y)
since r,, = rp_g, while i/, 5 =ip,_3+1>id,_3=1,_;.

Now suppose that 7,1 € L(wy—_3); then r,,_o € L(ry—2wy_2) = L(w],_5) and
rn—1 € L(w),_;) so (8.8.2),_2, (8.8.2),_1, (8.8.3),—2 and (8..8.3),,_1 are all
satisfied by v’(e’); moreover, (8.13.2) and (8.13.3) continue to hold, and show
that (8.8.2),, (8.8.3), are valid in this case. Also,
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(8.8.4),,—1 holds since (w],_5) = 1 + l(wp—3) > L(w,—3) = £(w),_3); hence
Y'(e') € B'(w,y). But ¢'(e') ¢ B(w,y) since (w,_3,,_3) = (w),_1,%,-,) and
0w ) = Ewn5) + 1 > Clwn_s) = () ).

Thus, v’ induces a function : B(z,y) — B'(w,y) \ B(w,y), and 01 is the
identity on B(z,y). To complete the proof of bijectivity of #, and hence of the
lemma, it will be shown that ¥f(e) = e for any e = ((wo,ip), .- ., (Wn,in)) €
B'(w,y) \ B(w,y).

Case 1. rp_1 € L(wp—1)
Now (8.8.4), is false and wy,_o # w,_1, so it follows that (w,_1,i,-1) =

(Wp—3,0n—3) and l(w,—2) > L(wp—1). This gives l(w,—2) > l(w,—_3); by
(8.8.2),—2, wn,gwgig € Rand r,_o € L(w,_2). Hence

Wpn—2 = T'pn—2Wn-3, Z'nf2 = 1n-3-

Therefore,

’(ﬁ9<€> = ¢((w0, io), ceey (wn_g, in_g), (wn, Zn>)
- ((w07 /L.0>7 sy (wn—i’n in—S)y (rn—2wn—37 in—B)y (wn—?n Z.n—?))’ (wru zn))

=e as required.

Case 2. 7,1 ¢ L(wp—1)

Here (8.8.4), is false and w,_2 = w,_1, so it follows that (wp_1,i,-1) =
(wnfg,infg) and %,_9 > i,_1. Since w,_o = Wy_3, it follows that r,_o ¢
L(wp—2) and |ip—2 — i,—3] = 1. Hence

¢9(€) = ’(ﬁ((w(), Z.o), ceey (wn_g, in_3>, (wn, Zn>)
— ((w07 i()), ey (wnf?n infS)a (’U}n,g, infS + 1)7 (’U}n,g, infS)a (’U)n, Zn))

= €.

8.14 This section completes the proof of (8.9).
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By (8.5), we have C), = C.C} — C’, and so
c,c,=c.c.c,—C.C,

= Z Tu(e)Cp(e) — Z Tu(e)Cp(ey by (8.12) and induction

e€B' (w,y) e€B(z,y)

= > w@Co— D Tw@Che by (813)
ecB’ (w,y) eeB’ (w,y)\B(w,y)

> T Coe)-

e€B(w,y)

O

8.15 Remark. If R(w)NL(y) # 0 then B(w,y) = 0 and so C,,C, = 0. That
this holds in the Hecke algebra of an arbitrary Coxeter system can be seen as
follows: if s € R, ws < w and sy < y, then (¢ + ¢~2)C,C, = C/,C.C, =
C},-0=0 and so C},C, = 0 (because the Hecke algebra is a free .A-module and
A is an integral domain). O

We now give an explicit formula, similar to (8.9.1), for the polynomials Py, .
Before stating this formula in (8.17), we need to define a function p,: W"T1 —
IN and a set Py, (y,z) C W"T! where z,y,w € W and n = {(w).

8.16 Definition. Fixw € W, and let w = r,,...7r; be the reduced expression
for w.

(i) For any e = (xg,...,2,) € WL define

pule) =#{jl1<j<n, r; € L(z;-1)}

(ii) For any =,y € W, let P,(y,x) be the set of those (zq,...,z,) € Wl
satisfying (8.16.1), (8.16.2); (i =1,...,n) and (8.16.3); (i = 2,...,n—1) below:

(8.16.1) xg =y and xz,, = =
(8.16.3); If 7;_1 = r;41, then one or both of conditions (a), (b) below hold:
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(a) zi—1 # T

(b) Ti—1 §é E(l’i_1>. O

The theorem below ([Dy], Theorem 3.8) will be proved in (8.18)—(8.23).

8.17 Theorem. With the notation of (8.16), for any z,y,w € W,
(817.1) PY, = > ¢, O
e€Py (y,x)

8.18 In the case of a universal Coxeter system, the recurrence formula (7.14)
for the Py, may be rewritten, using (8.2), as follows: for z,y,w € W andr € R
with rw < w,

(8.18.1) PY,, = q°PY, .y + ¢ °PY,, —q > PY., where
2L rw
rz<z

C:{l (rz > )

0 (rz<ux).

Now (8.17.1) holds if w = 1, and will be proved by induction on ¢(w). Fix
w € W\ {1} and assume inductively that (8.17.1) holds when w is replaced by
any v € W with £(v) < £(w). To relate the sets Py (y, z) for varying z,y € W,
it is convenient to define sets P! (y,z) C W™t as follows:

For x,y,w as in (8.16) (ii), let P/, (y, x) € W™ be the set of those (g, . .., z,) €}
W+ satisfying (8.16.1), (8.16.2); (i = 1,...,n) and (8.16.3); (i = 2,...,n—2).
Note that the only difference between the definitions of P, (y,z) and P, (y, x)
is the range of values i may take in the condition (8.16.3);.

Let w = ry,...r; be the reduced expression for w (n > 1) and let r,, = r. The
relationship between P, (y, x) and P/, (y, x) is contained in the following

8.19 Lemma. Fixe= (zg,...,2,) € W"" and 2,y € W. Then

(i) ee€ Pl (y,x) iff (zg,...,2pn_1) € Prw(y,a:n_l),a:nx;il e {l,r,} and z,, =
x

(ii) e € Py(y,z) iff e € P, (y,x) and, if n > 2 and r,, = r,_2, then either (a)
Tp—9 # Tp_q or (b) ry_o & L(x,—2), or both.
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(i) e € Puly,z) iff (zo,...,Tn—1,7Tn) € Pu(y,rz).

Proof Parts (i) and (ii) are immediate consequences of the definitions and (iii)
follows from (i) and (ii). |

To prove (8.17.1), we need only show that the right hand side of (8.17.1) is equal
to the right hand side of (8.18.1). Hence it will be sufficient to prove (8.20) and
(8.21) below:

8.20 Lemma. For any z,y € W,

D O =g Pl +d TP,

eG’P{U (y,x)
where
. 1 (rz>x)
10 (re<x)
O
8.21 Lemma. For any z,y € W,
(8.21.1) Z g = Z ") 4 ¢ Z Py
GGP,ZU(y,.T) eepw (y,x) 2w
rz<z
O
The proofs of these lemmas are given in (8.22) and (8.23) below.
8.22 Proof of Lemma (8.20)
The function ¢: W"T1 — W™ which maps (zq,...,2,) to (xg,...,Ty_1) Te-

stricts (by (8.19)) to a bijection

0: P! (y, ) — Prw(y, 72) U Pry (y, ).
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Furthermore, if €' = (xo,...,Tpn-1) € Prw(y,72) U Pry(y, x), then

_ N+1 (rn € L(xp-1))
we 161 :{prw(e)+ n n ]
Pl EN =) (rm @ Lwna) (b (3.16) (i)
S prw(e) +c (e € Pruw(y,rz)
(@) +1—c (€ € Py, x)).
By induction,
P+ 0 Py = Y, T Y gl
e’ EPprw (y,rx) e’ €Prw (y,7)

= Z qu(e’(e’))

elepTw (y7rx)u7j’l‘w (y7x)

= Z q”*(©) as claimed

e’'eP,, (y,x)

8.23 Proof of Lemma (8.21)

If n <2 orifn>3andr, # r,_o, then P (y,z) = Pw(y,z) (by (8.19) (ii))
and {z € W | z < rw,rz < z} = 0 so (8.21.1) holds.

Hence it may be assumed that n > 3 and r,, = r,,_o. In this case there exists a

unique z € W satisfying z < rw and rz < z, namely z = r,,_o...71. To prove
(8.21.1), it will be sufficient to show that

3 @ = 3 g

e€P,, (¥,2)\Puw (y,7) e'€P(y,z)

In order to do this, it will be shown that the function #’: W"t! — Wn-1
defined by (zo,...,x,) — (x0,...,Ty_3,x) restricts to a bijection

0: leu(y7 .77) \ Pw(y, 'ZE) - Pz(y, ,CI]')
such that if e € P/, (y,z) \ Pw(y, ), then
puw(e) = pz(0(e)) + 1.
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For the proof of this claim, it will be convenient to set

, {x (reL(z))

xr =

re (r ¢ L(x)).

Suppose that e = (zq,...,z,) € Pl (y,2) \ Pw(y,z). Then (8.19) (i), (ii) yield
Th = Th—2,Tp—2 = Tp_-1, Th—2 € »C(man)a (130,...,:1,‘”,1) S ,Prw(yamnfl)
and x,-1 € {x,rx}. These facts imply x € {x,_2,rx,_2} so (8.19) gives
0'(e) = (zo,...,Tn—3,z) € P.(y,z). Hence ¢’ restricts to a function 0: P, (y, x)\
Puw(y,z) — P.(y,z). Note also that since x,_o = x,-1 € {x,rz} and
r € L(x,_2), we must have z,_o = x,_1 = 2’; this observation proves that
6 is injective.

We check that p,(e) = p.(0(e)) + 1. Set ¢’ = (xg,...,2n—3) € Pra(y,Tpn_3)
and 6(e) =€ = (zo,...,Tn-3,2) € P,(y,z). Then since r,_1 ¢ L(T,—2) = {r}
but r, € L(x,-1) = {r}, we have

pu(e) = pra(e)+#{jln—-2<j<n, rjeLlr;1)}
[ e Lo
prz(€’) +2 (rn_2 € L(2n_3))

while
p (6’) — p?‘z(e”) (Tnf2 ¢ »C(mnfS))
? p?‘z(e”) + 1 (Tnf2 S »C(mnfS))
S0
puwl(e) = pz(el) +1=p.(0(e)) +1
It remains to check that 6 is surjective. Take ¢/ = (zg,...,Zn_2) € P.(y,x).
Since 7,2 = 7, (8.19) (iii) shows that (xg,...,2n_3,2") € P.(y,2’). Now

using (8.19) (i), (ii), it follows that (xq,...,xn_3,2",2') € Pryw(y,z’) (since
if z,_3 = ', then L(z,-3) = L(2') = {r} = {rn—2} so r—3 ¢ L(zp_3)).
Since za'~! € {1,r}, (8.19) (i) now shows that e = (zq,...,T,_3,2",2',7) €
P (y,z). However, e ¢ P, (y, z) since r,,—o =1, &' =2’ and r,_2 € L(z’). So
e € Pl(y,z)\ Pw(y,z) and 0(e) = (zo,...,n—3,x) = €’; hence @ is surjective as
claimed. m|

We conclude this chapter by exhibiting the polynomials 1 4+ ng (n € IN) as
Kazhdan-Lusztig polynomials
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8.24 Example.

(i) Consider a universal Coxeter system (W, R) in which R = {r,s,t}. Fix

n € IN and let
n+3 n
——~ —
w = (...trstrst), y=(...trst).

For fixed j (0 < j <n) set

( 7

(...trst) (0<1i<y)
J

—

(...trst) (j+1<i<j+3)
i—3

——

C(Lootrst) (J+4<i<n+4).

Yi

Define e; = (o, .- -,Yn) € W™, Then

v_10 (G=0)
pw(eﬂ)—{1 (G e{l,...,n})
and Py, (1,z) = {ep,e1,...,en}.

Hence Py,w:Pyl’w:qo%—nql:l—an.

(ii) Take w = trst in (i). Then Py (s,s) = {f1, f2} where f1 = (s,s,s,s,s) and
f2 = (s,ts,ts,ts,5). We have py(f1) = pw(f2) =1, and hence P;,, = 2q. |
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Chapter 9

UNIVERSAL COXETER SYSTEMS: [P2]

This chapter is devoted to a proof that the Hecke algebra of a universal Coxeter
system satisfies the positivity property [P2] of (7.21). Recall that [P2] asserts
that

f;}lfy € Z IN[q%,q_%]Cz.

In contrast to [P1], [P3] and [P4], this involves three separate bases of the Hecke
algebra (the others involve at most two); the proof of [P2] is correspondingly
more intricate. The coefficients in the Laurent polynomials arising as structure
constants will again turn out to be the cardinalities of combinatorially defined
sets, but this time we will not explicitly describe these sets.

9.1 Throughout this chapter, (W, R) denotes a fixed universal Coxeter system,
and we use the notation of (8.1). For the proof of [P2], we will need an ancillary

result that expresses the products T ;_11 Cy (z,y € W) in terms of the basis
{C.}.ew. This result is a restatement of ([Dy], Theorem (3.9)) but we will give
a different proof. Following is some notation required for the statement of this
auxiliary result in (9.3) below.

9.2 Definition.

(i) For any (yo,--.,yn) € WL let

1 ) )
7(6)=§#{J|1§J§n, Yj =yj—1}

(ii) Let =,y € W, and * = r,...7r1 be the reduced expression for z. Let
Q.(y,2) € W™ be the set of those (yo,...,yn) € Wt satisfying (9.2.1),
(9.22); (j=1,...,n) and (9.2.3); (j=1,...,n— 1) below:
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(921) yo=vy, yn =2

(9.2.2), YiYjo1 € {g} E:j i ﬁg%

(9.2.3); £(y;) < £(yj—1) or £(y;) < L(yj11)

9.3 Proposition. For any z,y € W with R(z) N L(y) = 0,

T;illC _ Z Z q—v(e) C,

z€W \e€Q.(y,z)

Proof For any r € R, we have T = C,. 4+ ¢~ 2, so (8.10) gives

—q2Cl (rw < w)

Tfle = q_ECw + Z Csw (rw > w)
seER
reL(sw)

i.e.

—q%Cw + > Cs (rw<w)
seER
~ reL(sw)

(9.3.1) T7'C, = )
g 2C,+ >, Cu (rw>w)
sER
reL(sw)

since {s € R|r e L(sw)} =10 if rw < w.

Now let & = r,, ...7r; be the reduced expression for z. For any e = (yo, . .

Wntt et
1 (y; # yj-1)
Si(e) =< —q% (y; =yj—1, 15 € L(y;))
F (Wy=yien L) (G=1,....n)
and d(e) = d1(e)...0,(€).

Note that
(9.3.2) 6(e) = ¢ if e € Qu(y, 2)
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Define A, (y, 2) to be the subset of W™t consisting of those (yo, . .., yn) € W"T!
satisfying (9.3.3), ( 9.3.4) and (9.3.5) below:

(9-3.3) yo =y, yn =z
(9.3.4) yjy; -, €{1IJUR (j=1,...,n)
(9.3.5) If 1 < j <nand yjyjill € R then r; € L(y;).

Using (9.3.1), it follows by induction on ¢(x) that

(9.3.6) TG, => | Y de)c.

ze€W \e€A,(y,z)

We now fix x, vy, z and show that

(9.3.7) doodle)= > .

e€A;(y,z) e€ Q. (y,2)

For any e = (yo, ..., yn) € Az(y, ), define

Je)={jl1<j<n-1, yj—1=y; =yj+1 and rj31 € L(Yj41) }
Will<i<n—1, yj1 =y, 0(y;) > y;-1) }-

Now introduce an equivalence relation ~ on A, (y, z) as follows: for e as above
and € = (yo,...,y,) € Az(y, z), write e ~ €' iff J(e) = J(¢/) and y; = y. (i €

{0,...,n}\ J(e)).

Fix e = (yo,.--,Yn) € Az(y,2). For any € = (y),...,y,) € W"L we show
that
(9.3.8) (¢! € Ax(y,2) and €’ ~ e) iff

{y§y;1=1 (J €{0,...,n}\ J(e))

viy; L e{Lrs} (G € J(e).

Note firstly that if j,k € J(e) and j # k then |j — k| > 2. Suppose that e’ €
Az (y,z) and €' ~ e. Then for any j € J(e), we have y; 1 = yj11 = Y1 = ¥;_;.
Also, either y; = y;_1 or yjyjill € R, rj € L(y;); since in the latter case we
have £(y;) > €(y;j—1) by definition of J(e), it follows that either y; = y;_1 or
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Yy; = 1;yj—1. Similarly, either y; = y; | or y; = rjy;_;. Thus, the left hand
condition in (9.3.8) implies that on the right.

Conversely, suppose that ¢/ € W"T! satisfies the conditions on the right of
(938) Let YRS J(e) We have either Yji—1 = Yj; = Yj+1 OF Yj—1 = T5Y; = Yj+1
and r; € L(y;); it follows that r;1; € L(y;11) (from the definition of J(e) in the
first case, and (9.3.5) in the other). Now y;»y;:ll € {1,r;} and y;»Hy;_l e{1,r;};
if y; = rjy;_y, then r; € L(y}) (since rj11 € L(y;41) implies r; ¢ L(y;_;)).
These facts imply that ¢’ € A,(y, z), and that J(e) C J(e’). Interchanging the
roles of e and €', J(e') C J(e). Hence e ~ €’ as claimed.

Now for e = (yo,...,yn) € A2(y,2) and j € J(e), we have

s

It follows that if also ¢ = (y),...,y),) € A, (y,2) and € ~ e, then d(e') =
(—1)*6(e) where k = #{j € J(e) | y; # y; }. By (9.3.8), we have now that if
J(e) # 0, then

Z d(e) =0, hence Z i(e) = Z i(e).

eIGAz(y,z) eEAI(y,z) EEAz(y,Z)
e/Ne J(e):@

To prove (9.3.7), it need only be checked that
{e€ Au(y,2) | J(e) =0} = Qu(y,2)
(by (9.3.2)).

Fix e = (yo,.--,yn) € W™ Suppose first that e € A,(y,z) and J(e) = 0.
If1 <j<n-1and (9.2.3); failed, (9.3.4) and (9.3.5) would give y;_1 =
rir; = Yj+1, Yj > yj—1 and so j € J(e), a contradiction. To check (9.2.2);
for 1 < j < n, it is enough by (9.3.4) and (9.3.5) to show that if y; = y,;_1
then r; ¢ L(y;). But if y1 = yo and r1 € L(y1), then m € L(y) N R(x)
contrary to the hypothesis of (9.3). If 2 < j < n vy, = y;—1 and r; € L(y;),
then r;_1 ¢ L(y;—1). Thus, (9.3.4) and (9.3.5) imply that y;_o = y;_1; hence
j—1 € J(e), again contrary to assumption. Since e satisfies (9.3.3), we have
e € Qu(y, 2).

Conversely, suppose that e € Q. (y, z). Then a fortiori, e € A,(y, 2). If j € J(e),
then (9.2.3); implies that y;_1 = y; = yj+1 and rj41 € L(y;41), contrary to
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(9.2.2),41. Hence J(e) = (), completing the proof of (9.3.7) and hence of the
proposition. O

9.4 Corollary. For any x € W,

.- ¥ 9)e

zeW eGQ;(l7z)

where Q' (1,2) = { (yo, ..., yn) € WHZIF1| (yal, oy e Qi (1,27 1

Proof Applying the anti-involution a, T, —> > &Zfz_l of the Hecke algebra
to (9.3) gives

ix—lzz Z AR o

zeW \e€Q.(1,z)

and the corollary follows on noting that v((yo, ..., ¥n)) =Y(yg ' -+, y7 "))
O

Following is the main result of this chapter.

9.5 Theorem. Fix y,w € W. Then for any x € W, there is a subset B, of

U (Qu(z,z) x Q(1, 2)) such that
zeW

TVJ}lTVy:Z Z UG RION o
z€W \ (e,e’)EB,

The proof of (9.5) will be given in (9.6)—(9.13).

9.6 If w = 1 then (9.5) is trivial. Henceforward, we assume w # 1. Let
R(w) = {s} (s € R) and write v = ws. Note that T;1C, = —¢q2C, if sz < x.
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Hence
/j‘wlf Ty — T711 Z q’Y(el)Cz

ZEW
eIGQ;(l,z)

Z qv(e’)fg}lcz

zeW
GIGQ;(LZ)
Sz>z
D DR ARt anter
v
zeW
e/GQ;(l,Z)
sz<z
= Z Z UCOR(OToN
zeW zeW
'€ (1,2) e€Qul(z,x)
Sz>z
- X Y. @,
zeW zeW
e'€Qy(1,2) €'€Qy(z,x)
sz<z
=S [ 3 1)
xeW zeW

(e,€")EQuw (z,x) X Q;(l,z)

_ 3 qv(e’)+%7(e)} .

zeW

sz<z

(e,e')EQv(z,m) X Q;(l,z)

noting that Q,(z,x) = 0 unless sz > z.

Hence to prove (9.5), it will suffice to prove the following

9.7 Lemma. For any x € W, there exists an injection

0. | (Qu(z2) x Q(1,2)) — | (Qu(z2) x Q(1,2))

zeW zeW
sz<z

such that if 0, ((f,e) = (f',¢€’), then (') = v(f') = v(e) —~v(f) + %



(For (9.5) is then satisfied by taking

B. = | (Qu(z ) x Q(1,2))\ Imb,)

zeW

9.8 Lety=ry...7r, bethe reduced expression for y. It is convenient to write
out the definition of @ (1, z) explicitly:

Q, (1, 2) is the set of those sequences (yo,...,ym) € W"t! such that (9.8.1),

(9.82); (j=1,...,m)and (9.8.3); (j=1,...,m — 1) below hold:
(98.1)yo=1, ym =2

(9.8.2); Y1y € {g} s R(%:;;

(9.8.3); £(y;) < £(yj—1) or £(y;) < L(yj+1)-

Note that if (yo,...,ym) € Q,(1,2) and s € R, sz < z then there exists
Jj(1<j<m)suchthat y; =1 (0<i<j), yj =sand s € L(y;) for j <i <m.

9.9 Now let w = s,,...51 be the reduced expression for w. Suppose z €
W, sz <z let e= (yo,...,ym) € Q,(1,2) and f = (21,...,2,) € Qu(z, 7).

Define jg, ko, lo as follows:

Jo= max{j|1<j<m, lz)<...<l(x)}
ko= min{i|1<i<m, {(yo) <...<l(yi—1) < £(y;) and
U(y;) > L(y;) forall j (i <j<m)}

lO = g(yko ) :

To define, 6. ((f,e)), the three cases below must be considered separately:
Case 1 Iy > jo

Case 2 [y = jo and there does not exist j (0 < j <m) with {(y;) =1lp+1
Case 3 ly < jo or (lp = jo and there exists j (0 < j <m) with £(y;) =1 + 1).

We begin with Case 1.
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9.10 Case 1. [y > jo

For j = 0,...,50+1let iy = min{i | 0 < i < m, £(y;) = j}. Then y;, =
Ti1~-~rij (OS] Sjo—f-l) and fOTiSij0+1,
(9.10.1) y; = y;, where j = max{k |0 <k <jo+1, ixp <i}.

Since e € Q) (1, z), it follows that
(9102) ij = max{i ’ 1 < ) < ij+1, T, = T’ij} (1 S] S]o)

Since f € Q,(z,x) and s1 € L(21) = L(z),
(9.10.3) s; € L(2;) (1 <14 < jo)
and since z;z; 1, € R (2 < j < jo),

(9104) Zj = 8j-1%j-1 (2 < ] < jO)

NOW ¥i, 41 = Ty - T4, 413 for i > ijo41,9; 'wir1 € {1} U R and €(y;) > jo + 1.
This implies
(9'10'5> g(yl) = g(yij0+1) + g(yz‘;()l_,_lyi) (ij0+1 <:< m)

In particular, we may write, for some x’ € W,
(9.10.6) 21 = Y = T4y - - - Ti;, ., @ Where £(z1) = jo + 1 + £(a)

From (9.10.3), (9.10.4) and (9.10.6), it now follows that

For m >4 > ij 11, set y, = yzjolyz From (9.10.5), we have
(9108) Ti504+1 S ‘C(y;) and R(y;) = R(y%) (ijoJrl << m)

Note that T1- Ty 4y £ s1...8j,—1 (where < denotes Bruhat order) since
E(T’l ...T’ijoJrl) = ij0+1 >Jjo+1>j590—1= E(sl ---Sjo—l)-

Let k = max{i | 1 S ) S Z.jOJrl,T‘i .. .TijOJrl ﬁ S1.. .Sjofl} and define
1 (0<i<k)
yglz Tk...T; (k§i<ij0+1>
Tk - 'rij0+1—1y£ (Zjo-i-l << m)a

¢ = () € W

Since y{joﬂ = T4, 41, it follows from (9.10.8) that
(9.10.9) " € Q) (1,y,,)
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Now define py = jo and define p1,...,p;; ., in turn by p; = max{l|1 <1<
Pj—1s S1 = Tij 1 —j+1 }; these are all defined since by choice of k, g1 .. Tigen S
$1...Sj,—1. Note also, since 74 ...75; ., £ 81...8j,—1, it follows that

(9.10.10) S| # Tk (1 <l< pij0+1*k)'

Now let Pijgr1—k+1 =0 and define

zi =\ Sio%jo (Jo > i = p1)
Tijo+1fl b 'Tij0+1718j02j0 (pl > Z Z pl+1; 1 S l S ij0+1 - k)

We now check that (z{, ..., z,,) satisfies (9.2.2), (9.2.3).

We have sz, = 8j,Sjo—1---51Ym by (9.10.4), so (9.10.6) and (9.10.7) give
L(8jo2jy) = {Ti;,41 }- 1t follows that
(9.10.11) £(2}) = {ri, 1} (> i > pry1,0 <1 < ij, — k).

Now for p; > i > piy1, si #1iy -1 = L£(2]) and 2; = z;_y. Ifij,01 —k>1>0
then L(zp,) = {ri;, .1~ + 1} = {sp,} and 2, = ri; ,,~12,,_;. This shows that
(9.2.2); holds for 1 < i < jo, and, moreover, that £(z;) > ... > £(z; ), s0
(9.2.3); holds for 1 < i < jo.

Also, sj, € L(zj,) and z; _; = sj,2;, < 25, s0 (9.2.2)j, holds; if jo < n, then
the definition of jo implies that (9.2.3);, holds. Since (9.2.2); and (9.2.3); hold
for i > jo (because f € Q,(z,x)), we may conclude that
(9.10.12) f' = (20, .., 2},) € Qu(z}, 21,)-
Note that
2o =Tk .. rij0+1*18jozj0
=7r.. .rijoﬂ,l(sjo e 81Ym)
=Tk .. 'Tijo_}_l*ly;’],

.
=Ym

Hence (f',e') € U (Qu(z,z) x Q(1,2)), and we set 0.((f,e)) = (f',¢').

zeW
Now
(&) =) = s#li [y =o' ) — o 2 =20 )
v v =5 Yi =¥Yi—1 QU 1% = Zj—1
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1 . . 1 . .
#{Z>lj0+1|yi:yi*1}+k_1]_§[#{3 >jolzj =21}

=5l
2
+ (o = 1) = (06) = £Z)o-)]

and £(zq) — £(2} 1) = ij,+1 — k. Also

1 1
’7(6) —’Y(f) = 5#{i ’ Yi = Yi—1 } - 5#{j ’ 25 = Zj—l}
1
= 5[#“ > djot1 | Yi = Yie1 } + (Gjo1 — 1 — Jo)]
1
- 5#{3' >jo |2 =2j-1}

and so we have that v(e) — v(f) = v(¢/) —v(f’) — 3 as wanted.

The following observations will show that (f,e) is determined by (f’,€’).

Firstly, jo is determined by
(9.10.13) jo —1=max {j |0 < j<n, £(2}) <...< (%)}

Then by (9.10.4), f = (21,. .., 2m) is determined by
(9.104) z; = z; (n>j72>30); 25 =s5;. ~-5jo—1zé'0 (1<j<jo—1).

Now k is determined by the condition

(9.10.15) k=min{i |0 <i<m, L(y/)=1}

and then 7,1 is determined by

(9.10.16) 41 — k = €(2g) — 6(23-071).

By (9.10.7) and (9.10.2), 4,,, ..., 1, are given by

(91017) ij = max{i | 1 S 1 S ij+1,’l“i = 55 (j :j(), . ,1)

Now (9.10.1) gives
(9.10.18) for i < ij,41,Yyi =Ty ...75, where j = max{k | i <i}.

J

The remaining y;, and hence e, are finally given by
(9.10.19) yi = 7y iy oy (P ) T (M >0 2> d540).

When we have finished defining 6, the observations (9.10.13-19) will show that
the restriction of 6, to the set of pairs (f,e) in Case 1 is injective. In order

141



to compare the image of pairs (f1,e1), (f2,e2) belonging to different cases, we
shall also need the following fact (9.10.21). Let

(9.10.20) a=max{j|£(z}) <...<l(z)}
b= £(z0) — £(2)
c=max {i|{(y;) =0}
d=max{i|(y;) <... <L), L(y]) > Ly]) for j >i}.

Then
(9.10.21) f(y;’l) >land1+b<d-—c

Here, this follows because a = jo — 1, b =14,4+1 —k, c=k—1and d > 7;,41.
O

9.11 Case 2. [y = jp and for all j with 0 < j < m, we have £(y;) # lo + 1.

For j = 0,...,50 let i; = min{i | 0 < i < m, l(y;) = j}. Also, define
ijo+1 = m + 1. Then for f0 <i < m,
(9.11.1) yi = yp, . yr, where j = max {k |0 <k <jo+1, ip <i}.

Since e € Q) (1, z), it follows that
(9112) ij = max {Z ‘ 1<i< ij—l—l’ri =T } (1 <3 S]())

Since f € Q,(z,7) and s1 € L(z1), we have
(9.11.3) s; € £(z) (1 <i < jo)

and because zjzjill € R (2<j<jo), it follows that
(9114) Zj = 8j-1%j—-1 (2 S j S jo)

Now
(9.11.5) 21 = Yy =74y - - .1i;, and so from (9.11.3), (9.11.4) we get

Note that zj, = sj,—1...5121 = sj,. Set g = 1 (0 < i < m) and ¢’ =
(Y- yr). Also, define

Z5 = . .
zj (jo<j<n)

and f' = (2{,...,2]).

n
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Then ¢’ € @ (1,1) and, noting that f’ satisfies (9.2.3);, (if jo < n) by definition
of jo, we also have f' € Q,,(1,2]) = Q. (1, ).

We set 0,.((f,e)) = (f',€'), and note that

W) =) = 2 = Sl 1)+ #L5 > o | 5 = 51 )]
Z%(m—jo)—%#{j>jo!ijzj—1}+%
= (&) =) + 5

as wanted.

The following points show how ( f, e) may be reconstructed from (f’, e’). Firstly,
(9.11.7) jo = min{ j | £(2}) > £(2}_;) }

and then f is given by
(911.8) zj = 25 (n =7 > jo); 25 = 8j--8j,-172j, (1 <j < jo) (from (9.11.4)).

From (9.11.2) and (9.11.6),
(9119) ij = max{i | 1< < ij+1 r, = Sj}

(1 <j<jp) and e is now determined using (9.11.1) as follows:
(9.11.10) y; = 7y, ... 75, where j = max{k |ip < i} (0 <i<m).

For comparison with other cases, this time we need merely note that
(9.11.11) y// = 1. O

9.12 Case 3. [y < joor (lop = jo and {(y;) = lp+1 for some j with 0 < j < m).
We begin be reformulating the conditions defining this case.

Suppose first that lp < jo. Since s;, € L(zj,), we have {(yn,) = £(z1) =
U(zj,) +Jo —1 > jo > lp. This implies that there exists j (0 < j < m) with
¢(y;) = lp + 1; this also holds (by assumption) if Iy = jo.

Hence we may define p = min{j | 0 < j < m, l(y;) =lp+1}. Now p > ko
and ((yo) < ... < l(yp—1) < £(yp), so by definition of ko, there exists p’ > p
with £(y, ) = lp. Take p’ minimal with respect to these two conditions: then
Uyp—1) =1lo+ 1 and {(y, ) = lo.
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This shows that the conditions defining this case are equivalent to
(9.12.1) Iy < jo and for some j (0 < j <m), (y;) =1lo+ 1 and l(y;4+1) = lo.

For j=0,...,lo+1,let i; =min{¢ |0 <i<m, {(y;) =j}. Then
(9.12.2) y; = 74y ... 74, where j = max{k |ix < i} (0<1i <idzq41).

Since e € Q] (1, z), it follows that

(9123) ij = rnax{i ’ 1 < ) < ij+1, T = T’ij } (1 S] < l())
Now f € Q,(z,x) and s1 € L(z1), so

(9.12.4) S; € /:(Zz) (1 <1< lo)

This implies, since z;z; ', € R (2 < j <lp), that

(9125) Zj = 8j-1%j—-1 (2 S j S lo)

Let p=min{ j | m > j > i,41 £(y;) = lo }. Because e € @ (1, z), we have
(9126) p > Z.lo—i—l +1, E(yp_l) =lp+ 1.

Now Y, o, = Tiy .- -Tiyy - For i < j < p—1, yjillyj € {1} UR and
U(y;) > lp + 1, so by induction, we may write, for 4;, 41 <j <p—1
(912.7) yj = T4y -+ - Tiyy 11 Tj = Yiy Tiy, 2 Tj Where £(y;) = lo + 1+ £(z;).

Since £(yp-1) = lo + 1, it follows that y,—1 =1y, ..., 3 since £(yp) < £(yp-1)

and ygflyp € R, it follows that
(9.12.8) yp =13y - .14, -

But 7, € R(y,), and therefore
(9.12.9) rp =1y, .

Now y;,, = ri, ...m; , and for j > 4, £(y;) > lo and yj__llyj € {I1}JUR. It
follows that we may write

(9.12.10) y; = yilox; where ((y;) = lo + E(x;) (J >1,)-

Taking j = m in (9.12.10), using (9.12.4) and (9.12.5), we have

For ¢ > ij,41, let
-1 .
/ { Yi,, Yi (i <p)

Y, = _1 .
" ragn g Vi, vi (02 p)

i.e.
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g = 4 Vg (i <p)
7 Tilo+lr7;l0 QU; (2 Z p)

_ _ / / _ . /o X .. — .
Now xp_1 =1 =, so y, 1 = 1, and y, = ry ., ; also, rp =15 €

R(y,_typ). For i > ij,11, we have

{ril0+1} (Z <p, T;= 1)
RWI=y ) 2p ai=1)
Rz) (i>p o #1)

noting that, by (9.12.7) and (9.12.10), ry ,, ¢ L(z:) (i < p) and 1y ¢
L)) (> p) .

From this, we conclude that
(9.12.12) R(y;) = Ry;), L{y5) = {riygsr} (itg+1 <J < m).

The remainder of the argument here is similar to that in Case 1.

Note that ry...7, ., £ s1...5,,-1, since 0(ry .. 'Tilo+1) =ig+1 > lo+1>1—
1=4(s1...81-1). Let k = max{i |1 <i <41, Tiee Tig g & S1...815—1}
and set

1 0<i<k)
y;l = Te...T; (k SZS il0+1)

, L.
Tk Tiy oy —1Y5 (M 20> d41)

We define €’ = (yg,...,yp,) € W™t and claim that ¢’ € Q) (1,y;,). Firstly,

note y;.’:lly;.’ = yj*_llyj and R(y;) = R(y;) (j > i,+1, j # p); it follows that e’
satisfies (9.8.2); (j > iy+1,7 # p). But yg:llyg =1y, =7p € R(y,), so (9.8.2),
holds, and (9.8.2); clearly holds for 1 < j < 4;.

Now (9.8.3); holds for 1 < j < ij,41. If ijp41 <j<p—1lorp<j<n-—1,then
(Y7 1) —L(y;) = L(yj+1) —£(y;); this shows that (9.8.3); holds for such j (noting
that, in case j = 4,41, then ¢(y;4+1) > £(y;) by (9.12.6) and that, if j = p, then
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l(yj+1) = £(y;) = lo). Finally, (9.8.3),_1 holds since £(y,) > £(y,_;). Hence
e € Q,(1,y,,) as claimed.

Now define pg = Iy and define pq, ... s Pigy 11—k 0 turn by p; = max{[/|1<[<
Di—1y 81 = Tiy 1y —i+1 } (these are all defined since 7j1 .. g < S1ee Slg—1)-
Note that, since ry .. Tirg 1 £ S1...81,—1, s¢ # 1 for all [ < J— Set
Piyy11—k+1 = 0 and define
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z/:{zj (J = o)

J Tigsai—l- - Tig 2o (PU>J 2 pig1, 0 <1 <iggy1 — k)

Note that
E(zlo) = {slo} = {Tizo}

and hence that

L(2}) = {riy 11} 00 >J > pig1, 0 <1 <y — k).

An argument like the corresponding one from Case 1 now shows that [’ =

/ / / / [ _ [ — A —
(205 +r2n) € Qul(z),2y,). Here, 2z, = 2, = z and 25 = rg.. .15 21, =

. "o ) . ) —1 ) :
Tk .. -Til0+13l0—1 ...81%1;5 hence Yn — Tk - T’zl0+1_17“210+17’1l0 yizo Ym = Zp, s1ce
yilo = 81...S1y Slg = T’ilo.

Thus, we may set 0,((f,e)) = (f',€’). Now

7€) = 7(F) = 30 > it |15 = g1} + g — (o + 1)
- %#{j >l zj=z-1}

while

1

v(e) = (f) = 5#{]' > | Y] =y} +k—1]

1 :
=5l #I> o | 2 =21} + 1o = (Uz) = 1(=,))]
But for j > i, 11, y7 = vyi_; ff y; = y;-1, and also I(25) — U(2],) = d1g41 — k+ 1.
Hence v(e') — v(f') = v(e) = v(f) + 3 as desired.

We now show that (f’,e’) determines (f,e). Firstly,
(9.12.13) k = min{ j | £(y;) = 1}.

Now for 4;,+1 <1 < p,

y)) = tig+1 — k + £(y;)
= ig41 — kK+1+ f(xz)
io+1 — Kk +L(y;) —lo
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and for p <1,

(i) =itg41 — k +£(y;)
= ilo—i-l —k+2+ f(x;)
= il0+1 — k + 2 + f(yj) — lo.

For ijy11 < <p, L(y;) > lo+1s0l(y]) > 4,41 —k+1, and for i > p, l(y;) > o
so L(yl') > ij,4+1 — k + 2. Now E(y;;ﬁl) =441 — k+ 1. Since p —1 > ij,41 (by

(9.12.6)) and y,_y =15 .. .74y ,, = y£;0+1, it follows that

(912.14) 4y 41 = max{d [ k < i <m, L(yy) < ... <L(y]), Ly]) > L(y;) for all

j >} and that
(9.12.15) p — 1= max{i | £(y}) = £(y}) )}

Then [j is determined by the condition
(912.16) lop = min{ j | £(z;) = £(2)) — dtp+1 +k —1}.

Now from (9.12.5), we have
(9.12.17) zj = ; (j > lo); Zj = 8j...815—1%l, (j < l())

and so f = (z1,...,2,) is determined.

Now iy, ...,71, are determined (from (9.12.3), (9.12.11)) by
(91218) ij = max{i | 1< < ij+1, ry =35 } (] = l(), ey 1)

For ij,+1 < i <m, y} is given by
(912.19) y; = 7iy -1 - - TRY]

and finally, e = (yo, ..., ym) i given by

ril...rij,j:max{k]ikgi} (0§i§i10+1>
91220) =1 iV (itys1 < i <)
Yy, T ril0+1y£ (Z > p)'

Hence (f’,€’) determines (f,e) as claimed.

In order to compare with other cases, define a,b, c,d as in (9.10.20). Here, we
have a > lo, hence b = (z0) — £(z,) > €(zy) — €(z],) = Q1,41 — k + 1. Further,

c=Fk—1and, by (9.12.14), d = 4;,4+1. Hence
(9.12.21) 4(y),) > 1land b > d —c.
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9.13 In sections (9.10)—(9.12), we have constructed a function

O | (Quiz,2) x Q(1,2) — | (Qulz.z) x Q(1,2))

zeW zeW
sz<z

such that if 0,((f,e)) = (f',€'), then y(e') —=v(f’) = v(e) —=v(f) + 3. Moreover,
it has been shown that the restriction of 8, to the set of (e, f) € U(Qy(z,x) X
Q, (1, 2)) lying in each particular case (i.e. Case 1, Case 2 or Case 3) is injective.
To complete the proof of the injectivity of .., and hence the proof of (9.7), it will
therefore suffice to show that if (f,e) € U(Q,(z,7) x Q (1, 2)) and 0,((f,e)) =
(f',€'), then the case in which (f,e) lies (i.e. Case 1, 2 or 3) is determined
by (f’,€'). Let f' = (2),...,2),) and ¢ = (yj,...,y),); define a,b,c,d as in
(9.10.20). Then by (9.10.21), (9.11.11) and (9.12.21), the following are the only
possibilities:

lyr)>1and 1+b<d—c; here(f e)isin Casel

(y) = 0; here, (f,e) is in Case 2
ly)>1and b>d— ¢ here (f,e) is in Case 3.
The proof of Theorem (9.5) is now complete. |
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