Overview of the Capabilities of the DataHawk Small Unmanned Aerial System (sUAS)

Ben Balsley

Dale Lawrence

Cooperative Institute for Environmental Sciences (CIRES)

Aerospace Engineering Sciences

University of Colorado

University of Colorado

Overview of the DataHawk System

Unmanned Aircraft

• Wingspan: 1 m

• Weight: ~700 gm

Payload: ~ 80 gm

Electric propulsion

Duration: about 40 min.

Rear folding propeller

11-16 m/s airspeed

Power: 40-min lifetime battery

• Cost: ~ \$600

Airframe: EPP foam

Autopilot: custom (CUPIC)

 Autonomous flight control with user supervision, real time changes in flight profile

 Flight termination mode prevents fly-away and conflict with other air traffic

Overview of the DataHawk System

Ground Station

- Laptop computer running a Matlab user interface
- Data radio module and suitable antenna
- Real time aircraft location, status, and sensor data display
- Real time uplink of flight parameter changes and mode commands
- Tested radio range:
 - 3 km laterally 10 km vertically

Typical Ground Support Equipment

Data Radio and Antenna

Data Hawk Operating Modes

Deployment

Auto-Launch: bungee launch for flights up to about 3 km AGL

Auto-Drop: release from a weather balloon for flights up to about 10 km MSL

In-flight

Auto-Helix: vector field attraction to a loiter circle, with prescribed location and prescribed altitude ceiling/floor and ascent descent rates

All helix parameters can be changed in real time from the ground station

Recovery

Auto-Land: Plane glides to designated landing coordinates upon ground station command

DataHawk Auto-Launch Deployment

DataHawk Auto-Drop Balloon Deployment :

- Uses a 200gm helium weather balloon to loft the DataHawk to release altitude (up to about 10km MSL)
- Release upon command from the ground station, and based on altitude and time limits if comm. link is lost.
- Plane automatically transitions to Auto-Helix flight mode

Double-click on picture for video of release

DataHawk Auto-Land Recovery

Current Measurement Capabilities (resolution, cadence)

- Temperature (.003C, 100Hz)
- 3D Wind Vector (.01m/s, 10Hz)
- CT² Turbulence (1.0e-6 m^{-2/3}K²,1 Hz)
- epsilon Turbulence (1.0e-6 m²s⁻³, 1 Hz)
- Humidity (.01%, 10 Hz)
- Pressure (1.0 Pa, 100 Hz)
- GPS location (0.01m, 5 Hz)
- Pressure altitude (0.1m, 100 Hz)

Paracas, 7/17/11 (0811 LT): Profiles of Temperature and Potential Temperature

Wind Sinusoid

Paracas 7/17/11 Ascent (0811 LT)

Paracas, 7/17/11 Ascent(0811 LT)

C_T Profile With ^ 12 m Vertical Resolution

Paracas 7/17/11 (0902 LT): Temperature Fluctuations Around a 600m Diameter Circle at Fixed Height (34 m)

Matterhorn (Granite Mountain) Flight Profile Concepts

One possibility would be to examine the mouth of a specific canyon, as shown below

Matterhorn Flight Profile Concepts Mouth of Canyon Coverage: "profile curtain"

Method for Documenting Winds, Temperatures, Humidity, and Turbulence at the Mouth of a Canyon

Note: This pattern would

take ~ 15-20 minutes

Other Possibilities:

- Large circles
- Transects between circles
- Higher altitude profiles (to about 3km AGL)

