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1. What is MATERHORN? 

• Components, participants, location and domain / instrumentation  
 

2. Initiation of the flows 
• Basin stratification and vorticity development 

 

2. Interactions of flows 
• Collision characteristics 

 

3. Adjustments in the valley 
 

4. Secondary collisions and collision periods 
 

5. Analysis 
• Dimensional analysis, collision types, parameterization and decay time scale 

 

6. Conclusions 
 

7. Ongoing work 
 
 

 
 
 



ONR funded DoD multidisciplinary research initiative (MURI)  

grant to lead multi-institutional efforts  

Goals: 

Designed to identify and study the limitations of current state-of- 

the science meso-scale models for mountain terrain weather  

prediction and develop scientific tools to help realize leaps in predictability  

Components: 

• MATERHORN-M: Modeling  

• MATERHORN-X:  Field experiment  

• MATERHORN-T:  Technology  

• MATERHORN-P:  Parameterization 
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•  2159 m elevation  
 

•  853 m above valley floor 

The Granite Mountain Atmospheric 

Sciences Testbed (GMAST):  

 

“A facility for complex terrain 

airflow studies” 
 

• Dugway Proving Grounds 

 

• 3,700 km2 of controlled, remote 

encroachment-free terrain 

  

• 137 km SW of Salt Lake City, UT 





Temperature and velocity at 2-5m depending on  

tower configuration  

Vectors colored by T compared to previous 15min 

 

IOP 2: 10/2/2012 



Flow through the big gap changes direction 

as now the valley flow from the southwest is 

pushing through 

 

IOP 2: 10/2/2012 



Downslope flow continues to drain into the basin 

while the flow through the small gap reverses 

direction 

 

IOP 2: 10/2/2012 
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IOP 2: 10/2/2012 



Valley flow continues to deflect towards 

the slope 

 

IOP 2: 10/2/2012 



Valley flow penetrated the lower extent of the 

slope flow, beginning to undercut the slope flow.  

 

IOP 2: 10/2/2012 



 

IOP 2: 10/2/2012 



IOP 2: 10/2/2012 



4:41 UTC (22:41 MDT) 4:54 UTC (22:54 MDT) 5:11 UTC (23:11 MDT) 



• Rapid drop in temperature • Rapid drop in temperature 

• Destruction of downslope flow 

• Rapid drop in temperature 

• Destruction of downslope flow 

• Strong vertical velocity 

• Rapid drop in temperature 

• Destruction of downslope flow 

• Strong vertical velocity 

• Intense turbulence 



Interaction contributes vigorously to 

sub-grid heat and momentum transfer 

IOP 2: 10/2/2012 
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IOP 2: 10/2/2012 
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IOP 2: 10/2/2012 



Discernible spikes in TKE when collisions occur 
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IOP 2: 10/2/2012 
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Perpendicular to slope  Along slope Merging 



The end of the collision were identified by the time at which 

the averaged        reached 10% of the maximum Tw 
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• During the MATERHORN X quiescent evenings, interactions between  

   downslope and valley flows were identified, each consisting of a series of  

   collisions, sending waves of disturbance throughout the Dugway basin. 

 

• These interactions generated an intriguing set of small scale processes that  

   contribute vigorously to sub-grid heat and momentum transfer.  

 

• Processes include the collision of gravity currents, formation of intense 

   turbulent regions, intrusions and instabilities.  

 

• WRF and other mesoscale models do not account for such sub-grid processes,  

   hence their incorporation is crucial in modeling mountain terrain winds. 

 

   



Laboratory Experiments 

Slope and valley flow tank Gravity current tank  

•  Determine the nature of the interactions and the  

    possibility of flow instabilities 

•  Examine the turbulence near the region of  

   interaction 

 

WRF Modeling 



 

www.nd.edu/~dynamics/materhorn/  
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