An immersed boundary method in WRF for complex mountainous terrain

Tina Katopodes Chow1, Jingyi Bao1, Jason Simon1, Katherine A. Lundquist2

1Civil and Environmental Engineering, University of California, Berkeley
2Lawrence Livermore National Laboratory
Overview

- WRF-IBM for mesoscale to microscale
 - Terra incognita
- Log law implementation
 - Method development and testing
- Application to Granite Mountain
 - Preliminary results
Terra incognita

- Flow features “partially” resolved
- Also -> terrain features “partially” resolved

Meso-scale
L ~ 2-2000 km

“Terra incognita”
Wyngaard (JAS 2004)

LES
L < 2 km
What we are doing

- Weather and Research Forecasting (WRF) model
 - Mesoscale to microscale
- One tool for all scales
 - Improved turbulence models for LES
 - Immersed boundary method (IBM) for steep terrain

Granite Mountain, Utah
Increasing resolution → steeper slopes

3 km, max slope ~4°
1 km, max slope ~14°
300 m, max slope ~28°
100 m, max slope ~32°
Terrain slope limit

Terrain-following coordinates

- Horizontal pressure gradient errors
 - 45° limit, usually ~30° starts causing problems (e.g. Mahrer 1984)

- Grid aspect ratio limitations

- Numerical stability
Ghost-cell immersed boundary method

Enforce conditions on the immersed boundary

Nearest neighbors

Immersed boundary

Ghost point
IBM - Boundary reconstruction

- IBM implemented in WRF
- 2 different interpolation algorithms
- Handles highly complex topography

Lundquist et al. MWR 2010, 2012
Seamless grid nesting

- Mesoscale to microscale
- Must switch from WRF to IBM-WRF
- When to switch?
 - Resolution, steepness, aspect ratio, turbulence closure
Complex terrain applications

- Current implementation for no-slip
 - Good for urban environments at ~1 m resolution
- Need log law wall stress for complex terrain

\[U = \frac{u_*}{\kappa} \ln \left(\frac{z + z_0}{z_0} \right) \]
\[C_D = \left[\frac{1}{\kappa} \ln \left(\frac{z_1 + z_0}{z_0} \right) \right]^{-2} \]

\[\tau_{wall} = -u_*^2 = -C_D |U_1| U_1 \]
WRF implementation of log law

- Momentum equation in U direction

\[
\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x} - \left(\frac{\partial \tau_{11}}{\partial x} + \frac{\partial \tau_{12}}{\partial y} + \frac{\partial \tau_{13}}{\partial z} \right)
\]

- Requires gradient in \(\tau_{13} \)
WRF implementation of log law

\[
\frac{\partial U}{\partial t} = - \frac{\partial \tau_{13}}{\partial z} \quad \ldots
\]

\[
\tau_{13}|_2 = -\nu_T \frac{\partial U}{\partial z} \approx -\nu_T \frac{U_2 - U_1}{\Delta z}
\]

\[
\tau_{13}|_1 = \tau_{wall} = -u_*^2 = -C_D |U_1|U_1
\]
IBM – log law implementation

\[u_{\text{surface}} = v_{\text{surface}} = w_{\text{surface}} = 0 \]

\[\bar{U} \cdot \hat{n} = 0 \]

\[\tau_w = -\mu \left(\frac{\kappa}{\ln \frac{z_i - h}{z_o}} \right)^2 |\bar{U}| u \]
Test cases

- Flat terrain
- Idealized hill
- Granite Mountain
Validate with simple setup

- Small grid changes can make big difference
- Height of first grid cell above wall determines slope
3D log law implementation
3D log law implementation
Idealized hill

- Goal: match WRF and WRF-IBM results
- Notes about log law:
 - WRF implements d/dz instead of d/dn
 - WRF results depend strongly on choice of dz

No slip conditions

Red – terrain following coordinates (WRF)

Blue – Immersed Boundary Method (IBM-WRF)

Lundquist et al. 2010, 2012
Granite Mountain – IBM test case

Granite Mountain, Utah
Preliminary simulations

- IBM-WRF can run at least 60m resolution
 - Standard WRF blows up at ~300m resolution for 3D Granite Mountain
MATERHORN: addressing challenges in the “Terra incognita”

- Steep topography
- Turbulence modeling
- Land-surface fluxes – similarity theory

Meso-scale
L ∼ 2-2000 km

“Terra incognita”
Wyngaard (JAS 2004)

LES
L < 2 km

IBM-WRF
Take home messages

- There exists a “Terra incognita” for terrain
- Log law implementation very sensitive to resolution near the ground
- Ongoing work: stable boundary layer flows over Granite Mountain
- Funding thanks to the ONR MURI MATERHORN project