## DataHawk Obsevations During the Spring 2012 MATERHORN Campaign

**Dale Lawrence** 

**Ben Balsley** 

Aerospace Engineering Sciences

**University of Colorado** 

**Cooperative Institute for Environmental Sciences (CIRES)** 

**University of Colorado** 

#### Overview of the DataHawk System

#### **Unmanned Aircraft**

- Wingspan: 1 m
- Weight: ~700 gm
- Payload: ~ 80 gm
- Electric propulsion

Duration: about 50 min. Rear folding propeller 11-16 m/s airspeed Power: LiPo battery Cost: ~ \$600 Airframe: EPP foam Autopilot: custom (CUPIC)

- Autonomous flight control with user supervision, real time changes in flight profile
- Flight termination mode prevents fly-away and conflict with other air traffic

Small, low-cost, safe, easy to operate

# Overview of the DataHawk System

#### **Ground Station**

- Laptop computer running a Matlab user interface
- Data radio module and suitable antenna
- Real time aircraft location, status, and sensor data display
- Real time uplink of flight parameter changes and mode commands
- Tested radio range: 3 km laterally 10 km vertically



## Overview of the DataHawk System

#### **Typical Ground Support Equipment**

Data Radio and Antenna



## Data Hawk Operating Modes

#### Deployment

- Auto-Launch: bungee launch for flights up to about 3 km AGL
- Auto-Drop: release from a weather balloon for flights up to about 10 km MSL

#### In-flight

- Auto-Helix: vector field attraction to a loiter circle, with prescribed location and radius, and prescribed altitude ceiling/floor and ascent/descent rates
- All helix parameters can be changed in real time from the ground station

#### Recovery

• Auto-Land: Plane glides to designated landing coordinates upon ground station command



#### DataHawk Auto-Launch Deployment



#### DataHawk Auto-Drop Balloon Deployment :

- Uses a 200gm helium weather balloon to loft the DataHawk to release altitude (up to about 10km MSL)
- Release upon command from the ground station, and based on altitude and time limits if comm. link is lost.
- Plane automatically transitions to Auto-Helix flight mode

Double-click on picture for video of release

#### DataHawk Auto-Land Recovery

- Initiated by ground station command
- Plane glides to designated landing coordinates

Double-click on picture for video of landing

#### DataHawk Measurement Capabilities

(resolution, cadence)

- Temperature (.003C, 80Hz)
  Humidity (.01%, 8 Hz)
  - C<sub>T</sub><sup>2</sup> Turbulence (1.0e-6 m<sup>-2/3</sup>K<sup>2</sup>,1 Hz)

3D Wind Vector (.1m/s, 0.3Hz)

Epsilon Turbulence (1.0e-6 m<sup>2</sup>s<sup>-3</sup>, 1 Hz)

GPS location (0.01m, 4 Hz)

Pressure (1.0 Pa, 80 Hz)
Pressure altitude (0.1m, 80 Hz)

#### **Temperature and Velocity Sensors**





#### **Ground Equipment and Flight Location**































## High-Resolution Temperature Measurements

- Custom "Coldwire" RTD sensor designed for small UAS use
- Two wires for redundancy, but they rarely break
- 300Hz thermal bandwidth, anti-aliased at 40 Hz, sampled at 80 Hz, with range of -60 to +40 C, resolution of 0.003 C
- "Self-calibrating" in post-flight analysis using a calibrated (but slower) semiconductor temperature sensor







#### **Turbulence Measurements**

- High-rate coldwire data used to estimate the temperature structure constant  $C_T^2$
- High-rate pitot data used to estimate the dissipation rate epsilon
- Both utilize 3 second time windows to compute power spectra over the inertial subrange of the turbulence cascade, fitting to the Kolmogorov f<sup>-5/3</sup> slope
- At 1 m/s vertical rates, vertical resolution is 3 m.



## Low Resolution Wind Estimation

Only requires GPS speed measurements

Produces a wind estimate every ½ loiter circle (about every 20 sec)



## Medium Resolution Horizontal Wind Sensing using the GPS-Pitot Algorithm Wind



#### **Quantifying Wind Solution Uncertainty**



Worst case uncertainty is reduced by larger differences in GPS heading

#### Wind Profiles from the GPS-Pitot Algorithm

3 second GPS heading measurement separation yields a 3 m vertical resolution in horizontal wind estimates at a 1 m/s ascent/descent rate. Horizontal resolution is about 30m at 10 m/s flight speed.



## Wind Profiles from the GPS-Pitot Algorithm

Close-up view shows solutions (solid lines) and uncertainty bounds (dashed lines)

Uncertainty bounds vary with GPS heading vector separation; bounds are larger when flying into the wind, where GPS speeds are smaller and more similar over the 3 second measurement interval



#### Quiver Profile Display of Wind Estimates (Helix 2)



#### Detailed Profile Comparison for Helix 1 (Near Tower 4)



#### **Overturn Details for Helix 1**

- Overturn occurs in a stable layer with buoyancy frequency ~ 0.1
- With 0.1 m/s/m shear, results in a Ri ~ 1, suggesting a K-H instability is not the cause of the overturn
- R-T instability (more solar heating near the ridge)?
- K-H due higher sheer at finer resolution?
- Ridge lee gravity waves?

Dugway Proving Grounds, UT, Oct 10, 2012 (09:50–10:01 LT) "Vertical" Profiles of Perlinent Variables and Scales Using 200m-Dia. Helices Prolles Obtained near Tower #4 (close to Min)



## Conclusions

- Small unmanned aircraft systems (sUAS) have the potential to greatly expand the reach of boundary layer observations due to their:
  - Low cost (< \$1k per plane)
  - Safety (<1 kg mass, foam airframe, rear propeller, electric propulsion)
  - Portability (minimal ground support and no surface preparation)
  - Access to large volumes (about 40km laterally, and 10 km vertically)
  - Ability to provide high-resolution sensing (on the order of meters)
  - Autonomy (minimal operator training)
- High resolution atmospheric sensing is made possible by
  - Low flight speed (10-15 m/s), low vertical rates (1 m/s)
  - High sensor sampling frequency (~100Hz)
  - Trend toward miniaturization in electronics and sensors

## Conclusions (cont.)

- DataHawk measurements from a 5 day, 13 flight campaign at Dugway, UT, include
  - Winds (3 sec/3m vert. res., 30m horiz res.)
  - Temperature and velocity turbulence structure (3m vert. res.)
  - Humidity (~10m vert. res.)
  - Vertical profiles to at least 1.6km, lateral surveys > 1 km
  - Step toward "routine" operations: 5-hour sequence of 5 flights
- Current development work includes
  - Higher resoluton, 3D winds (~0.1m vert. res., ~1m horiz. res.)
  - More capable flight planning (circles and paths, automatic sequencing)
  - Improved duration/range/height (50 min -> 90 min)
  - Multiple vehicle, coordinated measurements
  - Portable "pod" of 4-5 planes (ARO DURIP funding)
  - High bandwidth humidity
  - Ground-avoidance for ultra-low flights

#### **MATERHORN** Publications

De Wekker, S.F.J., J. Knievel, Y. Liu, G.D. Emmitt, S. Pal, B. Balsley, D. Lawrence, S. Hoch, Y. Wang, C. Hocut, and H.J. Fernando, "Multi-scale flows and boundary layer structure during the MATERHORN field study. Observations and simulations during the morning transition period", poster presented at the Davos Atmosphere and Cryosphere Assembly (DAVOS-13), Davos, Switzerland, July, 2013.

Lawrence, D. A and Balsley, B. B., "Design of a Low-Cost UAS for High-Resolution Atmospheric Sensing", Proc. AIAA Infotech@Aerospace conference, Boston, MA, Aug., 2013.

## Acknowledgements

Research supported by ARO W911NF-12-2-0075 (Gorden Videen)

Field assistance at Dugway: John Pace, Dragan Zajic, Tracy Lundt