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Overview of the DataHawk System

• Wingspan: 1 m

• Weight: ~700 gm

• Payload: ~ 80 gm

• Electric propulsion

• Autonomous flight control with 
user supervision, real time 
changes in flight profile

• Flight termination mode prevents 
fly-away and conflict with other 
air traffic

Unmanned Aircraft

Small, low-cost, safe, easy to operate

Duration: about 50 min.
Rear folding propeller
11-16  m/s airspeed
Power: LiPo battery
Cost: ~ $600
Airframe: EPP  foam
Autopilot: custom 
(CUPIC)



Overview of the 

DataHawk System

Ground Station
• Laptop computer running a  

Matlab user interface

• Data radio module and 

suitable antenna

• Real time aircraft location, 

status, and sensor data 

display

• Real time uplink of flight 

parameter changes and 

mode commands

• Tested radio range:

3 km laterally

10 km vertically



Typical Ground Support Equipment

Portable Bungee Launcher

Ground

Station

Computer

Data Radio and Antenna

Backup Power (Car Battery)Science Director/ Flight Observer 

“Pilot” in Command

Lunch 

Data Hawk

Science 

Director

Overview of the DataHawk System



Data Hawk Operating Modes
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Deployment

• Auto-Launch: bungee launch for flights up to 

about 3 km AGL

• Auto-Drop: release from a weather balloon     

for flights up to about 10 km MSL

In-flight

• Auto-Helix: vector field attraction to a loiter 

circle, with prescribed location and radius,     

and prescribed altitude ceiling/floor and 

ascent/descent rates

• All helix parameters can be changed in real   

time from the ground station

Recovery

• Auto-Land: Plane glides to designated landing   

coordinates upon ground station command

Landing

Site

Landing

Leg

+



Release2.wmv

DataHawk Auto-Launch Deployment

• Protable bungee launcher can be set up virtually anywhere

• Plane is released by ground station command

• Plane automatically transitions into the nominal Auto-Helix flight 

mode

• Can achieve altitudes of at least 2.2km AGL

Double-click on picture for video of launch



DataHawk Auto-Drop Balloon Deployment  :

• Uses a 200gm helium 

weather balloon to loft the 

DataHawk to release 

altitude (up to about 10km 

MSL)

• Release upon command 

from the ground station, 

and based on altitude and 

time limits if comm. link is 

lost.

• Plane automatically 

transitions to Auto-Helix 

flight mode 

Double-click on picture 

for video of release



DataHawk Auto-Land Recovery

• Initiated by ground station command

• Plane glides to designated landing coordinates

Double-click on picture for video of landing



• Temperature (.003C, 80Hz)

• Humidity (.01%, 8 Hz)

• CT
2 Turbulence  

(1.0e-6 m-2/3K2 ,1 Hz)

DataHawk Measurement Capabilities
(resolution, cadence)

• Pressure (1.0 Pa, 80 Hz)

• Pressure altitude (0.1m, 80 Hz)

• GPS location (0.01m, 4 Hz)

• 3D Wind 

Vector

(.1m/s, 0.3Hz) 

• Epsilon 

Turbulence

(1.0e-6 m2s-3, 1 Hz)



Temperature and Velocity Sensors



Ground Equipment and Flight Location

Photo provided by Dugway photographer 

and cleared for public release

October 7-12, 2013

Dugway Proving Ground, Utah



Flight 1: 7 Oct. 2012, 13:00 LT • Initial check-out flight

• 150m dia. circles 

• Overhead to 300m AGL

20-30 m Met 

Towers

ES5
ES4

ES3
ES2

Launch Point

Ground 

Elevation



Flight 2: 9 Oct. 2012, 15:56 LT 
• Vertical profile south of 

met tower 2 to 500m AGL 

• Horizontal “racetrack” at 

100m south of met towers 

2 and 3 



Flight 3: 9 Oct. 2012, 16:49 LT 
• Horizontal “racetracks”, at 

100m enlarging to the 

west

• “Premature landing” near 

tower 5

ES5



Flight 4: 10 Oct., 2012, 09:48 LT (IOP5)

Launch Point

Landing Point

• Vertical profiles to 700m 

AGL south of  towers 2,3,4

ES4



Flight 5: 10 Oct. 2012, 10:40 LT
• Attempted repeat of flight 4

• GPS heading malfunction 

caused automatic flight 

termination south of met 

tower 4



Flight 6: 10 Oct. 2012, 11:25 LT
• Racetrack horizontal surveys 

between 100 and 150 m AGL

• Very slow climb/descent 

rates (0.05 m/s)



Flight 7: 10 Oct. 2012, 12:15 LT
• Attempted repeat of flight 6

• Ordered to land due to Twin 

Otter incursion



Flight 8: 11 Oct. 2012, 07:58 LT • Large diameter circles east of 

towers (900m dia.)

• Slow vertical rates (0.3 m/s) to     

400m AGL



Flight 9: 11 Oct. 2012, 09:02 LT
• Larger diameter circles east of 

towers (1300m dia.)

• Slow vertical rates (0.3 m/s) to     

400m AGL



Flight 10: 11 Oct. 2012, 10:04 LT
• Large diameter circles east of 

towers (1100m dia.)

• Slow vertical rates (0.3 m/s) to     

400m AGL



Flight 11: 11 Oct. 2012, 11:07 LT
• Large diameter circles east of 

towers (1000m dia.)

• Vertical rates of 1.0 m/s  to     

700m AGL



Flight 12: 11 Oct. 2012, 11:49 LT
• Large diameter circles east of 

towers (1000m dia.)

• Vertical rates of 1.0 m/s  to   

1000m AGL

• GPS heading failure: flight 

term.



Flight 13: 11 Oct. 2012, 13:50 LT
• Large diameter circles east of 

towers (1000m dia.)

• Vertical rates of 1.0 m/s  to     

1650m AGL
• High winds 

caused 

backwards flight

• Plane brought 

down to recover



Flight 4: 10 Oct., 2012, 09:48 LT

Helix 1 

(1 m/s ascent)

Helix 2 

(1 m/s descent)

Helix 3 

(1 m/s ascent)

Helix 4 

(3 m/s descent)

Launch Point

Landing Point

• Vertical profiles to 700m 

AGL south of  towers 2,3,4



High-Resolution Temperature  Measurements

• Custom “Coldwire” RTD sensor designed for small UAS use

• Two wires for redundancy, but they rarely break

• 300Hz thermal bandwidth, anti-aliased at 40 Hz, 

sampled at 80 Hz, with  range of -60 to +40 C, resolution 

of 0.003 C

• “Self-calibrating”  in post-flight analysis  using a calibrated 

(but slower) semiconductor temperature sensor



Turbulence Measurements

• High-rate coldwire data used to estimate the  temperature structure constant CT
2

• High-rate pitot data used to estimate the dissipation rate epsilon

• Both utilize 3 second time windows to compute  power spectra over the inertial sub-

range of the turbulence cascade, fitting to the Kolmogorov f-5/3 slope 

• At 1 m/s vertical rates, vertical resolution is 3 m. 



Low Resolution Wind Estimation

Only requires GPS speed measurements

Produces a wind estimate every ½ loiter circle (about every 20 sec)

GPS 

speed 

data
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Mean 

Wind 
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Mean 

Wind 

Direction



Medium Resolution Horizontal Wind Sensing 

using the GPS-Pitot Algorithm
Airspeed 
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Quantifying Wind Solution Uncertainty

Wind 

vector 

solution 

(red)

GPS heading 

vectors 
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Wind 
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Wind Solution 
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Ellipse for 0.1 

m/s 

measurement 

uncertainty

Worst case uncertainty is reduced by larger differences in GPS heading



Wind Profiles from the GPS-Pitot Algorithm

3 second GPS heading measurement separation yields a 3 

m vertical resolution in horizontal wind estimates at a 1 

m/s ascent/descent rate. Horizontal resolution is about 

30m at 10 m/s flight speed. 



Wind Profiles from the GPS-Pitot Algorithm

Close-up  view shows  solutions (solid lines) and uncertainty bounds 

(dashed lines)

Uncertainty bounds vary with GPS heading vector separation; 

bounds are larger when flying into the wind, where GPS speeds are 

smaller and more similar over the 3 second measurement interval



Quiver  Profile Display of Wind Estimates (Helix 2)

radius = 5 m/s wind speed 

Wind 

direction : 

up = North

right = East

3 sec. 

resolution 

clearly 

resolves 

gusts



Profiles:

Profiles –

Ordered 

Profiles

Detailed Profile Comparison for Helix 1 (Near Tower 4)

Obvious 

Overturn: cause?



Overturn Details for Helix 1

• Overturn occurs in a stable layer with buoyancy frequency ~ 0.1

• With 0.1 m/s/m shear, results in a Ri ~ 1, suggesting a K-H 

instability is not the cause of the overturn

• R-T instability (more solar heating near the ridge)?

• K-H due higher sheer at finer resolution?

• Ridge lee gravity waves?  



Conclusions

• Small unmanned aircraft systems (sUAS)  have the potential to 

greatly expand the reach of boundary layer observations due 

to their:
• Low cost (< $1k per plane)

• Safety (<1 kg mass, foam airframe, rear propeller, electric propulsion)

• Portability (minimal ground support and no surface preparation) 

• Access to large volumes (about 40km laterally, and 10 km vertically)

• Ability to provide high-resolution sensing (on the order of meters)

• Autonomy (minimal operator training)

• High resolution atmospheric sensing is made possible by
• Low flight speed (10-15 m/s), low vertical rates (1 m/s)

• High sensor sampling frequency (~100Hz)

• Trend toward miniaturization in electronics and sensors



• DataHawk measurements from a 5 day, 13 flight 

campaign at Dugway, UT, include
• Winds (3 sec/3m vert. res., 30m horiz res.)

• Temperature and velocity turbulence structure (3m vert. res.)

• Humidity (~10m vert. res.)

• Vertical profiles to at least  1.6km,   lateral surveys > 1 km

• Step toward “routine” operations:  5-hour sequence of 5 flights

• Current development work includes
• Higher resoluton, 3D winds (~0.1m vert. res.,  ~1m horiz. res.)

• More capable flight planning (circles and paths, automatic 

sequencing)

• Improved duration/range/height (50 min ->  90 min)

• Multiple vehicle, coordinated measurements

• Portable “pod” of 4-5 planes (ARO DURIP funding)

• High bandwidth humidity

• Ground-avoidance for ultra-low flights

Conclusions (cont.)
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