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MATERHORN-M Goals

. Determine extent to which errors can be reduced by
improving ICs

. Propose and test observation strategies to reduce
prediction error

- Quantify spatial and temporal scales of error growth
due to mitial-condition (IC) error

- Quantify and characterize model inadequacy
(residual)



Tools/resources

- Ensemble data assimilation
- WRF
. COAMPS

- Bi1g computers

- New observations from 2012 MATERHORN field
program



Framework

. Ensemble data assimilation with WRF and/or
COAMPS:

- Short-range intrinsic error growth

. Systematic (but temporally and spatially varying)
analysis increments

- Ensemble sensitivity analysis (ESA)

» Clustering methods



S Ensemble sensitivity analysis

V

(ESA)

- Sensitivity scales (time and space) can be used to
infer predictability in time and space

. Open 1ssues:
- Sampling error, especially for mesoscales

- Linearity assumptions in complex terrain



- ESA can be used to approximate the adjoint of the forward
tangent linear model, and thus used to evaluate the linear
impact of hypothetical observations.

- Relationship between deterministic and ensemble adjoint first
investigated by Ancell and Hakim (2008) although the 1dea
has been around longer.

- Mathematically, and within sampling error, the only
difference 1s that the ensemble adjoint 1s defined using an
approximation to the full covariance: the diagonal.

- The approximation 1s not necessary when formulated as a
scalar problem.



- Sensitivity of scalar forecast metric J to analysis x2

1S :—]a , and can be estimated with an adjoint of the
X -
tangent linear model.

- Using sample statistics from an ensemble, the
sensitivity can be estimated probabilistically,
resulting 1n a linear regression problem:

(2] (o o)
p° <5xa (5x° )T>




. Approximation of P2 with diagonal leads to the
following definition for ensemble sensitivity:

() P
X X
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D= diag(Pa)



. Approximation of P2 with diagonal leads to the
following definition for ensemble sensitivity:

il oJ
ox” ox’

(gi : )T . <5J(5X3)T>(Da)-1

D= diag(Pa)
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. Question: what change 1n forecast metric J can we
expect from introducing (an additional) hypothetical
observation y° to an analysis?

. After a few lines of math:
oJ - ox® oJ
oy’ 0y’ ox®

2 0J : Ay
(5J=( = ) HT(HP HT+R) (y -Hx)



- Rewriting as a scalar problem:

oJ dJ, cov(J,x') o
e O e aar(n). O
o
Of == 2xy2(y_y)
Jx; O, +0,
T
dfmE o 50y
O, 0, +0,
O'yzy = var(y")

2
o, =cov(x;,y")

o y°1s hypothetical, or
additional, observation
not yet assimilated

o y%1s analyzed value of
hypothetical observation
before proposed
assimilation

o ESA is simply linear

regression



. Ensemble statistics used in both the assimilation and
ESA (adjoint approx.)

. Sampling error 1n assimilation most often handled
by covariance localization

- Sampling error in ESA not yet addressed



. In ensemble DA, covariances are typically weighted
by a function of distance with 0 < p <I:

%

G G o a
6 = —p—2 (3" - y°)

5% Oyy+00

O O
0, 0, +0,

XX

- It 1s clear that localization applies to the regression
between analysis and observations



. Propose a similar weighting on the ESA regressions,
with 0 < a <lI:

2 2

Bhe i p o (=) . J and x“ differ in both space
OF oo

o Spa o and time
2 2

o o 0 a ® 1
W oaliep - s (v ) ngynothgveaunlque
O Tt spatial location

XX

Sampling error is present, but a spatial function
is inappropriate for o because the regression is
both in space and time (i.e. it includes linear
approximation to dynamics).



23 Jan 2009
e Visibilities 0-1/4SM after sunset

e Strong low-level inversion

o Light (<5kts) low-level winds (<130m)

e Wind direction controlled by both

synoptic and local effects/terram

e Warm temps in the afternoon (49°F)
e Possible Lake Breeze
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Analysis: 23/1800 Valid Time: 24/0000

Sensitivity

Region 1:

+0.09 ms' (10,) at X =
+2.2x10~ kg kg' change
in Q, 6 hours later at the
airport

Region 2:

+0.07 ms' (1o, at X =
+1.6x10° kg kg' change
in Q, 6 hours later at the
airport

Tests to region 1

Units: kg kg'! m s-1




Linearity tests simulating assimilation of a perfect

observation

Choose a perturbation point — typically located at a
sensitivity maximum
Perturb ensemble mean with £1 o, 20, 30;
Use analysis ensemble to regress perturbation onto
model state (ensemble mean)
Run perturbed ensemble; look for:
Agreement between predicted forecast o and
actual
Range of perturbations that give forecast 0/ lying
on the same line




Sampling error in linearity tests

. Sensitivity estimates
. Regression to create perturbed ICs
. Possible treatments and outcomes, assuming linearity:

Treatment Effect

Localize IC perturbations to
account for sampling error 1n
analysis covariances

Reduced IC perturbations and

actual &/ response

Account for sampling error in
sensitivity estimates

Reduces predicted o/

No accounting for sampling error

Systematic over/under prediction
results from more/less sampling
error 1n




Linearity Test

1800 UTC Analysis and 6-hr Forecast

1.100E-04

9.000E-05

7.000E-05
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-1.000E-05

Actual Change (kg kg?)
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* (, responses to U-wind perturbation are mostly linear, but weak
nonllnearlty evident at +30..

* Actual response greater magnltude that predicted response -
sampling error in assimilating perfect observation, without
localization, produces systematically large initial perturbatlon




6h sensitivity: J=QVAPOR, x=T, units=kg kg ' K ™

More realistic
observation network;
updated version of WRF
Qualitatively similar
sensitivity to U winds as
seen 1n earlier
experiments

Examine sensitivity to
temperature 1°



) Linearity Test

Y With and without horizontal localization on inner-most domain

Responses Responses with — without localization
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* (Q, prediction response to T perturbation weakly nonlinear

« Systematic over-prediction of response magnitude - sampling error in
estimating sensitivity produces systematically large &/ predictions

« [Effect of localization as expected — actual response magnitude smaller

» Expect greater effect with localization in vertical and on more domains




6h sensitivity: J=QVAPOR, x=T, units=kg kg K

s *‘l 96 members
L n
&
|

i
6h sensitivity: J=QVAPOR, x=T, units=kg kg T

F ‘q 32 members (gl)

/' M

-4
x10

All 6-h torecast valid at 00Z 24 Jan 2009.
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* Estimate the sampling error directly from multiple
ensemble predictions

 Rather than 1 ensemble of 96 members, use 3
ensemble of 36 members (cycled independently)

 CAVEAT: this estimates sampling error in 32-
member ensemble, not the 96-member ensemble

* Follows Anderson (2006, Physica D), who proposed
estimating error in regressions from a sample of
regression coefficients



Horizontal weights on T-0Q

v

regressions, 32-member groups
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* Analysis regressions appear to be estimated more
accurately
* Accounting for both, using these weights, would decrease

predicted &J relative to actual 0J (i.e. a correction)



Summary

- ESA appears promising

.- Sampling error enters into both ESA calculations
and linearity tests

- Mathematical treatment of sampling error in ESA
and predicted observation impact is straightforward,
if sampling error known

. Severity of sampling error 1s variable

. Current: attempt to account for sampling error in
different parts of process



Personnel

. Hacker
. Students:
. Capt. Hank Chilcoat (M.S. 2011)
- Maj. Paul Homan (Ph.D. Candidate)
. Capt. Sean Wile (M.S. Student)
. Post-doc:
- Dr. Jared Lee (arrives Oct 2012)
. Collaborators
. Dr. Lil1 Le1 (ASP post-doc)

- Dr. Dorita Rostkier-Edelstein (Israel Institute for
Biological Research)






- Analysis increments are opposite both random and
systematic error

- Systematic components of analysis increments
provide a “map” of systematic model error (scaled
by ratio of analysis to observation error variances)

- Looking for ways to characterize time and space

scales of systematic model errors: Self-Organizing
Maps (SOMS)



Unclassified

Self-Organizing Maps

Data (forecasts, analyses, etc.)

each iteration

. Create array of nodesand initialize
. Select single state from data at
random
. Identify the node closest to
selected state
. Update that node and nearby
nodes to look more like selected
state

* Smaller changes farther away

from identified node

. Repeat, making smaller updates

* Nodes resemble plausible data states

* Nearby nodes are similar to each other

* Data state can include multiple variables at once
e Useful for identifying spatial patterns in complex

data

e Commonly thought of as a non-linear analogue of
Principal Component Analysis

32 22 11|

44 35 27
65 60 55

30 27 22
42 36 33
63 62 60

24 28 30
34 41 52

59 64 69

20 37 44
45 50 60

576770

45 42 32
64 55 48
/7 68 62

45 45 45
60 61 60
/6 78 77

39 48 51
5763 /0
72 74 79

38 44 50
55 65 /72

72 79 86/

.77 /0

/1 65 60

/0 66 63

.77 69

60 67 69
7072 77

60 61 65
67 72

Unclassified

Slide from Walter Kolczynski



DA regression weights: effect of
terrain

 Shallower structures
over terrain

 Would result in
smaller profile
increment from
near-surface
observation

W
o

N
o

model levels

10 —ferr>2500m (108)' ______________________
—— 1000m<=terr<1300m (109) |
O i i .
0 0.5 1
localization

Image from Lili Le1
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- Terrain x-sect
_0'50 2I0 4IO 6I0 8I0 1(I)0 1éO 1:10 1é0 188 _10 2IO 4IO 6I0 8I0 1(I)O 1é0 14Il-0 1EI50 188
X-grld pt X-grld pt

* T-Tregression weights across grid on lowest model layer
* Regression weights anti-correlated with terrain

* Regression weights anisotropic
Image from Lili Le1



. A fundamental assumption of standard Kalman filter
methods 1s that observations and forecasts are unbiased.
- In reality, and 1n particular in the surface and boundary
layers:
- Bias 1n observations result from:
- Instruments 1naccuracy
- Representativeness errors
- Inaccuracy of forward operators
- Forecast biases result from:
- Model structure, parameterization and discretization
- Bias 1n 1nitial conditions.



Rationale, contd.

- Near the surface, the fine vertical variability due to
complex terrain and canopy extend beyond the first or
even first few grid layers.

- This 1s not accounted for by forward operators used to
assimilate surface observations; these usually rely on
similarity theories which assume constant-flux layer,
horizontal homogeneity, and local equilibrium.

- Model-grid-to-observation-site vertical and horizontal
interpolation steps usually disregard the difference
between model and true elevation which becomes more
acute 1n areas of complex terrain.

- Covariances used to regress surface increments onto the
column aloft may result from biased PBL
parameterizations.

Slide from Dorita Rostkier-Edelstein
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FI1G. 16. The 30-min Q,-forecast profiles and the observed profile
during our daytime expenments for the assimilation-only model
configuration.

Rostkier-Edelstein and Hacker, WAF 2010



Research plan

1. Investigate the sources and the diurnal variability of bias at
the surface and 1n the PBL profile through “perfect model”
stmulations with an SCM and EnKF assimilation of surface

observations. These will enable a separation analysis of the
factors responsible for bias.

2. Investigate the correlation between surface and PBL bias to
model physical quantities along the diurnal cycle.

3. Run real model and real observations numerical experiments.

4. Use 1nsight gained 1n 1, 2 and 3 to develop a bias correction
algorithm to be run on-line with the EnKF. Algorithm would

be based on simple bias model (e.g. persistence) and/or

statistical predictors.
Slide from Dorita Rostkier-Edelstein



Downslope winds near CO

Springs

Dataset — High Wind Alert System (HWAS) 12
— 2 min resolution back to 2004 at US Air Force Academy

110 Severe Downslope Windstorms (DWS) recorded

Location — 3-D terrain lacks classical two-dimensional profile most studies
have focused on for DWS

Analysis Tool - Ensemble Sensitivity Analysis (ESA)
Case Study: 30 Dec 2008 Severe Downslope Storm
max gust 79.1kts ( 91 mph) (>50kts at all 12 sensors)

“Perfect” model (OSSE) experiment w/ 90 members

Is ESA 1s a useful analysis tool to determine sensitivity of DWS to IC’s and
Observations?

Determine joint sensitivity between synoptic forcing and local preconditioning

Slide from Paul Homan
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- What are we trying to forecast?

- Wind Speed - During event mostly captured by u.

» SFC Pressure — Significant Drop during DWS (> 5
mb 1n 2 hrs)

Slide from Paul Homan



oh sensitivity: J=U, x=T, units=m s”' K", Level=2, J=Rampart
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