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MATERHORN-M Goals 

•  Determine extent to which errors can be reduced by 
improving ICs 

•  Propose and test observation strategies to reduce 
prediction error 

•  Quantify spatial and temporal scales of error growth 
due to initial-condition (IC) error 

•  Quantify and characterize model inadequacy 
(residual) 



Tools/resources 

•  Ensemble data assimilation  

•  WRF 

•  COAMPS 

•  Big computers 

•  New observations from 2012 MATERHORN field 
program 



Framework 

•  Ensemble data assimilation with WRF and/or 
COAMPS: 

•  Short-range intrinsic error growth 

•  Systematic (but temporally and spatially varying) 
analysis increments  

•  Ensemble sensitivity analysis (ESA) 

•  Clustering methods 



Ensemble sensitivity analysis 
(ESA) 

•  Sensitivity scales (time and space) can be used to 
infer predictability in time and space 

•  Open issues: 

•  Sampling error, especially for mesoscales 

•  Linearity assumptions in complex terrain 



ESA and proposed observations (1) 

•  ESA can be used to approximate the adjoint of the forward 
tangent linear model, and thus used to evaluate the linear 
impact of hypothetical observations. 

•  Relationship between deterministic and ensemble adjoint first 
investigated by Ancell and Hakim (2008) although the idea 
has been around longer. 

•  Mathematically, and within sampling error, the only 
difference is that the ensemble adjoint is defined using an 
approximation to the full covariance: the diagonal. 

•  The approximation is not necessary when formulated as a 
scalar problem. 



ESA and proposed observations (2) 

•  Sensitivity of scalar forecast metric J to analysis xa 
is       , and can be estimated with an adjoint of the 
tangent linear model. 

•  Using sample statistics from an ensemble, the 
sensitivity can be estimated probabilistically, 
resulting in a linear regression problem: 
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ESA and proposed observations (3) 

•  Approximation of Pa with diagonal leads to the 
following definition for ensemble sensitivity: 
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ESA is simply linear 
regression	




ESA and proposed observations (4) 

•  Approximation of Pa with diagonal leads to the 
following definition for ensemble sensitivity: 
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ESA and proposed observations (5) 

•  Question: what change in forecast metric J can we 
expect from introducing (an additional) hypothetical 
observation yo to an analysis? 

•  After a few lines of math: 
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ESA and proposed observations (6) 

•  Rewriting as a scalar problem: 
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o  yo is hypothetical, or 
additional, observation 
not yet assimilated	


o  ya is analyzed value of 
hypothetical observation 
before proposed 
assimilation 	


o  ESA is simply linear 
regression	




Sampling error in ESA and ensemble DA (1) 

•  Ensemble statistics used in both the assimilation and 
ESA (adjoint approx.) 

•  Sampling error in assimilation most often handled 
by covariance localization 

•  Sampling error in ESA not yet addressed 



Sampling error in ESA and ensemble DA (2) 

•  In ensemble DA, covariances are typically weighted 
by a function of distance with 0 ≤ ρ ≤1: 
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•  It is clear that localization applies to the regression 
between analysis and observations 

 

 



Sampling error in ESA and ensemble DA (3) 

•  Propose a similar weighting on the ESA regressions, 
with 0 ≤ α ≤1: 

 

 

!J = ! Jx
2

! xx
2 !

" xy
2

! yy
2 +! o

2 yo ! ya( )

!J =! " Jx
2

! xx
2 !

" xy
2

! yy
2 +! o

2 yo ! ya( )

•  J and xa differ in both space 
and time 

•  J may not have a unique 
spatial location 

 
Sampling error is present, but a spatial function 
is inappropriate for α because the regression is 

both in space and time (i.e. it includes linear 
approximation to dynamics). 

 



KSLC Fog Event 
23 Jan 2009	

•  Visibilities 0-1/4SM after sunset	

•  Strong low-level inversion	

•  Light (<5kts) low-level winds (<130m) 	


•  Wind direction controlled by both 
synoptic and local effects/terrain	


•  Warm temps in the afternoon (49°F)	

•  Possible Lake Breeze	


	

	


1800 UTC Analysis Low-
level Winds After WS	


EM Water Vapor Mixing Ratio (Qv) 	

0-24h Forecast (VT: 06UTC-06UTC)	


VT:  06Z	
VT:  09Z	
VT:  12Z	
VT:  15Z	
VT:  18Z	
VT:  21Z	
VT:  00Z	
VT:  03Z	
VT:  06Z	


Region where 
moisture advected 
off the lake 
(possible lake 
breeze influence)	


Weak 
westerly 
winds into 
the GSL	


Shallow and strong low-level inversion	


1800 UTC 23 January 2009 



Units: kg kg-1 m s-1	


Sensitivity of Qv to U winds 

Analysis: 23/1800  Valid Time: 24/0000	


6-hr	


U-winds (x) and Qv (J) in a 8-km x 8-km box over  KSLC	


X	


X	


Sensitivity 
 
Region 1:   
±0.09 m s-1 (1σu) at X = 
     ±2.2x10-5 kg kg-1 change      
     in Qv  6 hours later at the      
     airport 
 
Region 2:   
±0.07 m s-1 (1σu) at X = 
      ±1.6x10-5 kg kg-1 change         
      in Qv  6 hours later at the  
      airport 
 
•     Tests to region 1	




Linearity tests simulating assimilation of a perfect 
observation 

•  Choose a perturbation point – typically located at a 
sensitivity maximum 

•  Perturb ensemble mean with ±1σx, 2σx, 3σx 
•  Use analysis ensemble to regress perturbation onto 

model state (ensemble mean) 
•  Run perturbed ensemble; look for: 

•  Agreement between predicted forecast δJ and 
actual 

•  Range of perturbations that give forecast δJ lying 
on the same line 



Sampling error in linearity tests 

•  Sensitivity estimates 
•  Regression to create perturbed ICs 
•  Possible treatments and outcomes, assuming linearity: 
 

Treatment	
 Effect	


Localize IC perturbations to 
account for sampling error in 
analysis covariances	


Reduced IC perturbations and 
actual δJ response	


Account for sampling error in 
sensitivity estimates	


Reduces predicted δJ	

	


No accounting for sampling error 	
Systematic over/under prediction 
results from more/less sampling 
error in 	




Linearity  Test 
1800 UTC Analysis and 6-hr Forecast 
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•  Qv responses to U-wind perturbation are mostly linear, but weak 
nonlinearity evident at ±3σx. 

•  Actual response greater magnitude that predicted response à 
sampling error in assimilating perfect observation, without 
localization, produces systematically large initial perturbation 



Same case, different sensitivity 

•  More realistic 
observation network; 
updated version of WRF 

•  Qualitatively similar 
sensitivity to U winds as 
seen in earlier 
experiments 

•  Examine sensitivity to 
temperature T	




Linearity  Test 
With and without horizontal localization on inner-most domain 

•  Qv prediction response to T perturbation weakly nonlinear!
•  Systematic over-prediction of response magnitude à sampling error in 

estimating sensitivity produces systematically large δJ predictions!
•  Effect of localization as expected – actual response magnitude smaller!
•  Expect greater effect with localization in vertical and on more domains!

Responses Responses with – without localization 



Ex: sampling error in   !J /!x

96 members	
 32 members (g2)	


32 members (g1)	
 32 members (g3)	


All 6-h forecast valid at 00Z 24 Jan 2009.	




Sensitivity Profiles 

•  Sensitivities 
confined to lowest 
2 model layers	


•  Broad 
disagreement 
between groups	


•  Suggests large 
sampling error in 
sensitivities	




Sampling error in 

•  Estimate the sampling error directly from multiple 
ensemble predictions 

•  Rather than 1 ensemble of 96 members, use 3 
ensemble of 36 members (cycled independently) 

•  CAVEAT: this estimates sampling error in 32-
member ensemble, not the 96-member ensemble 

•  Follows Anderson (2006, Physica D), who proposed 
estimating error in regressions from a sample of 
regression coefficients 

!J /!x



Horizontal weights on T-Qv 
regressions, 32-member groups  

•  Analysis regressions appear to be estimated more 
accurately 

•  Accounting for both, using these weights, would decrease 
predicted δJ relative to actual δJ (i.e. a correction)	




Summary 

•  ESA appears promising 
•  Sampling error enters into both ESA calculations 

and linearity tests 
•  Mathematical treatment of sampling error in ESA 

and predicted observation impact is straightforward, 
if sampling error known 

•  Severity of sampling error is variable 
•  Current: attempt to account for sampling error in 

different parts of process 
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•  Hacker 
•  Students: 
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•  Post-doc: 
•  Dr. Jared Lee (arrives Oct 2012) 

•  Collaborators 
•  Dr. Lili Lei (ASP post-doc) 
•  Dr. Dorita Rostkier-Edelstein (Israel Institute for 

Biological Research) 



Contributions from collaborators 



A look at systematic model error 

•  Analysis increments are opposite both random and 
systematic error 

•  Systematic components of analysis increments 
provide a “map” of systematic model error (scaled 
by ratio of analysis to observation error variances) 

•  Looking for ways to characterize time and space 
scales of systematic model errors: Self-Organizing 
Maps (SOMS) 



Unclassified	  

Unclassified	  

Self-‐Organizing	  Maps	  

89 07 44
92 27 15
40 06 32

03 45 92
98 97 99
28 67 25
83 36 79
08 42 33
89 33 66

55 33 27
22 88 41
04 65 45

50 15 31
85 29 62
67 93 27
73 30 78
42 65 12
36 57 59

06 71 81
29 69 91
04 46 89

10 05 23
91 90 25
48 54 75
00 82 72
68 29 82
21 73 93

28 80 72
51 26 17
51 41 79

34 45 83
38 94 86
21 48 69
49 84 18
42 00 20
84 07 89

35 39 42
45 50 57
68 70 75

Data	  (forecasts,	  analyses,	  etc.)	  

1. Create	  array	  of	  nodes	  
2. Select	  single	  state	  from	  data	  at	  
random	  

3.  IdenIfy	  the	  node	  closest	  to	  
selected	  state	  

4. Update	  that	  node	  and	  nearby	  
nodes	  to	  look	  more	  like	  selected	  
state	  
• Smaller	  changes	  farther	  away	  
from	  idenIfied	  node	  

5. Repeat,	  making	  smaller	  updates	  
each	  iteraIon	  

and	  iniIalize	   84 10 44
87 29 19
43 12 36

50 35 31
28 79 45
20 66 53

09 68 77
31 67 88
10 48 88

11 44 80
85 85 89
38 68 38

43 27 37
65 40 60
68 82 51

16 14 28
80 80 33
53 58 75

78 36 75
12 43 35
87 37 67

64 32 69
43 61 23
44 60 63

04 78 69
66 31 80
26 73 91

32 22 11
44 35 27
65 60 55

30 27 22
42 36 33
63 62 60

24 28 30
34 41 52
59 64 69

20 37 44
45 50 60
57 67 70

45 42 32
64 55 48
77 68 62

45 45 45
60 61 60
76 78 77

39 48 51
57 63 70
72 74 79

38 44 50
55 65 72
72 79 86

71 65 60
83 77 70
99 90 84

70 66 63
81 77 69
93 94 90

60 67 69
70 72 77
87 90 92

60 61 65
67 72 80
82 87 95

• Nodes	  resemble	  plausible	  data	  states	  
• Nearby	  nodes	  are	  similar	  to	  each	  other	  
• Data	  state	  can	  include	  mulIple	  variables	  at	  once	  
• Useful	  for	  idenIfying	  spaIal	  paRerns	  in	  complex	  
data	  

• Commonly	  thought	  of	  as	  a	  non-‐linear	  analogue	  of	  
Principal	  Component	  Analysis	  

Slide from Walter Kolczynski	




DA regression weights: effect of 
terrain 
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Image from Lili Lei	


•  Shallower structures 
over terrain 

•  Would result in 
smaller profile 
increment from 
near-surface 
observation 



DA regression weights varying by 
spatial location 
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Terrain x-sect 

•  T-T regression weights across grid on lowest model layer 
•  Regression weights anti-correlated with terrain 
•  Regression weights anisotropic 

x-grid pt	
 x-grid pt	


Image from Lili Lei	




Near-surface bias in observations and models 

•  A fundamental assumption of standard Kalman filter 
methods is that observations and forecasts are unbiased.  

•  In reality, and in particular in the surface and boundary 
layers: 
•  Bias in observations result from: 

•  Instruments inaccuracy 
•  Representativeness errors 
•  Inaccuracy of forward operators 

•  Forecast biases result from: 
•  Model structure, parameterization and discretization 
•  Bias in initial conditions. 



Rationale, contd. 
•  Near the surface, the fine vertical variability due to 

complex terrain and canopy extend beyond the first or 
even first few grid layers.  

•  This is not accounted for by forward operators used to 
assimilate surface observations; these usually rely on 
similarity theories which assume constant-flux layer, 
horizontal homogeneity, and local equilibrium.  

•  Model-grid-to-observation-site vertical and horizontal 
interpolation steps usually disregard the difference 
between model and true elevation which becomes more 
acute in areas of complex terrain. 

•  Covariances used to regress surface increments onto the 
column aloft may result from biased PBL 
parameterizations. 

Slide from Dorita Rostkier-Edelstein	




Example: assimilation of surface observations with an SCM and ensemble filter 

Rostkier-Edelstein and Hacker, WAF 2010	




Research plan 
1. Investigate the sources and the diurnal variability of bias at 

the surface and in the PBL profile through “perfect model” 
simulations with an SCM and EnKF assimilation of surface 
observations. These will enable a separation analysis of the 
factors responsible for bias. 

2. Investigate the correlation between surface and PBL bias to 
model physical quantities along the diurnal cycle. 

3. Run real model and real observations numerical experiments. 

4. Use insight gained in 1, 2 and 3 to develop a bias correction 
algorithm to be run on-line with the EnKF. Algorithm would 
be based on simple bias model (e.g. persistence) and/or 
statistical predictors. 

 
Slide from Dorita Rostkier-Edelstein	




Downslope winds near CO 
Springs 

•  Dataset – High Wind Alert System (HWAS) 12  
– 2 min resolution back to 2004 at US Air Force Academy 

•  110 Severe Downslope Windstorms (DWS) recorded 

•  Location – 3-D terrain lacks classical two-dimensional profile most studies 
have focused on for DWS 

•  Analysis Tool - Ensemble Sensitivity Analysis (ESA) 
•  Case Study:  30 Dec 2008 Severe Downslope Storm  

    max gust 79.1kts ( 91 mph) (>50kts at all 12 sensors) 
 

•  “Perfect” model (OSSE) experiment w/ 90 members 
 

•  Is ESA is a useful analysis tool to determine sensitivity of DWS to IC’s and 
Observations? 

 

•  Determine joint sensitivity between synoptic forcing and local preconditioning 

Slide from Paul Homan	




HWAS SENSORS 

9320 ft	


6410 ft	


~7000 ft	


Slide from Paul Homan	




30 Dec 2008 – Observed Winds 
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Slide from Paul Homan	




Forecast Metric – Possible J’s 

•  What are we trying to forecast?  

•  Wind Speed - During event mostly captured by u. 

•  SFC Pressure – Significant Drop during DWS (> 5 
mb in 2 hrs) 

Slide from Paul Homan	




Synoptic Sensitivity J = U, x = T	


Slide from Paul Homan	



