

The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program: The First Field Experiment (MATERHORN-X1)

H.J.S. Fernando¹, **E. Pardyjak²**, D. Zajic³, S. De Wekker⁴ and J. Pace³ S. Hoch², S. Di Sabatino¹, L. Leo¹, M. Jeglem², J. Massey², J. Steenburgh², D. Jensen², V. Kulandaivelu², C. Higgins⁵, A.Grachev⁶

> ¹University of Notre Dame ²University of Utah ³US Army Dugway Proving Grounds ⁴University of Virginia ⁵Oregon State University IS, University of Colorado, and NOAA/ESRL

• December 3, 2012

This research is supported by Office of Naval Research Award # N00014-11-1-0709

H.J.S. Fernando et al.

MATERHORN-X Team

Intro Site Results Summary

GROUND

(

Collaborators

NCAR U Princeton University U Oregon State University University of Colorado, Boulder

IIBR, Israel University of Bergen, Norway University of Vienna, Austria

MATERHORN Goals

Intro Site Results Summary

- 1. Identify and study the limitations of current state-of-thescience mesoscale models for mountain-terrain weather prediction
- 2. Develop scientific knowledge, technologies and tools to help realize leaps in predictability
- 3. Identify and address knowledge gaps, e.g.
 - Transition periods
 - Integrate across scales (dissipation scales of turbulence to synoptic scales)
 - Poorly understood physical processes
- 4. Utilize both traditional and novel techniques to attack the problem

H.J.S. Fernando et al.

Diurnal Flow Overview

Diurnal Flow Overview

H.J.S. Fernando et al.

1.

MATERHORN-I

Intro Site Results Summary

- Conducted at the US Army Dugway Proving Grounds from 25 September through 21 October, 2012
- 2. Consisted of ten 24-hour long IOPs
 - 5 Quiescent (700mb winds < 5ms⁻¹)
 - 4 Moderate (700mb winds 5-10ms⁻¹)
 - 1 Transitional (dry cold front passage)
 - 6 "Nighttime" IOPs (1400LT start)
 - 2 "Daytime" IOPS (0200LT start)
 - 1 "Mini-IOP" (1200LT-2000LT)
 - 1 "Super-IOP" (0500LT-1200LT+1day)

3. 2 Precipitation Events (Sept 24, Oct 12)

1.

- DPG GMAST System
- Extended Flux Stations (SEB)

æ

 Suite of supplemental turbulence measurements

2. Ground-Based Remote Sensing

- Wind LIDARS (UU, UND, ARL)
- SODAR/RASS (UU, UND)
- RF Remote Soil moisture Sensing (UND)
- Ceilometers, FMWC radar
- **3.** Aerial Measurements
 - Twin Otter (CIRPAS, UVA)
 - DataHawk (CU) UAS
 - Flamingo (UND) UAS

H.J.S. Fernando et al.

Experiment Details

- 4. Balloon Measurements
 - Radiosonde launches
 - Tethered Balloon soundings
- 5. Fine Scale Turbulence
 - In Situ Calibration of hot-Film probes
 - Flux divergence hot-wire measurements

6. Other

- Distributed Temperature Sensing (DTS)
- Infrared Surface Temperature measurements

MATERHORN-X1 – AGU Fall 2012

Intro Site Results Summary

H.J.S. Fernando et al.

Intro Site Results Summary

anite Mountain

ES4

DPG 32 m mobile tower DPG sonics & T/RH Edited heights & one extra level 2 m and 0.5 m level on small mast to the side?

Distributed Temperature Sensing

C. Higgins Oregon State

Slight slope, less vegetation

Ephemeral stream bed

Airborn Doppler Over Complex Terrain

TODWL (Twin Otter Doppler Wind Lidar) has been operated (since 2002) by CIRPAS (Center for Interdisciplinary Remotely Piloted Aircraft Studies), a part of the Naval Postgraduate School, Monterey, CA.

Addition TO Measurements –

 In situ fluxes, surface temperature, Met variables

conical scans below the aircraft

2µm coherent detection azir 10 cm two axis scanner, side door mounted Range: .3 – 21km depending upon aerosols Accuracy: < .10 m/s in three components

TODWL SCANNER

azimuth angle steps of 30°

Intro Site Results Summary

H.J.S. Fernando et al.

Twin Otter DopplerWind LIDAR

Spatial variability of vertical winds showing semi-organized structures along southern leg

Tethered Balloon Playa – Wind & Temperature Structures

H.J.S. Fernando et al.

Tethered Balloon Sage – Wind & Temperature Structures

6

8

9

4

5

NIVERSIT

10/06 20Z 10/06 23Z 10/07 02Z 10/07 05Z 10/07 08Z 10/07 11Z 10/07 14Z 10/07 17Z 10/07 20Z Date

LIDAR Observation – East PROVING GROUND Slope of Granite Peak

D

NIVERSIT

Intro Site Results Summary Operational WRF runs show a consistent morning warm bias, and afternoon cold bias, especially in the first half of the field campaign

H.J.S. Fernando et al.

Subsurface EFS Measurement

H.J.S. Fernando et al.

Addressing WRFTemperature Biases

Intro Site Results Summary

Radiation Balance Observation – Sagebrush vs. Playa

Energy Balance Observation – Sagebrush vs. Playa

Intro Site Results Summary

- 1) Successfully completed fall campaign
- 2) Beginning QC/QA and analysis of the data
- Preparing for the Spring MATERHORN-II Campaign
- 4) Working closely with modelers to address specific issues

This research was funded by the Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. Additional support for the Twin Otter was provided by the Environmental Sciences group at the Army Research Office (ARO).