Boundary layer structure and multi-scale flow interactions

(Materhorn-X: Airborne Doppler lidar and scale interactions)

Stephan F.J. De Wekker University of Virginia

Ehsan Erfani (graduate student) (Zeljko Vecenaj (post-doc, 2012))

MATERHORN kick-off meeting, 8 September 2011

Multi-scale flow interactions

Whiteman, 2000

Planned work

•use of numerical forecasts and reanalysis products produced for the Dugway Proving Ground by NCAR to study dynamical and thermal aspects of the boundary layer structure (meso-scale – synoptic-scale interactions)

 provide guidance for the siting of Doppler and aerosol lidars and for the flight patterns to provide optimal coverage of local and meso-scale boundary layer structure

•operate an eyesafe, mobile scanning aerosol lidar (Leosphere ALS300) in staring and scanning mode, which will provide information on the boundary layer structure (local scale)

Specifications of Leosphere ALS300 lidar

range	50m - 15 km (depending on factors incl. aerosol loading and accumulation time)
temporal res	1s -30 s (or longer, depending on accumulation time)
Scanning speed	8 degr. /s
Laser source	flash-lamp pumped tripled Nd/Yag
pulse repetition freq.	20 Hz
Wavelength	355 nm
Pulse duration	4 ns
Pulse energy	16 mJ
Eye safety	IEC60825-1 2001

- Planetary Boundary Layer and residual layer heights
- Vertical backscatter and extinction profile
- Vertical Aerosol profile

SCANNING MODE

elevation ranges from ~ 2 degrees to 90 degrees to provide details on cloud cover and aerosol layer. A vertical scan can be completed within about ten minutes.

Ongoing work

•Structure of surface layer turbulence in T-REX

•Flow interactions in Salinas Valley using airborne Doppler lidar

MULTI SCALE FLOW INTERACTION AND SURFACE TURBULENCE STRUCTURE

Slope site

Turbulence length scale

OVE

200

-118.2 Iongitude [deg]

 Λ [m]

100

-118,3

300

-118,1

-118

Slope site

400

35 (b) Valley site

30

25

20

15

10

5

0

-118.4

36.7

36.65

36,6

0

Valley site

To capture interaction with mesoscale and synoptic scale, wind measurements at high spatial resolution over horizontals distances of at least a few tens of km are required.

Airborne Doppler lidar measurements, e.g. the Twin Otter Doppler Wind Lidar system (TODWL)

Airborne Doppler lidar over complex terrain

TODWL has been operated (since 2002) by CIRPAS (Center for Interdisciplinary Remotely Piloted Aircraft Studies), a part of the Naval Postgraduate School, Monterey, CA.

Dave Emmitt is the TODWL PI.

conical scans below the aircraft

 $2\mu m$ coherent detection

10 cm two axis scanner, side door mounted Range: .3 – 21km depending upon aerosols Accuracy: < .10 m/s in three components azimuth angle steps of 30°

Interaction of sea-breeze/valley flow/synoptic flow and boundary layer growth

Accelerating valley flow -> sinking motions

De Wekker et al. 2011, submitted to JAMC

POTENTIAL TODWL FLIGHT LEGS, E.G. 5 LEGS ~ 25 KM/LEG -> < 1 HOUR

PROCESS STUDIES, ASSIMILATION, NOWCASTING, MODEL EVALUATION, ETC