A CASE STUDY OF THE NOCTURNAL BOUNDARY LAYER ON A SLOPE AT THE FOOT OF A DESERT MOUNTAIN

Manuela Lehner

C. David Whiteman, Sebastian W. Hoch, Derek Jensen, Eric R. Pardyjak, Laura S. Leo, Silvana Di Sabatino, and Harindra J. S. Fernando

submitted to Journal of Applied Meteorology and Climatology
Case study: Spring IOP 4

- Spring IOP 4: 11–12 May 2013
- Quiescent, clear-sky conditions
- Tethered-balloon soundings on the east slope
Case study: Spring IOP 4

- East slope of Granite Mountain
Phase 1
Evening flow transition
Evening flow transition

Tethered-balloon soundings

UV \ldots up-valley
DV \ldots down-valley
DS \ldots downslope
Evening flow transition

(a) local sunset

(b) cooling onset

(c) flow transition
Evening flow transition

- The shadow propagated down the sidewall from northwest to southeast.
- The strongest temperature decrease occurred shortly after the shadow passed each site.
- The transition from upslope/up-valley winds to downslope winds followed the propagation of the shadow down the slope.
- Differences between the upper and lower parts of the slope:
 - Upper part: weakening and stagnating upslope winds before the onset and increase of downslope winds.
 - Lower part: gradual counter-clockwise turning of the weakening up-valley winds to a downslope direction.
Phase 2
Undisturbed nocturnal slope-boundary layer
Near-surface heat budget

$\frac{\partial \theta}{\partial t}$

advection
(along-slope, cross-slope)

heat flux

residual
Undisturbed nocturnal slope-boundary layer

Downslope-flow characteristics

(a) Inversion strength
(b) Inversion depth
(c) Jet maximum speed
(d) Jet maximum height
Phase 3

Sloshing valley inversion
Sloshing valley inversion

Slope immersed in cold air as the valley inversion pushed up the slope.
Sloshing valley inversion

Tethered-balloon soundings

(a) T (°C)

Time (MST)

h (m AGL)
Three distinct periods:

1. Evening flow transition
2. Undisturbed nocturnal slope-boundary layer
3. Sloshing valley inversion
Three distinct periods:

1. **Evening flow transition**
2. **Undisturbed nocturnal slope-boundary layer**
3. **Sloshing valley inversion**

Phase 1
- Shadow propagates down the east-facing sidewall.
- Transition from upslope to downslope winds follows the shadow propagation down the slope.
Three distinct periods:

1. Evening flow transition
2. Undisturbed nocturnal slope-boundary layer
3. Sloshing valley inversion

Phase 1
- Shadow propagates down the east-facing sidewall.
- Transition from upslope to downslope winds follows the shadow propagation down the slope.

Phase 2
- Near-surface temperatures remained almost constant (balance between along-slope advection and heat-flux divergence).
- Three small disturbances affected temperature and wind fields.
Three distinct periods:

1. **Evening flow transition**
 - Shadow propagates down the east-facing sidewall.
 - Transition from upslope to downslope winds follows the shadow propagation down the slope.

2. **Undisturbed nocturnal slope-boundary layer**
 - Near-surface temperatures remained almost constant (balance between along-slope advection and heat-flux divergence).
 - Three small disturbances affected temperature and wind fields.

3. **Sloshing valley inversion**
 - Valley inversion repeatedly pushes up the slope and retreats again producing large temperature oscillations over the slope.