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Quick Background

Based on energy arguments:

Sheppard (1956)
“Under what conditions will an airstream rise over a mountain range?”
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Adopted from Hunt et al. (1997)

Dividing Streamline (4,) : The streamline separating the top and middle regions of flow.

Dividing Streamline Height (H,) : The height between the ground and 4



Quick Background K
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Site Location and Instrumentation
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(Left) High resolution 1m orthoimagery of Granite Mountain, portraying the location of the instrumentation tower and smoke visualization site.
(Right) Ten times magnification of the smoke visualization site; the contours are presented at 5m intervals.

32m NW tower: PWIDs:
* 581000 R.M. Young ultrasonic sonicanemometers ¢ 05103 R.M. Young mechanical wind sensors
(20Hz sampling rate) * Temperature and relative humidity probes



Goals and Procedure

Goals:

« Multiple smoke releases in time of stratified flow

« Capture with high quality photos and movies

» Be able to quantify observations using DSL concept

Procedure:
1. Wait for appropriate conditions W

2. First smoke release

* Red smoke canisters; (~1.5 min release)

* 4 simultaneous ground releases (0.0h, 0.08h, 0.45h, 0.88h)
3. Second smoke release
« Use crane for elevated release; observation of approaching streamline
» White smoke canisters (~5 min release)
« 3 simultaneous ground releases; 1 elevated release (~0.33h)
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Atmospheric Conditions

Determination of Stratification

profile
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Density profiles:

» Development of strong linear correlation by 3Am
« R2values reaching ~0.7 in the early morning
» Breakdown of linearity around noon

Surface buoyancy flux:

» Positive when surface is heated — convective
overturning

* Negative when boundary layer tends to be stably
stratified (reduce turbulent energy)

(Top) Linear regression coefficient of the density profile, calculated from the 32m sonic anemometers; corresponding density gradient strength.
(Bottom)  Development of the buoyancy flux, as calculated from the tower sonic anemometer positioned 2m above the ground.



Atmospheric Conditions

Development of Froude number

Froude number:

Fr

» During period of stratification, Fr drops within
applicable range
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(Top) Linear regression coefficient of the density profile, calculated from the 32m sonic anemometers; corresponding density gradient strength.

(Bottom)  Development of the buoyancy flux, as calculated from the tower sonic anemometer positioned 2m above the ground.



Temperature Profiles

Normalized velocity profiles T/T
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» Temperature profiles normalized by T,
+ Show good stratification, with 0.67 < R? < 0.75 around the time of flow visualizations



Velocity Profiles

Comparison of friction velocities
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Monin-Obukhov Similarity Theory (MOST):
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Velocity and Temp Protiles

Normalized velocity profiles u/u,
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» Tower data is normalized by the friction velocity computed from the Sonic Anemometer positioned at 2m on the 32m Tower.
* PWID data is normalized by the u. needed for the MOST profile to pass through the recorded 2m velocity.

» Normalized profiles show good agreement



Smoke Visualization
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Smoke release plume paths, as determine by observation:
(Left) Smoke release plume paths, as determine by observation.
(Right)

Development of the buoyancy flux, as calculated from the tower sonic anemometer positioned 2m above the ground.



Smoke Visualization: Red Smoke

SP: 1h
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Bottom Layer

~6:15am : Red Smoke ~30s after release

Things to note:

» Clear presence of dividing streamline

« Shift in middle release, perpendicular to parallel

» Release within the top layer is carried over the mountain




Smoke Visualization: Red Smoke

May 30, 2013 : Granite Mountain, Utah
*Stratified morning flow
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[ 3 Second vantage point
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~6:30am : White Smoke / Elevated Release ~180s after release

Things to note:
» Clear presence of dividing streamline

« Approaching streamline in bottom layer is deflected around the mountain
» Release within the top layer is carried over the mountain




Smoke Visualization: DSLLH

Dividing streamline evolution
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Solve Sheppard’s equation using velocity and temperature profiles previously established.

Things to note:

As stratification forms, a dividing streamline becomes present
During the time of the experiment, DSLH ~ 0.5h
Calculation are consistent with field observations




Smoke Visualization: Movie

)

FlowVisualizationFinal.mov




Granite Mountain Overview
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