Data Assimilation over Complex Terrain
with emphasis on DPG

Zhaoxia Pu
Hailing Zhang and Xuebo Zhang
Department of Atmospheric Sciences, University of Utah

Materhorn Annual Review Meeting
August 17, 2012
Salt Lake City, Utah
Personnel

- **Dr. Zhaoxia Pu** (University of Utah)
- **Graduate students** (Materhorn/ONR and NSF support)
 - Hailing Zhang (Ph.D. Student, UU Atmospheric Sciences)
 - Xuebo Zhang (M.S. student, UU Computational Engineering and Science)
- **Collaborators**
 - Dr. Jim Steenburgh, Jeff Massey (University of Utah)
 - Dr. Dragan Zajic, *Meteorology Division at Dugway Proving Ground*
 - Dr. Jason Knievel, NCAR
 - Dr. Joshua Hacker (Naval Postgraduate School)
 - Drs. David Whiteman, Sebastian Hoch, Eric Pardyjak (University of Utah)
 - *Many others in Materhorn*
Outline

• Research results from last year
 ➢ Compare 3DVAR and EnKF in assimilation of near surface observations over complex terrain: OSSEs
 ➢ Near real-time WRF high-resolution numerical simulations over DPG during September 15 to November 15, 2011
 ➢ Evaluation of analyses and forecasts of near-surface atmospheric conditions in a month-long WRF numerical simulation
 1) Cold start; 2) 3DVAR
 ➢ Sensitivity studies

• Recent research progress and plan to the support field program

• Plan for post-field studies
Four research areas for Materhorn-M

(1) Quantifying spatial and temporal scales of error growth internal to a mesoscale model, and relating them to Initial Condition (IC) uncertainty;

(2) Determining whether the errors can be reduced by improving ICs or whether we are already near the limits of predictability imposed by chaos;

(3) Proposing and testing observations and strategies that will reduce the important IC errors while bringing us closer to predictability limits;

(4) Quantifying and characterizing the importance of model inadequacy in maintaining prediction errors that are not reduced as much as expected.
Objective

- To what extent can data assimilation and ensemble forecasting reduce the uncertainties in near surface and boundary layer atmosphere over mountainous terrain?

Model and Data Assimilation System

- An advanced research version of Weather Research and Forecasting (WRF) model
- 3-dimensional variational data assimilation (3DVAR) system
- An ensemble Kalman filter system developed by NCAR/DART for WRF model (DART/WRF)
DPG SAMS locations and land cover
WRF model domains

Horizontal resolution: 30km/10km/3.33km/1.11km
Evaluation of analyses and forecasts of near-surface atmospheric Conditions in a month-long WRF numerical simulation

I. Control Run

• Two-month simulations from 15 September to 15 November 2011
 ➢ WRF V3.3
 ➢ Four one-way nested domains
 ➢ Model horizontal resolution 30km/10km/3.3km/1.1 km
 ➢ 4 sets of 48-h forecasts per day from 00Z, 06Z, 12Z and 18Z.
 ➢ Cold start -- Initial and boundary conditions derived from NCEP NAM analysis/forecast

• Evaluation is performed for a month-long (15 September to 14 October 2011) period only, considering the originally planned MATERHORN field experiment at the time

• Verification against surface mesonet (SAMS) observations: 2-m temperature and 10-m wind
Figure 21. Mean average error of simulated near surface variables for DPG area at different model domains: (a) 2-m temperature, (b) 10-m wind speed, (c) 10-m wind direction. D02, D03 and D04 represent results from model domains at different horizontal resolutions (10 km/3.33 km/1.11 km).

Figure 22. Mean average error of simulated near surface variables for various initialization times: (a) 2-m temperature, (b) 10-m wind speed, (c) 10-m wind direction. Various curves represent forecasts initialized with different time. The forecasting period for all forecasts is 48 h.

Figure 23. Bias error of simulated 2-m temperature with various initialization times. The forecasting period for all forecasts is 48 h.
Biases at stations

Daytime: 15Z - 00Z
Nighttime: 00Z - 15Z

Temperature

- Warm bias during nighttime
- Cold bias during daytime.
Bias at Stations

Wind direction

Wind speed
Weak vs. strong synoptic forcing cases
Evaluation of analyses and forecasts of near-surface atmospheric Conditions in a month-long WRF numerical simulation

II. Impact of surface data assimilation

- Two-month WRF simulations from 15 September to 15 November 2011
 - Four one-way nested domains
 - Model horizontal resolution 30km/10km/3.3km/1.1 km
 - 4 sets of 48-h forecasts per day from 00Z, 06Z, 12Z and 18Z.
 - Surface mesonet data are assimilated at a hourly cycle in first 3-h

- Evaluation is performed for a month-long (15 September to 14 October 2011) period only, considering the originally planned MATERHORN field experiment at the time

- Verification against surface mesonet (SAMS) observations: 2-m temperature and 10-m wind
Biases

Significant reduction of biases in short-rang forecasts!
MAEs
Significant reduction of errors in short-range forecasts!
Sensitivity to assimilation of different variables (Oct. 13, 2011)
Sensitivity to radiation schemes

Mean Absolute Error (MAE)

<table>
<thead>
<tr>
<th>experiment</th>
<th>value</th>
<th>longwave scheme</th>
<th>shortwave scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctrl</td>
<td>1</td>
<td>rrtm</td>
<td>Dudhia</td>
</tr>
<tr>
<td>ra3</td>
<td>3</td>
<td>CAM</td>
<td>CAM</td>
</tr>
<tr>
<td>ra4</td>
<td>4</td>
<td>rrtmg</td>
<td>rrtmg</td>
</tr>
<tr>
<td>ra5</td>
<td>5</td>
<td>Goddard</td>
<td>Goddard</td>
</tr>
</tbody>
</table>
Sensitivity to cumulus schemes

Mean Absolute Error (MAE)
Real-time forecasting during MATERHORN field program (9/25 – 10/25 2012)

UU Real-time WRF High-resolution Forecast

Model: WRF ARW; IC/BC: NCEP NAM

Contact: Prof. Zhaoxia Pu (Zhaoxia.Pu@utah.edu), Mr. Xuebo Zhang (Xuebo.Zhang@utah.edu)

Change Field: 10m-Wind(m/s)

Select Domain: d04

Select time: 2012082812

Weather Links

Mesowest
UU AS Weather Center

Disclaimer: These products are experiment/research forecasts - they're not official forecasts. The products posted on this website are for research purpose only. All rights are reserved.

http://www.inscc.utah.edu/~pu/dugway
Post-field research plan

• High-resolution analyses and forecast for major IOPs with data assimilation

• High-resolution ensemble forecasting with ensemble-based data assimilation

• Predictability studies
Concluding remarks

- A month-long high resolution simulations leads good understanding of the uncertainties in analyses and forecasts of near-surface atmospheric conditions over DPG

- Assimilation of surface observations results in positive impact on short-range forecasts

- A real time WRF high-resolution forecasting capability has been developed

- Testing of ensemble Kalman filter with real data is in progress

- Ready to assimilate observations during MATERHORN IOPs, retrospective runs are planned to be done with data assimilation and ensemble forecasting.

MATERHORN-X provides a unique opportunity for evaluating data assimilation methods, validating ensemble forecasting, verifying numerical model and studying atmospheric processes over mountainous terrain.