MATERHORN The immersed boundary method for flow over complex terrain

Tina Katopodes Chow, Jingyi Bao, Jason Simon

Civil and Environmental Engineering University of California, Berkeley Overview

□ Field work

Owens Valley rotor simulations

WRF-IBM for mesoscale to microscale

- Terra incognita
- Log law implementation
 - Method development and testing
 - Comparisons with WRF
- Application to Granite Mountain
 - Preliminary results

Terra incognita

Push mesoscale models to higher resolution?

Or increase domain size for LES?

Is there a conflict?

Challenges in the "Terra incognita"

Steep topography

- Terrain-following coordinate system
- Turbulence modeling
- Land-surface fluxes similarity theory
- Lateral boundary forcing
- Other physics parameterizations

Meso-scale L ~ 2-2000 km

"Terra incognita" Wyngaard (JAS 2004)

What we are doing

- Weather and Research Forecasting (WRF) model
 - Mesoscale to microscale
- One tool for all scales
 - Improved turbulence models for LES
 - Immersed boundary method (IBM) for steep terrain

WRF-IBM Framework

- Capable as mesoscale or LES code
- WRF fails with steep terrain slopes
- □ WRF-IBM (Lundquist et al. 2010, 2012)
 - WRF + immersed boundary method (IBM)
 - Same model; just a switch
 - Nesting possible

Increasing resolution \implies steeper slopes

Terrain slope limit

Terrain-following coordinates

- Horizontal pressure gradient errors
 - 45° limit, usually ~30° starts causing problems (e.g. Mahrer 1984)
- Grid aspect ratio limitations
- Numerical stability

Vertical coordinate systems

sigma, or terrain-following

eta, or "step mountain"

immersed boundary

others include sigma-pressure, isentropic, and hybrids

Ghost-cell immersed boundary method

IBM - Boundary reconstruction

IBM implemented in WRF
2 different interpolation algorithms
Handles highly complex topography

Lundquist et al. MWR 2010

Inverse distance weighting

(a) Dirichlet

(b) Neumann

For complex urban geometries

Lundquist et al. 2010, 2012

Seamless grid nesting

- Mesosacle to microscale
- Must switch from WRF to IBM-WRF
- When to switch?
 - Resolution, steepness, aspect ratio, turbulence closure

WRF Alone

- Coarse resolution
 - smooth terrain
 - low error
- Fine resolution
 - steep terrain
 - high error

WRF Alone

- Coarse resolution
 - smooth terrain
 - low error
- Fine resolution
 - steep terrain
 - high error

IBM-WRF Alone

- Very coarse resolution
 - grid-scale > mountain-scale (flat plate)
 - low error
- Coarse resolution
 - large spacing
 - high error (interpolation)
- Fine resolution
 - small spacing
 - low error

IBM-WRF Alone

- Very coarse resolution
 - grid-scale > mountain-scale (flat plate)
 - low error
- Coarse resolution
 - large spacing
 - high error (interpolation)
- Fine resolution
 - small spacing
 - low error_

IBM-WRF Alone

- Very coarse resolution
 - grid-scale > mountain-scale (flat plate)
 - low error
- Coarse resolution
 - large spacing
 - high error (interpolation)
- Fine resolution
 - small spacing
 - low error

WRF to IBM-WRF

- Switch at intersection for best results
- Want to develop general guidelines for this curve
 - WRF starts blowing up near 300m resolution on 2D GMAST

Complex terrain applications

- Current implementation for no-slip
 - Good for urban environments at ~1 m resolution

IBM-WRF for Oklahoma City

0

Need log law wall stress for complex terrain

$$U = \frac{u_*}{\kappa} \ln\left(\frac{z+z_0}{z_0}\right) \qquad C_D = \left[\frac{1}{\kappa} \ln\left(\frac{z_1+z_0}{z_0}\right)\right]^{-2}$$

$$\tau_{wall} = -u_*^2 = -C_D |U_1| |U_1|$$

WRF implementation of log law

Momentum equation in U direction

$$\frac{\partial U}{\partial t} + U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} + W\frac{\partial U}{\partial z} = -\frac{1}{\rho}\frac{\partial P}{\partial x} - \left(\frac{\partial \tau_{11}}{\partial x} + \frac{\partial \tau_{12}}{\partial y} + \frac{\partial \tau_{13}}{\partial z}\right)$$

\square Requires gradient in au_{13}

WRF implementation of log law

IBM – log law implementation

$$u_{surface} = v_{surface} = w_{surface} = 0$$

 $\vec{U} \cdot \hat{n} = 0$ $\tau_w = -\mu \left(\frac{\kappa}{\ln \frac{z_1 - h}{z_o}}\right)^2 \left|\vec{U}\right| u$

How to validate?

Small changes can make big difference

Flat plate

- Constant eddy viscosity
- Top Rayleigh damping layer
- Constant shear stress at wall
- Analytical solution

$$u = \frac{\tau_w}{v_t} z + 5.25$$
$$\tau_w = 0.1 \quad v_t = 20$$

 Flat plate
Constant eddy viscosity
Top Rayleigh damping layer
Log law at wall

Analytical solution

- Below z1, velocity assumed logarithmic, above linear
- Location of z1 determines slope

 Flat plate
Constant eddy viscosity
Top Rayleigh damping layer
Log law at wall

- Analytical solution
 - Below z1, velocity assumed logarithmic, above linear
 - Location of z1 determines slope

Flat plate

- Constant eddy viscosity
- Top Rayleigh damping layer
- Log law at wall
- Pressure gradient forcing

3D log law implementation

3D log law implementation

Granite Mountain – IBM test case

Granite Mountain, Utah

MATERHORN: addressing challenges in the "Terra incognita"

Steep topography
Turbulence modeling
Land-surface fluxes – similarity theory

Ongoing work

IBM log law

- 3D implementation
- Validation
- Granite Mountain
 - Semi-idealized
 - Real case

Turbulence closureOwens Valley

