RF Polarimetric
Moisture Sensing

Tom Pratt

University of Notre Dame

(tpratt@nd.edu)
(574) 631-0973

The College of Engineering: ¢

ar the University of Notre Dame




Team of Researchers

e Tom Pratt (co-Pl)

e Zilin (Graduate student)

* Neil Dodson (Engineer)

* Niels Seim (ESTEEM student)

Collaborators

Silvana DiSabatino (Prof)

Laura Leo (Postdoc)

Pengkun Yang (Visiting student)
Steve Silliman (Hydrologist, Gonzaga)
Joe Fernando (PI)

Jeff Mueller (Postdoc)

7he College of Engineering

ar the Untversity of Notre Dame



Remote Detection Concept
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Concept: llluminate area to be characterized with radio frequency energy using multiple frequency bands. At
the receiver, measure specific polarimetric features of the bistatic reflections to detect changes in the soil
moisture

* Average reading over illumiunated area

* Scalable coverage
* Potential to obtain time series of measurements to support digital signal processing algorithms

* Sensitive to changes in the soil moisture (e.g., dielectric properties)

* Conversion to absolute soil moisture measurements would require either some form of site-specific
calibration or possibly could be achieved using time-series over long periods of time

* Potential for moisture vs. depth profiling using multiple frequencies

This was our first data collection campaign at km-scales
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Polarization Representation

« The technique relies on the polarimetric behavior induced by scattering

» We represent these effects on a Poincare Sphere
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Every point on the Poincare sphere
corresponds to a unique
polarization state.

All polarization states can be
uniquely represented

All signal polarizations falling on
the unit sphere have a degree of
polarization equal to unity




Experimental Illlustration

 Technology is based on exploitation of

propagation phenomenon known as polarization
mode dispersion (PMD)

— Identified for wireless in ~2006 in experimental results

* Lab-based soil experiments illustrated potential
of the technique

— Repeatable responses that changes as a function of
the soil moisture level

— Saturation and dry states are also distinctive

Single-frequency system
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Experiments validated
the ability to calibrate
the PMD responses |
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Temperature Sensitivity Tests
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Electromagnetic Scattering

Plane of incidence
e Scattering responses developed 0 . tGeome_tt;v between
for signal with arbitrary . ey ra(;msmulc er, re:lewtgr
incidence x N/ and surface reflection
* Model generates polarization Hiay) - Ground

reflection coefficients for
spatially dispersed facets

* Responses depend upon N
incidence angle, other ground
geometry parameters, and the
transmit polarization state
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Surface Contour Model
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Functional Block Diagram of Collection System

Transmitter Side (COTS) Receiver Side
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Deployment at DPG (Fall 2012)

* System deployed in gap between Sapphire Mountain and Granite
Peak.

* Transmitter situated on plateau,

* Receiver in valley floor

e Range was approximately 0.42 km
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Illustrative Antenna Effect,s“
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What We Anticipated.....

e PMD responses that vary slightly with temperature, but
more substantially with soil moisture

 PMD responses that vary in position and/or shape as the
soil moisture changes

e (Capability to discriminate dry soil from moist soil
* (Capability to discriminate saturated soil from moist soil

e Responses from 3 frequencies that could be used to study
depth profiling
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* |Impact of antenna vibration due
to high wind on the PMD
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Results in Low-Wind Conditions

* |[mpact of low wind
on the PMD
response. The
inset show the
wind speed versus
time, with the low
wind speed interval
associated with the
measurements
identified.
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Measured Results

Responses illustrate changes
in PMD signatures between
dry and moist states

Exhibits location shift on the
Poincare sphere, but it is
difficult to know if this is
actual or just an artifact of
wind vibration.
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Measurement Campaign

Notre Dame Football Stadium
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Equipment to be
deployed initially over

a 3-week period
Data collected in the

first hour of collection,
Sept 5, 2013
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3-frequency collection || |

Snapshot collection
rate of 1/60 Hz
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Field Research Vehicles
(a future capability based on a $498K DURIP award)
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* Support experimentation in:

— communications channel
characterizations

FORD F-550
4X4 DIESEL

— radar clutter/target characterizations
as a function of grazing angle and
bistatic/monostatic geometries

— remote sensing applications (e.g., soil
moisture sensing)

e [nitially will be configured as a
transmit vehicle and a receive i
vehicle to support bistatic
measurements
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Advancing the Technology.....

Shorter Term Goals

* Continue km-scale tests with a multi-frequency system to further develop
and evaluate technology

e Use theoretical response modeling capability to evaluate response trends

e Evaluate use of model with topography for potential method for
converting measured responses to absolute soil moisture levels

* Develop depth profiling approach

Longer Term Goals

* Engineer a real-time, low-cost, compact collection system
— Will dramatically change the extent to which technology can be evaluated

— Provides sample support to enable powerful digital signal processing
algorithms to be applied

— Board-level rather than box-level
— Substantially lower cost will enable more rigorous testing/evaluation i
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