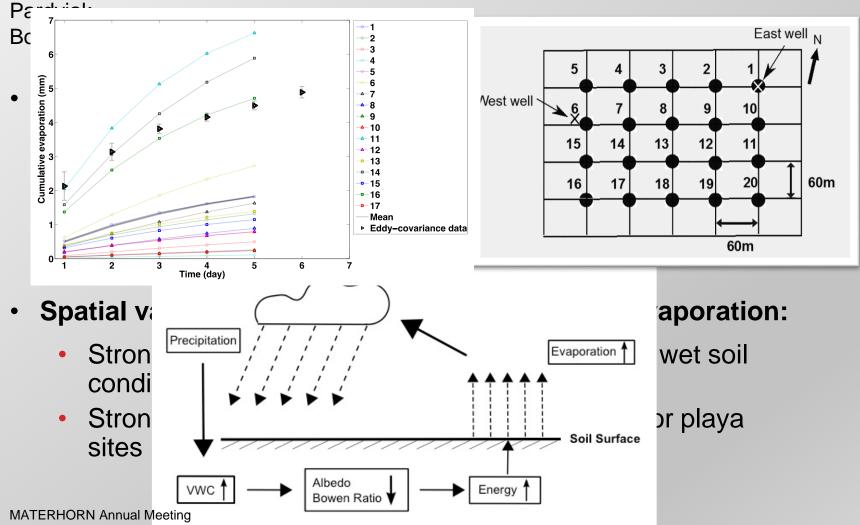


A Study to Better Understand the Diurnal Cycle of Turbulent Fluctuations of Heat with Emphasis on Transition Periods in the Surface Layer

Chaoxun Hang¹, Daniel Nadeau², Derek Jensen¹, Eric Pardyjak¹


¹ Department Of Mechanical Engineering, University Of Utah

² Department Of Civil And Water Engineering, Université Laval, Quebec City, Canada

0. PREVIOUS WORK SUMMARY

Playa soil moisture and evaporation dynamics during the MATERHORN field Program

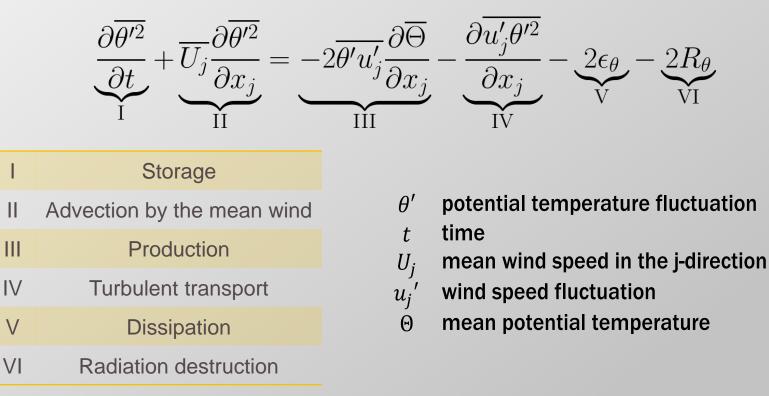
Hang, Chaoxun, Daniel F. Nadeau, Derek D. Jensen, Sebastian W. Hoch, Eric R.

1. MOTIVATION

- It is important to understand the physical processes of turbulent fluctuations of scalar quantities in the atmospheric boundary layer
- Turbulent fluctuations of heat (i.e. potential temperature variance) is a key factor to improve the second-order turbulence closure models (or Level 2), which is widely used in numerical weather predictions

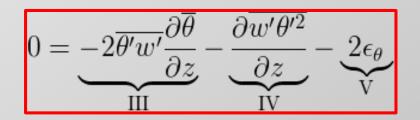
2. OBJECTIVES

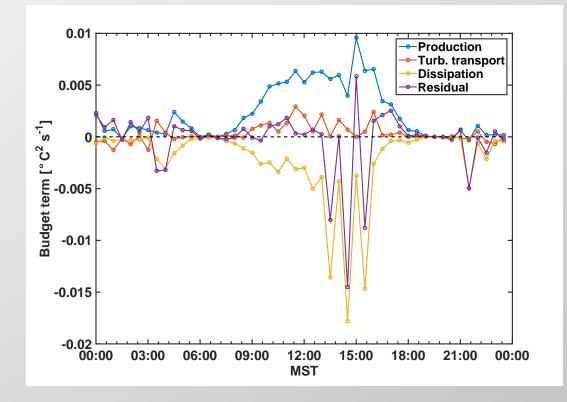
- To analyze the potential temperature variance budget during the transition periods in the surface layer
- To develop a simple model of potential temperature variance budget and to validate it with MATERHORN experimental data


3. METHODS

- Site: Desert playa
- Time: May 1 to May 31, 2013
- Instrument:
 - Sonic anemometers at 6 levels
 - Open-path gas analyzer at 10.4 m
 - Temperature/relative humidity sensors at 6 levels
 - Hot-wire

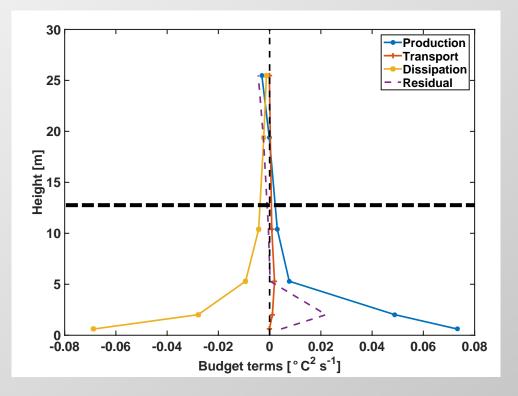
4. BACKGROUND


Potential temperature variance budget equation (Antonia et al. BLM, 1980):


4. BACKGROUND

Assumptions:

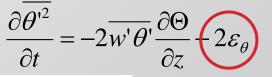
- Steady state flow
- Horizontal homogeneity
- Negligible subsidence
- Negligible radiation destruction

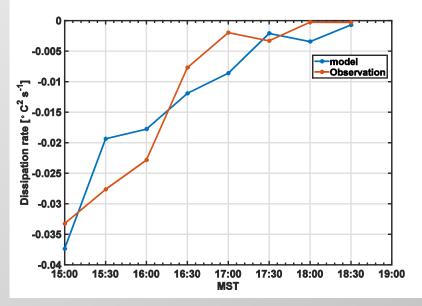

diurnal cycle of the $\overline{q^{\prime 2}}$ budget terms

May 13, 2013 at 10-m level

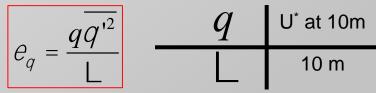
- Dissipation rate is calculated by secondorder structure function (Kiely et al. BLM, 1996).
- 30-min averaged data
- Reasonable balance between production and dissipation

Medians of the $\overline{q^{\prime^2}}$ budgets at six levels

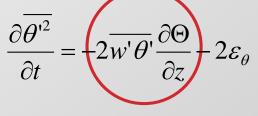



Daytime (1000 to 1600 MST) during the spring field campaign 2013

- General balance between production and dissipation through all levels
- Statistically negligible turbulent transport term
- A thin layer at 10 15m (dashed line)
- Unknown big residual at 2-m level
 - Radiation destruction?

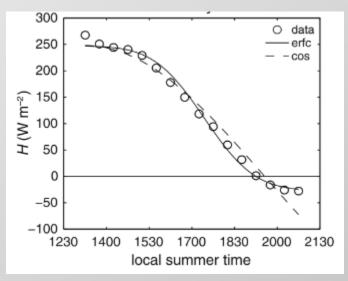

Model the $\overline{q^{\prime^2}}$ budget during late-afternoon transition period

- Steady state assumption is not valid during the transition periods(Foken & Wichura, AFM, 1996);
- The storage term is no longer negligible;
- Potential temperature variance budget can be written as:



• Dissipation model:

 Observation is calculated by second-order structure function


Model the $\overline{q'}^2$ budget during late-afternoon transition period

Vertical heat flux:

- Erfc function
- Cosine function

(Nadeau et al. BLM 2011)

Vertical temperature gradient:

$$\frac{\partial \Theta}{\partial \tau} \sim \frac{\sqrt{\overline{\theta'}^2}}{\Lambda}$$

 $\partial z = \Lambda$

$$\frac{\partial \Theta}{\partial z} \sim \frac{T^*}{\Lambda} \sim \frac{-\overline{w'\theta'}}{u^*\Lambda}$$

Nadeau et al., BLM, 2011 MATERHORN Annual Meeting

6. FUTURE PLAN

- Model the vertical mean potential temperature gradient as a function of time during the transition periods
- Validate dissipation rates by hot-wire data
- Solve the simplified potential temperature variance budget equation numerically
- Evaluate the new model and compare it with the existing ones (e.g. Monin-Obukhov Similarity Theory)

7. OUTLOOK - FOG STUDY

- Task
 - To conduct a case study of turbulence effects on fog processes in a small high-altitude valley
- Objectives
 - To better understand the role of turbulent mixing on fog events under different conditions
 - To improve the parameterizations of numerical weather forecasting models for fog
- Future work
 - Thoroughly analyze the entire fog processes
 - 1. To determine the fog formation by looking at the visibility and downwelling longwave radiative flux (DWLW)
 - 2. To describe the fog developing processes by the vertical atmospheric profiles (i.e. from tethered balloon)
 - 3. To discuss the decay of fog as functions of solar radiation, turbulent mixing, moisture, etc.
 - Study the mechanisms of fog formation under light stable boundary condition

Thank you!